Analyzing Spatial–Temporal Characteristics and Influencing Mechanisms of Landscape Changes in the Context of Comprehensive Urban Expansion Using Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Resources
2.3. Methodology
2.3.1. Landscape Indices
2.3.2. Mann–Kendall Trend Test
2.3.3. Pettitt Mutation Test
2.3.4. Spatial Clustering Analysis
2.3.5. Principal Component Regression Analysis
2.3.6. Geographic Detector Model
3. Results
3.1. Analysis of Comprehensive Indices for Landscape Patterns in Minnesota
3.2. Spatial Clustering Pattern of the CLI in Minnesota
3.3. Influencing Mechanism Analysis
3.3.1. Socio-Ecological Situation in Minnesota
3.3.2. Examination of Key Mechanism Aspects of Influencing Factors
3.3.3. Analysis of the Intensity of Influencing Factors
3.3.4. Spatial Coupling Relationship between CLI and Impact Factors
4. Discussion
5. Conclusions
- Continuous upward trend of the CLI (1998–2018): The CLI for Minnesota showed a consistent upward trajectory over the study period. This trend indicates an increase in the density and complexity of patch shapes, signifying heightened landscape fragmentation and diversity. Concurrently, there was a deterioration in landscape connectivity and a further diversification of patch types.
- Significant mutations in 2010: The CLI experienced a notable shift in 2010, with a significant change in the dominant patch species within the landscape. This alteration is attributed to the combined effects of abrupt natural events and significant socio-economic transformations.
- Spatial clustering stability: Overall, the spatial clustering of the CLI remained stable, characterized by pronounced high-value and low-value clusters. High-value clusters (hot spots) are predominantly located in the north–central region and its surroundings, while low-value clusters (cold spots) are mainly found in the southwest and adjacent areas.
- Quantitative relationship insights: In terms of influencing factors on the CLI, POP emerged as the most sensitive, followed by AS, GDP, VS, and SLP.
- Multi-factorial influence on spatial pattern: The spatial pattern of the CLI is shaped by the interaction of multiple influencing factors rather than being dictated by a single factor. This highlights the complexity of landscape pattern formation and the need for a multifaceted approach to understanding it.
- Critical role of human activity and vegetation cover change: Among the various interactions, the synergy between human activity and changes in vegetation cover stands out as the most significant factor influencing the spatial pattern of landscape patterns.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, F.; Deng, S.M.; Wu, D.; Liu, W.W.; Bai, Z.H. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustain. Cities Soc. 2022, 80, 103760. [Google Scholar] [CrossRef]
- Hansen, A.T.; Dolph, C.L.; Foufoula-Georgiou, E.; Finlay, J.C. Contribution of wetlands to nitrate removal at the watershed scale. Nat. Geosci. 2018, 11, 127. [Google Scholar] [CrossRef]
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; He, C.Y.; Huang, Q.X.; Shi, P.J.; Zhang, D.; Güneralp, B. Impacts of urban expansion on natural habitats in global drylands. Nat. Sustain. 2022, 5, 869–878. [Google Scholar] [CrossRef]
- Simkin, R.D.; Seto, K.C.; McDonald, R.I.; Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2117297119. [Google Scholar] [CrossRef] [PubMed]
- DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Nie, W.B.; Yang, F.; Xu, B.; Bao, Z.Y.; Shi, Y.; Liu, B.T.; Wu, R.W.; Lin, W. Spatiotemporal Evolution of Landscape Patterns and Their Driving Forces Under Optimal Granularity and the Extent at the County and the Environmental Functional Regional Scales. Front. Ecol. Evol. 2022, 10, 954232. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Cai, C.; Li, C.; Liu, Y.; Bao, Y.; Guan, W. Landscape pattern and transition under natural and anthropogenic disturbance in an arid region of northwestern China. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 1–10. [Google Scholar] [CrossRef]
- Cui, L.; Wang, J.; Sun, L.; Lv, C.D. Construction and optimization of green space ecological networks in urban fringe areas: A case study with the urban fringe area of Tongzhou district in Beijing. J. Clean. Prod. 2020, 276, 124266. [Google Scholar] [CrossRef]
- Liu, K.; Yang, Y.; Shi, R.; Li, Q.; Wu, B.; Zheng, H.; Mi, C. Spatiotemporal changes and driving forces of landscape patterns in the Yuqiao Reservoir watershed during 1990–2020. J. Agric. Resour. Environ. 2023, 40, 154–164. [Google Scholar]
- Wang, H.R.; Zhang, M.D.; Wang, C.Y.; Wang, K.Y.; Wang, C.; Li, Y.; Bai, X.L.; Zhou, Y.K. Spatial and Temporal Changes of Landscape Patterns and Their Effects on Ecosystem Services in the Huaihe River Basin, China. Land 2022, 11, 513. [Google Scholar] [CrossRef]
- Li, J.; Zhou, K.; Xie, B.; Xiao, J. Impact of landscape pattern change on water-related ecosystem services: Comprehensive analysis based on heterogeneity perspective. Ecol. Indic. 2021, 133, 108372. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Zambrano, L.; Handel, S.N.; Fernandez, T.; Brostella, I. Landscape spatial patterns in Mexico City and New York City: Contrasting territories for biodiversity planning. Landsc. Ecol. 2022, 37, 601–617. [Google Scholar] [CrossRef]
- Agriculture. Available online: https://www.dli.mn.gov/business/workforce/agriculture (accessed on 29 May 2024).
- Windmuller-Campione, M.A.; Russell, M.B.; Sagor, E.; D’Amato, A.W.; Ek, A.R.; Puettmann, K.J.; Rodman, M.G. The Decline of the Clearcut: 26 Years of Change in Silvicultural Practices and Implications in Minnesota. J. For. 2020, 118, 244–259. [Google Scholar] [CrossRef]
- Schroeder, S.A.; Fulton, D.C. Land of 10,000 Lakes and 2.3 Million Anglers: Problems and Coping Response Among Minnesota Anglers. J. Leis. Res. 2010, 42, 291–315. [Google Scholar] [CrossRef]
- Antrop, M.; Van Eetvelde, V. Analysing Landscape Patterns. In Landscape Perspectives: The Holistic Nature of Landscape; Landscape Series; Springer: Cham, Switzerland, 2017; Volume 23, pp. 177–208. [Google Scholar]
- Malandra, F.; Vitali, A.; Urbinati, C.; Weisberg, P.J.; Garbarino, M. Patterns and drivers of forest landscape change in the Apennines range, Italy. Reg. Environ. Chang. 2019, 19, 1973–1985. [Google Scholar] [CrossRef]
- Etter, A.; McAlpine, C.; Possingham, H.P. Historical patterns and drivers of landscape change in Colombia since 1500: A regionalized spatial approach. Ann. Assoc. Am. Geogr. 2008, 98, 2–23. [Google Scholar] [CrossRef]
- Lin, J.P.; Zhu, C.H.; Deng, A.Z.; Zhang, Y.P.; Yuan, H.; Liu, Y.Y.; Li, S.R.; Chen, W. Causes of Changing Woodland Landscape Patterns in Southern China. Forests 2022, 13, 2183. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.H.; Ye, C.X.; Yuan, Z.; He, K.L. Multiscale effects and drivers of landscape heterogeneity for water-related ecosystem services in urban agglomerations. Hydrol. Process. 2024, 38, e15081. [Google Scholar] [CrossRef]
- Moarrab, Y.; Salehi, E.; Amiri, M.J.; Hovidi, H. Spatial-temporal assessment and modeling of ecological security based on land-use/cover changes (case study: Lavasanat watershed). Int. J. Environ. Sci. Technol. 2022, 19, 3991–4006. [Google Scholar] [CrossRef]
- Li, B.; Jiao, S.; Zhou, M.; Zhou, Y. Effects of urban green space landscape pattern on flood retention efficiency from “urban-block” scale perspective. J. Appl. Ecol. 2024, 35, 533–542. [Google Scholar] [CrossRef]
- Zheng, X.P.; Chen, Z. The spatial response of carbon storage to territorial space composition and landscape pattern changes: A case study of the Fujian Delta urban agglomeration, China. Environ. Sci. Pollut. Res. 2024, 31, 11666–11683. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.W.; Wang, G.X.; Deng, W. Advance in Research of the Relationship between Landscape Patterns and Ecological Pro-cesses. Prog. Geogr. 2008, 27, 18–24. [Google Scholar] [CrossRef]
- Kim, Y.; Yu, S.Y.; Li, D.Y.; Gatson, S.N.; Brown, R.D. Linking landscape spatial heterogeneity to urban heat island and outdoor human thermal comfort in Tokyo: Application of the outdoor thermal comfort index. Sustain. Cities Soc. 2022, 87, 104262. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, X.; Xie, X. Evolution of Traditional Village Landscape Pattern in Northwestern Yunnan’s Intermontane Basin and Its Influencing Factors: A Case Study of Dacang Village, Xiangyun County, Yunnan Province. Econ. Geogr. 2023, 43, 197–207. [Google Scholar]
- Chen, W.X.; Zeng, J.; Chu, Y.M.; Liang, J.L. Impacts of Landscape Patterns on Ecosystem Services Value: A Multiscale Buffer Gradient Analysis Approach. Remote Sens. 2021, 13, 2551. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, H.W.; Xia, H.; Tian, G.H.; Yin, Y.X.; Lei, Y.K.; Kim, G. The Ecosystem Services Value Change and Its Driving Forces Responding to Spatio-Temporal Process of Landscape Pattern in the Co-Urbanized Area. Land 2021, 10, 1043. [Google Scholar] [CrossRef]
- Yang, Y.T.; Wong, L.N.Y.; Chen, C.; Chen, T. Using multitemporal Landsat imagery to monitor and model the influences of landscape pattern on urban expansion in a metropolitan region. J. Appl. Remote Sens. 2014, 8, 083639. [Google Scholar] [CrossRef]
- Murunga, K.W.; Nyadawa, M.; Sang, J.; Cheruiyot, C. Characterizing landscape fragmentation of Koitobos river sub-basin, Trans-Nzoia, Kenya. Heliyon 2024, 10, e29237. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.Y.; Wu, W.; Zhou, X.X.; Wang, Z.J. Spatiotemporal changes in landscape patterns in karst mountainous regions based on the optimal landscape scale: A case study of Guiyang City in Guizhou Province, China. Ecol. Indic. 2023, 150, 110211. [Google Scholar] [CrossRef]
- Wu, C.F.; Lin, Y.P.; Chiang, L.C.; Huang, T. Assessing highway’s impacts on landscape patterns and ecosystem services: A case study in Puli Township, Taiwan. Landsc. Urban Plan. 2014, 128, 60–71. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.X.; Wang, F.Y.; Yang, W.J. Spatiotemporal Landscape Pattern Analyses Enhanced by an Integrated Index: A Study of the Changbai Mountain National Nature Reserve. Remote Sens. 2023, 15, 1760. [Google Scholar] [CrossRef]
- Guan, C.H.; You, M.Z. Integrating landscape and urban development in a comprehensive landscape sensitivity index: A case study of the Appalachian Trail region. Urban For. Urban Green. 2024, 93, 128234. [Google Scholar] [CrossRef]
- Yang, B.; Zheng, H.; Yin, G.; Zhao, T.; He, P.; Ouyang, Z. Research on Landscape Pattern Change in Zhangjiajie National Forest Park. Sci. Silvae Sin. 2006, 42, 11–15. [Google Scholar]
- Xu, J.; Li, G.; Qu, J.; He, L. Changes of Land use and Landscape pattern in Hongze Lake Basin. Resour. Environ. Yangtze Basin 2011, 20, 1211–1216. [Google Scholar]
- Chen, Y.; Tang, C.; Ma, Q.; Xue, J. Landscape pattern change of Chongming Dongtan Nature Reserve of Shanghai from 2011 to 2015. J. Nanjing For. Univ. Nat. Sci. Ed. 2017, 41, 1–8. [Google Scholar]
- Liu, J.; Xu, Q.L.; Yi, J.H.; Huang, X. Analysis of the heterogeneity of urban expansion landscape patterns and driving factors based on a combined Multi-Order Adjacency Index and Geodetector model. Ecol. Indic. 2022, 136, 108655. [Google Scholar] [CrossRef]
- Feng, F.; Wang, L.L.; Hou, W.X.; Yang, R.; Zhang, S.W.; Zhao, W.J. Analyzing the dynamic changes and causes of greenspace landscape patterns in Beijing plains. Ecol. Indic. 2024, 158, 111556. [Google Scholar] [CrossRef]
- Zuo, Y.F.; Gao, J.W.; He, K.N. Interactions among ecosystem service key factors in vulnerable areas and their response to landscape patterns under the National Grain to Green Program. Land Degrad. Dev. 2024, 35, 898–915. [Google Scholar] [CrossRef]
- Xu, L.L.; Yu, H.; Zhong, L.S. Evolution of the landscape pattern in the Xin’an River Basin and its response to tourism activities. Sci. Total Environ. 2023, 880, 163472. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.S.; Xiao, J.Y.; Shen, Y.J.; Yamaguchi, Y. Quantifying the spatial differences of landscape change in the Hai River Basin, China, in the 1990s. Int. J. Remote Sens. 2012, 33, 4482–4501. [Google Scholar] [CrossRef]
- Yu, D.L.; Fang, C.L. Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote Sens. 2023, 15, 1307. [Google Scholar] [CrossRef]
- Samra, R.M.A. Investigating and mapping day-night urban heat island and its driving factors using Sentinel/MODIS data and Google Earth Engine. Case study: Greater Cairo, Egypt. Urban Clim. 2023, 52, 101729. [Google Scholar] [CrossRef]
- Nistor, C.; Vîrghileanu, M.; Cârlan, I.; Mihai, B.A.; Toma, L.; Olariu, B. Remote Sensing-Based Analysis of Urban Landscape Change in the City of Bucharest, Romania. Remote Sens. 2021, 13, 2323. [Google Scholar] [CrossRef]
- Zhong, M.X. Impact of landscape patterns on ecosystem services in China: A case study of the central plains urban agglomeration. Front. Environ. Sci. 2024, 12, 1285679. [Google Scholar] [CrossRef]
- Ke, L.N.; Liu, D.Q.; Tan, Q.; Wang, S.T.; Wang, Q.M.; Yang, J. Spatial-Temporal Pattern of Land Use and SDG15 Assessment in the Bohai Rim Region Based on GEE and RF Algorithms. Ieee J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7541–7553. [Google Scholar] [CrossRef]
- Xu, N.H.; Zeng, P.; Guo, Y.Y.; Siddique, M.A.; Li, J.X.; Ren, X.T.; Tang, F.L.; Zhang, R. The spatiotemporal evolution of rural landscape patterns in Chinese metropolises under rapid urbanization. PLoS ONE 2024, 19, e0301754. [Google Scholar] [CrossRef]
- Chu, M.R.; Lu, J.Y.; Sun, D.Q. Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration. Land 2022, 11, 275. [Google Scholar] [CrossRef]
- Li, H.; Peng, J.; Liu, Y.; Hu, Y.n. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Chi, Y.; Shi, H.H.; Zheng, W.; Wang, E.K. Archipelagic landscape patterns and their ecological effects in multiple scales. Ocean Coast. Manag. 2018, 152, 120–134. [Google Scholar] [CrossRef]
- Guo, M.S.; Zhou, N.Q.; Cai, Y.; Zhao, W.A.; Lu, S.S.; Liu, K.H. Monitoring the Landscape Pattern Dynamics and Driving Forces in Dongting Lake Wetland in China Based on Landsat Images. Water 2024, 16, 1273. [Google Scholar] [CrossRef]
- Yang, M.; Gong, J.G.; Zhao, Y.; Wang, H.; Zhao, C.P.; Yang, Q.; Yin, Y.S.; Wang, Y.; Tian, B. Landscape Pattern Evolution Processes of Wetlands and Their Driving Factors in the Xiong’an New Area of China. Int. J. Environ. Res. Public Health 2021, 18, 4403. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Dang, J.; Li, X.; Zhao, N. Spatial-temporal Changes and Driving Forces of Urban Landscape Pattern in Taiyuan City in Last 15 Years. Bull. Soil Water Conserv. 2018, 38, 308–316. [Google Scholar]
- Hu, X.W.; Xu, W.W.; Li, F.Y. Spatiotemporal Evolution and Optimization of Landscape Patterns Based on the Ecological Restoration of Territorial Space. Land 2022, 11, 2114. [Google Scholar] [CrossRef]
- Dong, L.Q.; Yang, W.; Zhang, K.; Zhen, S.; Cheng, X.P.; Wu, L.H. Study of marsh wetland landscape pattern evolution on the Zoige Plateau due to natural/human dual-effects. Peerj 2020, 8, e9904. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.M.; Meng, Q.Y.; Zhang, L.L.; Hu, D. Evaluation of urban green space in terms of thermal environmental benefits using geographical detector analysis. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102610. [Google Scholar] [CrossRef]
- Wu, X.P.; Zhou, Z.F.; Zhu, M.; Wang, J.L.; Liu, R.P.; Zheng, J.J.; Wan, J.X. Quantifying Spatiotemporal Characteristics and Identifying Influential Factors of Ecosystem Fragmentation in Karst Landscapes: A Comprehensive Analytical Framework. Land 2024, 13, 278. [Google Scholar] [CrossRef]
- Li, M.Y.; Li, X.B.; Liu, S.Y.; Lyu, X.; Dang, D.L.; Dou, H.S.; Wang, K. Analysis of the Spatiotemporal Variation of Landscape Patterns and Their Driving Factors in Inner Mongolia from 2000 to 2015. Land 2022, 11, 1410. [Google Scholar] [CrossRef]
- Liu, Q.; Wei, F.; Xia, X.; Zhang, M.; Wang, X.; Mu, X.; Xu, D. Landscape Pattern Evolution and Driving Forces of Land Use in Kuye River Basin from 1980 to 2020. Res. Soil Water Conserv. 2023, 30, 335–341. [Google Scholar]
- Wang, S.Y.; Wang, G.Q.; Zhang, Z.X.; Zhou, Q.B. Analysis of landscape patterns and driving factors of land use in China. In Proceedings of the 23rd International Geoscience and Remote Sensing Symposium (IGARSS 2003), Toulouse, France, 21–25 July 2003; pp. 3374–3376. [Google Scholar]
- Cheng, S.; Zeng, X.; Wang, Z.H.; Zeng, C.; Cao, L. Spatiotemporal variations of tidal flat landscape patterns and driving forces in the Yangtze River Delta, China. Front. Mar. Sci. 2023, 9, 1086775. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Overview of Minnesota. Available online: http://chicago.mofcom.gov.cn/article/ddgk/a/201508/20150801072877.shtml (accessed on 29 May 2024).
- Climate of Minnesota. Available online: https://en.wikipedia.org/wiki/Climate_of_Minnesota (accessed on 29 May 2024).
- Urban and Rural Population. Available online: https://minnesotago.org/trends/urbanization (accessed on 29 May 2024).
- Yuan, F. Urban growth monitoring and projection using remote sensing and geographic information systems: A case study in the Twin Cities Metropolitan Area, Minnesota. Geocarto Int. 2010, 25, 213–230. [Google Scholar] [CrossRef]
- Wright, C.K.; Wimberly, M.C. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc. Natl. Acad. Sci. USA 2013, 110, 4134–4139. [Google Scholar] [CrossRef] [PubMed]
- Forest & Ecosystems. Available online: https://climate.umn.edu/our-changing-climate/forest-ecosystems (accessed on 29 May 2024).
- Sharma, R.; Nehren, U.; Rahman, S.A.; Meyer, M.; Rimal, B.; Seta, G.A.; Baral, H. Modeling Land Use and Land Cover Changes and Their Effects on Biodiversity in Central Kalimantan, Indonesia. Land 2018, 7, 57. [Google Scholar] [CrossRef]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol. 2011, 17, 974–989. [Google Scholar] [CrossRef]
- Mandal, D.; Singh, R.; Dhyani, S.K.; Dhyani, B.L. Landscape and land use effects on soil resources in a Himalayan watershed. Catena 2010, 81, 203–208. [Google Scholar] [CrossRef]
- Izakovičová, Z.; Oszlányi, J. The impact of stress factors, landscape loads and human activities: Implications for sustainable development. Int. J. Environ. Waste Manag. 2013, 11, 111–128. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Becker, S.; Liu, B. Variance Correction Prewhitening Method for Trend Detection in Autocorrelated Data. J. Hydrol. Eng. 2015, 20, 04015033. [Google Scholar] [CrossRef]
- Zhang, D.; Cong, Z.; Ni, G. Comparison of three Mann-Kendall methods based on the Chinas meteorological data. Adv. Water Sci. 2013, 24, 490–496. [Google Scholar]
- Zhang, H.; Li, Z.; Xi, Q.; Yu, Y. Mann-Kendall trend test Method based on improved overbleaching. J. Hydroelectr. Power 2018, 37, 34–46. [Google Scholar]
- Rybski, D.; Neumann, J. A Review on the Pettitt Test; Springer: Cham, Switzerland, 2011; pp. 203–213. [Google Scholar]
- Li, S.; Lv, Z. Analysis on Abrupt Change Points of Kuye River Runoff by Mann- Kendall and Pettitt. Yellow River 2015, 37, 27–29,33. [Google Scholar] [CrossRef]
- Bao, M.; Wallace, J.M. Cluster Analysis of Northern Hemisphere Wintertime 500-hPa Flow Regimes during 1920–2014. J. Atmos. Sci. 2015, 72, 3597–3608. [Google Scholar] [CrossRef]
- Wentzell, P.D.; Vega Montoto, L. Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures. Chemom. Intell. Lab. Syst. 2003, 65, 257–279. [Google Scholar] [CrossRef]
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Geodetector. Available online: http://www.geodetector.cn/ (accessed on 29 May 2024).
- Liu, T.; Yang, X.J. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Phelps, N.A. Edge Cities. In International Encyclopedia of Human Geography; Kitchin, R., Thrift, N., Eds.; Elsevier: Oxford, UK, 2009; pp. 377–380. [Google Scholar]
- Fang, G.; Zhang, Y.; Yang, J. Evolution of Urban Landscape Pattern in Suzhou City during 1987–2009. In Proceedings of the 2nd International Conference on Civil Engineering, Architecture and Building Materials (CEABM 2012), Yantai, China, 25–27 May 2012; pp. 332–336. [Google Scholar]
- Zhang, S.H.; Zhong, Q.L.; Cheng, D.L.; Xu, C.B.; Chang, Y.N.; Lin, Y.Y.; Li, B.Y. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecol. Indic. 2022, 136, 108642. [Google Scholar] [CrossRef]
- Wang, N.X.; Yan, H.Z.; Long, K.L.; Wang, Y.T.; Li, S.X.; Lei, P. Impact of greenspaces and water bodies on hydrological processes in an urbanizing area: A case study of the Liuxi River Basin in the Pearl River Delta, China. Ecol. Indic. 2023, 156, 111083. [Google Scholar] [CrossRef]
- Shaban, A.; Kourtit, K.; Nijkamp, P. Causality Between Urbanization and Economic Growth: Evidence from the Indian States. Front. Sustain. Cities 2022, 4, 901346. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Nguyen, L.D. The relationship between urbanization and economic growth an empirical study on ASEAN countries. Int. J. Soc. Econ. 2018, 45, 316–339. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.Y.; Xie, P.; Rao, Y.X.; He, Q.S. Revisiting Spatiotemporal Changes in Global Urban Expansion during 1995 to 2015. Complexity 2020, 2020, 6139158. [Google Scholar] [CrossRef]
Name | Dataset | Spatial Resolution | Temporal Resolution |
---|---|---|---|
VS (vegetation coverage) | MCD12Q1.061 MODIS Land Cover Type Yearly Global | 500 m | Yearly |
AS (artificial land coverage) | USFS Landscape Change Monitoring System v2022.8 | 30 m | Yearly |
SLP (slope) | Minnesota Geospatial Commons (https://gisdata.mn.gov/dataset/elev-30m-digital-elevation-model, accessed on 29 May 2024) | 30 m | -- |
POP (total population) | United States Census Bureau (https://www.census.gov/quickfacts/, accessed on 29 May 2024) | -- | Yearly |
GDP (gross domestic product) | Minmesota Department of Employment and Economic Development (https://mn.gov/deed/data/economic-analysis/compare/compare-metro/economy/gdp.jsp, accessed on 29 May 2024) | -- | Yearly |
Landscape Metrics | Description | Formula |
---|---|---|
(number of patches) | The number of patches describes the fragmentation of the landscape but does not necessarily contain information about the configuration or composition of the landscape. | |
(patch density) | PD equals the number of patches of the corresponding patch type (NP) divided by the total landscape area. | |
(largest patch index) | LPI equals the percentage of the landscape comprising the largest patch. | |
(perimeter-area fractal dimension) | describes the patch complexity of the landscape while being scale independent. | |
(contagion index) | measures the degree of clumping of attributes on raster maps. | |
(aggregation index) | AI measures the extent to which land cover patches of the same category are spatially connected or proximate to one another, relative to a maximally aggregated distribution of those patches. | |
(splitting index) | describes the number of patches if all the landscape were divided into equally sized patches. | |
(patch cohesion index) | characterises the physical connectedness and cohesion of habitat patches within a landscape. | |
(Shannon diversity index) | is the sum, across all patch types, of the proportional abundance of each patch type multiplied by that proportion. | |
(Shannon evenness index) | SHEI is the ratio between the actual Shannon diversity index and and the theoretical maximum of the Shannon diversity index. |
Principal Component | Eigenvalue | Variance Contribution % | Cumulative Variance Contribution % |
---|---|---|---|
1 | 2.9651 | 59.3029 | 59.3029 |
2 | 1.1129 | 22.2577 | 81.5606 |
3 | 0.648 | 12.9608 | 94.5213 |
4 | 0.2501 | 5.0017 | 99.523 |
5 | 0.0239 | 0.477 | 100 |
Original Variables | Principal Components | ||
---|---|---|---|
VS | −0.3323 | 0.5256 | 0.0328 |
AS | 0.4747 | 0.0312 | 0.8677 |
SLP | 0.8019 | 0.0511 | −0.4949 |
POP | 0.1438 | 0.8430 | −0.0250 |
GDP | −0.0241 | 0.0970 | 0.0210 |
Index | p | Reference Value | Results | ||
---|---|---|---|---|---|
CLI | 0.001 | 11.5433 | <0.0001 | 4.20 | Credible |
VS | AS | SLP | POP | GDP | |
---|---|---|---|---|---|
VS | 0.3528 | ||||
AS | 0.4837 | 0.0621 | |||
SLP | 0.5015 | 0.4055 | 0.1203 | ||
POP | 0.6142 | 0.5700 | 0.6284 | 0.1949 | |
GDP | 0.6617 | 0.5108 | 0.6209 | 0.2438 | 0.1943 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhen, W.; Luo, B.; Shi, D.; Li, Z. Analyzing Spatial–Temporal Characteristics and Influencing Mechanisms of Landscape Changes in the Context of Comprehensive Urban Expansion Using Remote Sensing. Remote Sens. 2024, 16, 2113. https://doi.org/10.3390/rs16122113
Li Y, Zhen W, Luo B, Shi D, Li Z. Analyzing Spatial–Temporal Characteristics and Influencing Mechanisms of Landscape Changes in the Context of Comprehensive Urban Expansion Using Remote Sensing. Remote Sensing. 2024; 16(12):2113. https://doi.org/10.3390/rs16122113
Chicago/Turabian StyleLi, Yu, Weina Zhen, Bibo Luo, Donghui Shi, and Zehong Li. 2024. "Analyzing Spatial–Temporal Characteristics and Influencing Mechanisms of Landscape Changes in the Context of Comprehensive Urban Expansion Using Remote Sensing" Remote Sensing 16, no. 12: 2113. https://doi.org/10.3390/rs16122113
APA StyleLi, Y., Zhen, W., Luo, B., Shi, D., & Li, Z. (2024). Analyzing Spatial–Temporal Characteristics and Influencing Mechanisms of Landscape Changes in the Context of Comprehensive Urban Expansion Using Remote Sensing. Remote Sensing, 16(12), 2113. https://doi.org/10.3390/rs16122113