Validation of Gross Primary Production Estimated by Remote Sensing for the Ecosystems of Doñana National Park through Improvements in Light Use Efficiency Estimation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site, Instrumentation and Data Sources
2.2. LUE Model
2.2.1. FAPAR Estimation
2.2.2. PAR Estimation
2.2.3. ε Estimation
ε Reduction with Meteorological Variables
ε Reduction with a Water Index
2.3. Evaluation Procedure
3. Results
3.1. Xeric Shrubland
3.2. Marshland
4. Discussion
4.1. GPP Dynamics
4.2. LUE—Models Validation
4.2.1. LUE-Models Validation in Xeric Shrublands
4.2.2. LUE-Models Validation in Marshland
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, A.J.; Bustamante, J.; Janss, G.F.E.; Fernández-Zamudio, R.; Díaz-Paniagua, C. Doñana Wetlands. In The Wetland Book: II: Distribution, Description and Conservation; Finlayson, C.M., Milton, G.R., Prentice, R.C., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–14. (In Spainish) [Google Scholar]
- Morris, E.P.; Flecha, S.; Figuerola, J.; Costas, E.; Navarro, G.; Ruiz, J.; Rodriguez, P.; Huertas, E. Contribution of Doñana Wetlands to Carbon Sequestration. PLoS ONE 2013, 8, e71456. [Google Scholar] [CrossRef] [PubMed]
- Pettorelli, N.; Schulte to Buhne, H.; Tulloch, A.; Dubois, G.; Macinnis-Ng, C.; Queiros, A.M.; Wegmann, M.; Schrodt, F.; Stellmes, F.; Sonnenschein, R.; et al. Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 2018, 4, 71–93. [Google Scholar] [CrossRef]
- Arakida, H.; Miyoshi, T.; Ise, T.; Shima, S. Data Assimilation Experiments with Simulated LAI Observations and the Dynamic Global Vegetation Model SEIB-DGVM. In Proceedings of the Japan Geoscience Union Meeting, Chiba, Japan, 24–28 May 2015. [Google Scholar]
- Schimel, D.; Pavlick, R.; Fisher, J.B.; Asner, G.P.; Saatchi, S.; Townsend, P.; Miller, C.; Frankenberg, C.; Hibbard, K.; Cox, P. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Chang. Biol. 2015, 21, 1762–1776. [Google Scholar] [CrossRef] [PubMed]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-Wide Reduction in Primary Productivity Caused by the Heat and Drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Unger, S.; Máguas, C.; Pereira, J.; Aires, L.; David, T.; Werner, C. Partitioning Carbon Fluxes in a Mediterranean Oak Forest to Disentangle Changes in Ecosystem Sink Strength during Drought. Agric. For. Meteorol. 2009, 149, 949–961. [Google Scholar] [CrossRef]
- Giner, C.; Martínez, B.; Gilabert, M.A.; Alcaraz-Segura, D. Trends in vegetation greenness and gross primary production in Spain (2000–2009)|. Rev. Teledetec. 2012, 38, 51–64. [Google Scholar]
- Sjöström, M.; Zhao, M.; Archibald, S.; Arneth, A.; Cappelaere, B.; Falk, U.; Grandcourt, A.; Hanan, N.; Kergoat, L.; Kutsch, W.; et al. Evaluation of MODIS gross primary productivity for Africa using eddy covariance data. Remote Sens. Environ. 2013, 131, 275–286. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, J.; Wang, X.; Ma, M. Improving the global MODIS GPP model by optimizing parameters with FLUXNET data. Agric. For. Meteorol. 2021, 300, 108314. [Google Scholar] [CrossRef]
- Roxburgh, S.; Berry, S.; Buckley, T.; Barnes, B.; Roderick, M. What Is NPP? Inconsistent Accounting of Respiratory Fluxes in the Definition of Net Primary Production. Funct. Ecol. 2005, 19, 378–382. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef]
- Ryu, Y.; Berry, J.A.; Baldocchi, D.D. What is Global Photosynthesis? History, Uncertainties and Opportunities. Remote Sens. Environ. 2019, 223, 95–114. [Google Scholar] [CrossRef]
- Knipper, K.R.; Kustas, W.P.; Anderson, M.C.; Nieto, H.; Alfieri, J.G.; Prueger, J.H.; Hain, C.R.; Gao, F.; McKee, L.G.; Alsina, M.M.; et al. Using high-spatiotemporal thermal satellite ET retrievals to monitor water use over California vineyards of different climate, vine variety and trellis design. Agric. Water Manag. 2020, 241, 106361. [Google Scholar] [CrossRef]
- Celis, J.; Xiao, X.; Basara, J.; Wagle, P.; McCarthy, H. Simple and Innovative Methods to Estimate Gross Primary Production and Transpiration of Crops: A Review. In Digital Ecosystem for Innovation in Agriculture; Chaudhary, S., Biradar, C.M., Divakaran, S., Raval, M.S., Eds.; Studies in Big Data; Springer: Singapore, 2023; Volume 121. [Google Scholar]
- Wellington, M.; Kuhnert, P.; Lawes, R.; Renzullo, L.; Pittock, J.; Ramshaw, P.; Moyo, M.; Kimaro, E.; Tafula, M.; van Rooyen, A. Decoupling crop production from water consumption at some irrigation schemes in southern Africa. Agric. Water Manag. 2023, 284, 108358. [Google Scholar] [CrossRef]
- Cristóbal, J.; Prakash, A.; Anderson, M.C.; Kustas, W.P.; Alfieri, J.G.; Gens, R. Surface Energy Flux Estimation in Two Boreal Settings in Alaska Using a Thermal-Based Remote Sensing Model. Remote Sens. 2020, 12, 4108. [Google Scholar] [CrossRef]
- Gilmanov, T.G.; Verma, S.B.; Sims, P.L.; Meyers, T.P.; Bradford, J.A.; Burba, G.G.; Suyker, A.E. Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements. Glob. Biogeochem. Cycles 2003, 17, 1071. [Google Scholar] [CrossRef]
- Chu, H.; Luo, X.; Ouyang, Z.; Chan, W.S.; Dengel, S.; Biraud, S.C.; Torn, M.S.; Metzger, S.; Kumar, J.; Arain, M.A.; et al. Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agric. For. Meteorol. 2021, 301–302, 108350. [Google Scholar]
- Hilker, T.; Coops, N.; Wulder, M.; Black, T.; Guy, R. The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements. Sci. Total Environ. 2008, 404, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Tagesson, T.; Tian, F.; Schurgers, G.; Horion, S.; Scholes, R.; Ahlström, A.; Ardö, J.; Moreno, Á.; Madani, N.; Olin, S.; et al. A Physiology-based Earth Observation Model Indicates Stagnation in the Global Gross Primary Production during Recent Decades. Glob. Chang. Biol. 2020, 27, 836–854. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Xie, Z.; Zhao, C.; Zheng, Z.; Qiao, K.; Peng, D.; Fu, Y.H. Remote sensing of terrestrial gross primary productivity: A review of advances in theoretical foundation, key parameters and methods. Gisci. Remote Sens. 2024, 61, 2318846. [Google Scholar] [CrossRef]
- Pei, Y.; Dong, J.; Zhang, Y.; Yuan, W.; Doughty, R.; Yang, J.; Zhou, D.; Zhang, L.; Xiao, X. Evolution of Light Use Efficiency Models: Improvement, Uncertainties, and Implications. Agric. For. Meteorol. 2022, 317, 108905. [Google Scholar] [CrossRef]
- Ingle, R.; Bhatnagar, S.; Ghosh, B.; Gill, L.; Regan, S.; Connolly, J.; Saunders, M. Development of hybrid models to estimate gross primary productivity at a near-natural Peatland using sentinel 2 data and a light use efficiency model. Remote Sens. 2023, 15, 1673. [Google Scholar] [CrossRef]
- Wang, S.; Garcia, M.; Bauer-Gottwein, P.; Jakobsen, J.; Zarco-Tejada, P.J.; Bandini, F.; Sobejano Paz, V.; Ibrom, A. High spatial resolution monitoring land surface energy, water and CO2 fluxes from an Unmanned Aerial System. Remote Sens. Environ. 2019, 229, 14–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Z.; Wang, J.; Gao, X.; Yang, C.; Yang, F.; Wu, G. Temporal upscaling of MODIS instantaneous FAPAR improves forest gross primary productivity (GPP) simulation. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103360. [Google Scholar] [CrossRef]
- Huertas, I.E.; Flecha, S.; Figuerola, J.; Costas, E.; Morris, E. Effect of Hydroperiod on CO2 Fluxes at the Air-water Interface in the Mediterranean Coastal Wetlands of Doñana. J. Geophys. Res. Biogeosci. 2017, 122, 1615–1631. [Google Scholar] [CrossRef]
- Lumbierres, M.; Méndez, P.F.; Bustamante, J.; Soriguer, R.; Santamaría, L. Modeling biomass production in seasonal wetlands using MODIS NDVI land surface phenology. Remote Sens. 2017, 9, 392. [Google Scholar] [CrossRef]
- Spinosa, A.; Fuentes-Monjaraz, M.A.; El Serafy, G. Assessing the Use of Sentinel-2 Data for Spatio-Temporal Upscaling of Flux Tower Gross Primary Productivity Measurements. Remote Sens. 2023, 15, 562. [Google Scholar] [CrossRef]
- Wei, S.; Yi, C.; Fang, W.; Hendrey, G. A Global Study of GPP Focusing on Light-Use Efficiency in a Random Forest Regression Model. Ecosphere 2017, 8, e01724. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Monteith, J.L. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1977, 281, 277–294. [Google Scholar]
- Choudhury, B. Estimating Gross Photosynthesis Using Satellite and Ancillary Data: Approach and Preliminary Results. Remote Sens. Environ. 2001, 75, 1–21. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Rasmussen, M. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ. 2004, 91, 490–507. [Google Scholar] [CrossRef]
- Running, S.W.; Thornton, P.E.; Nemani, R.R.; Glassy, J.M. Global terrestrial gross and net primary productivity from the earth observing system. In Methods in Ecosystem Science; Springer: New York, NY, USA, 2000; pp. 44–57. [Google Scholar]
- Du, D.; Zheng, C.; Jia, L.; Chen, Q.; Jiang, M.; Hu, G.; Lu, J. Estimation of global cropland gross primary production from satellite observations by integrating water availability variable in light-use-efficiency model. Remote Sens. 2022, 14, 1722. [Google Scholar] [CrossRef]
- Siljeström, P.A.; Moreno, A.; Garcia, L.V.; Clemente, L.E. Doñana National Park (south-west Spain): Geomorphological characterization through a soil-vegetation study. J. Arid Environ. 1994, 26, 315–323. [Google Scholar] [CrossRef]
- de la Riva, E.G.; Lloret, F.; Pérez-Ramos, I.M.; Marañón, T.; Saura-Mas, S.; Díaz-Delgado, R.; Villar, R. The Importance of Functional Diversity on the Stability of Mediterranean Shrubland Communities after the Impact of Extreme Climatic Events. J. Plant Ecol. 2017, 10, 281–293. [Google Scholar] [CrossRef]
- Pérez-Ramos, I.M.; Díaz-Delgado, R.; de la Riva, E.G.; Villar, R.; Lloret, F.; Marañón, T. Climate Variability and Community Stability in Mediterranean Shrublands: The Role of Functional Diversity and Soil Environment. J. Ecol. 2017, 105, 1335–1346. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER, Version 1.1. Available online: http://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 2 May 2016).
- Smets, B.; Cai, Z.; Eklund, L.; Tian, F.; Bonte, K.; Van Hoost, R.; De Roo, B.; Jacobs, T.; Camacho, F.; Sánchez-Zapero, J.; et al. Copernicus Land Monitoring Service High Resolution Vegetation Phenology and Productivity (HR-VPP), Algorithm Theoretical Base Document (ATBD); European Environment Agency: Copenhagen, Denmark, 2024. [Google Scholar]
- Szeicz, G. Solar Radiation for Plant Growth. J. Appl. Ecol. 1974, 11, 617–636. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land hourly datafrom 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://doi.org/10.24381/cds.e2161bac (accessed on 15 October 2023).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547. [Google Scholar] [CrossRef]
- Elfarkh, J.; Johansen, K.; El Hajj, M.M.; Almashharawi, S.K.; McCabe, M.F. Evapotranspiration, gross primary productivity and water use efficiency over a high-density olive orchard using ground and satellite based data. Agric. Water Manag. 2023, 287, 108423. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Peñuelas, J.; Papale, D.; Ardö, J.; Goulden, M.L.; Kiely, G.; Richardson, A.D.; Rotenberg, E.; Veenendaal, E.M.; Filella, I. Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Glob. Ecol. Biogeogr. 2010, 19, 253–267. [Google Scholar] [CrossRef]
- Gómez-Giráldez, P.J.; Aguilar, C.; Caño, A.B.; GarcíaMoreno, A.; González-Dugo, M.P. Remote sensing estimation of net primary production as monitoring indicator of holm oak savanna management. Ecol. Indic. 2019, 106, 105526. [Google Scholar] [CrossRef]
- Padilla, F.L.M.; Maas, S.J.; González-Dugo, M.P.; Mansilla, F.; Rajan, N.; Gavilán, P.; Domínguez, J. Monitoring regional wheat yield in Southern Spain using the GRAMI model and satellite imagery. Field Crop. Res. 2012, 130, 145–154. [Google Scholar] [CrossRef]
- Running, S.W.; Zhao, M. User’s Guide Daily GPP and Annual NPP (MOD17A2H/A3H) and Year-end GapFilled (MOD17A2HGF/A3HGF) Products NASA Earth Observing System MODIS Land Algorithm (For Collection 6). 2021. Available online: https://modis-land.gsfc.nasa.gov/pdf/MOD17C61UsersGuideV11Mar112021.pdf (accessed on 11 March 2021).
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Mohammadi, A.; Costelloe, J.F.; Ryu, D. Application of time series of remotely sensed normalized difference water, vegetation and moisture indices in characterizing flood dynamics of large-scale arid zone floodplains. Remote Sens. Environ. 2017, 190, 70–82. [Google Scholar] [CrossRef]
- Xiao, X.; Braswell, B.; Zhang, Q.; Boles, S.; Frolking, S.; Moore, B. Sensitivity of vegetation indices to atmospheric aerosols: Continental-scale observations in Northern Asia. Remote Sens. Environ. 2003, 84, 3. [Google Scholar] [CrossRef]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic anemometer tilt correction algorithms. Bound.—Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Ocean. Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.; Arneth, A.; Barr, A.; Stoy, P.; Wohlfahrt, G. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Glob. Chang. Biol. 2010, 16, 187–208. [Google Scholar] [CrossRef]
- Wutzler, T.; Lucas-Moffat, A.; Migliavacca, M.; Knauer, J.; Sickel, K.; Šigut, L.; Menzer, O.; Reichstein, M. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 2018, 15, 5015–5030. [Google Scholar] [CrossRef]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef]
- Barr, A.G.; Richardson, A.D.; Hollinger, D.Y.; Papale, D.; Arain, M.A.; Black, T.A.; Bohrer, G.; Dragoni, D.; Fischer, M.L.; Gu, L.; et al. Use of change-point detection for friction–velocity threshold evaluation in eddy-covariance studies. Agric. For. Meteorol. 2013, 171, 31–45. [Google Scholar] [CrossRef]
- Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; et al. Gap filling strategies for long term energy flux data sets. Agric. For. Meteorol. 2001, 107, 71–77. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Hsieh, C.I.; Katul, G.; Chi, T.W. An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour. 2000, 23, 765–772. [Google Scholar] [CrossRef]
- Detto, M.; Montaldo, N.; Albertson, J.D.; Mancini, M.; Katul, G. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour. Res. 2006, 42, 8. [Google Scholar] [CrossRef]
- Serrano, L.; Esquivias-Segura, M.P.; Zunzunegui, M. Long-term hydrological changes over a seventeen-year period in temporary ponds of the Doñana NP (SW Spain). Limnetica 2008, 27, 065–078. [Google Scholar] [CrossRef]
- ICTS-RBD, ICTS de la Reserva Biológica de Doñana. Programa de Seguimiento de Procesos y Recursos Naturales. Espacio Natural de Doñana. Memoria 2018; CSIC—Estación Biológica de Doñana (EBD): Sevilla, Spain, 2019; Available online: https://digital.csic.es/handle/10261/279075 (accessed on 18 April 2023).
- Frank, D.; Reichstein, M.; Miglietta, F.; Pereira, J.S. Impact of climate variability and extremes on the carbon cycle of the Mediterranean region. In Regional Assessment of Climate Change in the Mediterranean: Volume 2: Agriculture, Forests and Ecosystem Services and People; Springer: Dordrecht, The Netherlands, 2013; pp. 31–47. [Google Scholar]
- Cueva, A.; Bullock, S.H.; Méndez-Alonzo, R.; López-Reyes, E.; Vargas, R. Foliage Senescence as a Key Parameter for Modeling Gross Primary Productivity in a Mediterranean Shrubland. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG00583. [Google Scholar] [CrossRef]
- Jia, X.; Mu, Y.; Zha, T.; Wang, B.; Qin, S.; Tian, Y. Seasonal and interannual variations in ecosystem respiration in relation to temperature, moisture, and productivity in a temperate semi-arid shrubland. Sci. Total Environ. 2020, 709, 136210. [Google Scholar] [CrossRef] [PubMed]
- Rich, P.M.; Breshears, D.D.; White, A.B. Phenology of mixed woody–herbaceous ecosystems following extreme events: Net and differential responses. Ecology 2008, 89, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Shunlin, L.; Xiaowen, L.; Jindi, W. Vegetation production in terrestrial ecosystems. In Advanced Remote Sensing; Meat & Livestock; Australia Limited ABN: Sydney, Australia, 2012; pp. 501–531. [Google Scholar]
- Chen, B.; Black, T.A.; Coops, N.C.; Hilker, T.; Trofymow, J.A.; Morgenstern, K. Assessing tower flux footprint climatology and scaling between remotely sensed and eddy covariance measurements. Bound.—Layer Meteorol. 2009, 130, 137–167. [Google Scholar] [CrossRef]
- Gómez-Giráldez, P.J.; Cristóbal, J.; Nieto, H.; Díaz-Delgado, R. Estimation of surface energy and CO2 fluxes through remote sensing in a Juniper tree ecosystem at the National Park of Doñana. In Sixth Recent Advanced in Quantitative Remote Sensing; RAQRS: Valencia, Spain, 2022; pp. 34–39. [Google Scholar]
- Gilabert, M.A.; Moreno, A.; Maselli, F.; Martínez, B.; Chiesi, M.; Sánchez-Ruiz, S.; García-Haro, F.J.; Pérez-Hoyos, A.; Campos-Taberner, M.; Pérez-Priego, O.; et al. Daily GPP estimates in Mediterranean ecosystems by combining remote sensing and meteorological data. ISPRS J. Photogramm. 2015, 102, 184–197. [Google Scholar] [CrossRef]
- Migliavacca, M.; Meroni, M.; Busetto, L.; Colombo, R.; Zenone, T.; Matteucci, G.; Manca, G.; Seufert, G. Modeling Gross Primary Production of Agro-Forestry Ecosystems by Assimilation of Satellite-Derived Information in a Process-Based Model. Sensors 2009, 9, 922–942. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Li, Z.; Xu, K.; Huang, M.; Shen, B.; Hou, L.; Xiao, L.; Liang, S.; Shi, Z.; Wang, X.; et al. A water stress factor based on normalized difference water index substantially improved the accuracy of light use efficiency model for arid and semi-arid grasslands. J. Environ. Manag. 2024, 349, 119566. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, Y.; Ju, W.; Chen, J.; Xiao, J. Accumulated soil moisture deficit better indicates the effect of soil water stress on light use efficiency of grasslands during drought years. Agric. For. Meteorol. 2023, 329, 109276. [Google Scholar] [CrossRef]
Ecosystem | Sensor | Variable | Frequency |
---|---|---|---|
Xeric shrubland | CNR4 Kipp & Zonnen 1 | Incoming shortwave radiation | 5 min |
LI-7500 DS 2 | Carbon and water storage | 10 Hz | |
WindMaster 3D 3 | Sonic temperature, three-dimensional wind speed and direction | 10 Hz | |
HMP155A 4 | Air temperature and relative humidity | 5 min | |
Marshland | CNR4 Kipp & Zonnen 1 | Incoming shortwave radiation | 5 min |
LI-7500 DS 2 | Carbon and water storage | 10 Hz | |
Gill HS-50 3 | Sonic temperature, three-dimensional wind speed and direction | 10 Hz | |
WXT520 4 | Air temperature and relative humidity | 5 min |
Dataset | Variable | Source | Spatial Resolution (m) | Number of Images |
---|---|---|---|---|
Sentinel-2 | FAPAR | Copernicus High Resolution Vegetation Phenology and Productivity | 10 | 257 |
Bands 8 and 12 | Google Earth Engine | 10 | 150 | |
ERA5-Land | surface_solar_radiation_downwards_sum, temperature_2m_min, temperature_2m, dewpoint_temperature_2m | ECMWF | 11,132 | 1278 |
LUE Model | Metric | Value |
---|---|---|
ME | R2 | 0.36 |
RMSE | 0.73 | |
NRMSE | 0.19 | |
MBE | −0.19 | |
WA | R2 | 0.74 |
RMSE | 0.21 | |
NRMSE | 0.06 | |
MBE | −0.55 |
LUE Model | Metric | Value |
---|---|---|
ME | R2 | 0.86 |
RMSE | 0.40 | |
NRMSE | 0.09 | |
MBE | −0.35 | |
WA | R2 | 0.93 |
RMSE | 0.40 | |
NRMSE | 0.06 | |
MBE | −0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Giráldez, P.J.; Cristóbal, J.; Nieto, H.; García-Díaz, D.; Díaz-Delgado, R. Validation of Gross Primary Production Estimated by Remote Sensing for the Ecosystems of Doñana National Park through Improvements in Light Use Efficiency Estimation. Remote Sens. 2024, 16, 2170. https://doi.org/10.3390/rs16122170
Gómez-Giráldez PJ, Cristóbal J, Nieto H, García-Díaz D, Díaz-Delgado R. Validation of Gross Primary Production Estimated by Remote Sensing for the Ecosystems of Doñana National Park through Improvements in Light Use Efficiency Estimation. Remote Sensing. 2024; 16(12):2170. https://doi.org/10.3390/rs16122170
Chicago/Turabian StyleGómez-Giráldez, Pedro J., Jordi Cristóbal, Héctor Nieto, Diego García-Díaz, and Ricardo Díaz-Delgado. 2024. "Validation of Gross Primary Production Estimated by Remote Sensing for the Ecosystems of Doñana National Park through Improvements in Light Use Efficiency Estimation" Remote Sensing 16, no. 12: 2170. https://doi.org/10.3390/rs16122170
APA StyleGómez-Giráldez, P. J., Cristóbal, J., Nieto, H., García-Díaz, D., & Díaz-Delgado, R. (2024). Validation of Gross Primary Production Estimated by Remote Sensing for the Ecosystems of Doñana National Park through Improvements in Light Use Efficiency Estimation. Remote Sensing, 16(12), 2170. https://doi.org/10.3390/rs16122170