Spatiotemporal Variability of Gross Primary Productivity in Türkiye: A Multi-Source and Multi-Method Assessment
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. GPP Datasets
2.2.1. MODIS
2.2.2. MuSyQ
2.2.3. PMLV2
2.2.4. TL-LUE
2.2.5. GOSIF
2.2.6. FLUXCOM
2.3. Validation of GPP Datasets
3. Methods
3.1. Kruskal–Wallis and Mann–Whitney U
3.2. Modified Mann–Kendal Test
3.3. Innovative Trend Analysis
3.4. Empirical Mode Decomposition
4. Study Design
5. Results
5.1. Statistical Evaluation of the GPP Datasets
5.2. Kruskal–Wallis and Mann–Whitney U Test Results
5.3. Modified Mann–Kendall Results
5.4. Innovative Trend Analysis Results
5.5. Empirical Mode Decomposition Results
6. Discussion
6.1. Overview
6.2. Spatial Analysis of GPP Datasets
6.3. Temporal Analysis of GPP Datasets
6.4. Differences and Similarities between GPP Datasets
6.5. The Importance of the Findings
6.6. Limitations of Study
7. Conclusions
- GPP values show high similarity among datasets at low values, but this similarity decreases at high GPP values. The inputs used by the algorithms differ and more meticulous regional calibration and validation are necessary. When conducting a monthly trend analysis of GPP values, only the MODIS dataset exhibited a decreasing trend at certain months. The factors causing this trend should be further investigated. Additionally, significant increasing trends are detected in GPP values during summer months. There are many potential mechanisms that underlie these trends, which should be studied further to understand the changing carbon cycle of Türkiye.
- The ITA and EMD methods could be promising alternatives to MMK as they provide additional insight into how time series change. This comparison in the field of GPP is a first, and future studies may benefit from these methods for trend analysis. The ITA and EMD methods have already made substantial contributions to the literature in terms of visualizing trends. While ITA can easily detect trends at low and high values, EMD stands out for answering how the trend follows a nonlinear path over time. Optimizing the hyperparameters of the EMD method could lead to the more rational extraction of trend component information.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Luijkx, I.T.; Peters, G.P.; et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 2023, 15, 5301–5369. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and Its Drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef]
- Keenan, T.F.; Luo, X.; Stocker, B.D.; De Kauwe, M.G.; Medlyn, B.E.; Prentice, I.C.; Smith, N.G.; Terrer, C.; Wang, H.; Zhang, Y.; et al. A Constraint on Historic Growth in Global Photosynthesis Due to Rising CO2. Nat. Clim. Chang. 2023, 13, 1376–1381. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, H.; Wei, L.; Zhong, Y.; Zhou, Z. Global Prediction of Gross Primary Productivity under Future Climate Change. Sci. Total Environ. 2024, 912, 169239. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Zhang, M.; Wang, Z.; Xiang, X.; Gong, H.; Wang, K.; Liu, H. The Strengthened Impact of Water Availability at Interannual and Decadal Time Scales on Vegetation GPP. Glob. Chang. Biol. 2024, 30, e17138. [Google Scholar] [CrossRef] [PubMed]
- Madani, N.; Parazoo, N.C.; Kimball, J.S.; Ballantyne, A.P.; Reichle, R.H.; Maneta, M.; Saatchi, S.; Palmer, P.I.; Liu, Z.; Tagesson, T. Recent Amplified Global Gross Primary Productivity Due to Temperature Increase Is Offset by Reduced Productivity Due to Water Constraints. AGU Adv. 2020, 1, e2020AV000180. [Google Scholar] [CrossRef]
- Hilker, T.; Coops, N.C.; Wulder, M.A.; Black, T.A.; Guy, R.D. The Use of Remote Sensing in Light Use Efficiency Based Models of Gross Primary Production: A Review of Current Status and Future Requirements. Sci. Total Environ. 2008, 404, 411–423. [Google Scholar] [CrossRef]
- Song, C.; Dannenberg, M.P.; Hwang, T. Optical Remote Sensing of Terrestrial Ecosystem Primary Productivity. Prog. Phys. Geogr. Earth Environ. 2013, 37, 834–854. [Google Scholar] [CrossRef]
- Anav, A.; Friedlingstein, P.; Beer, C.; Ciais, P.; Harper, A.; Jones, C.; Murray-Tortarolo, G.; Papale, D.; Parazoo, N.C.; Peylin, P.; et al. Spatiotemporal Patterns of Terrestrial Gross Primary Production: A Review. Rev. Geophys. 2015, 53, 785–818. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Xiao, J.; Chen, S.; Kato, T.; Zhou, G. A Comparison of Satellite-Derived Vegetation Indices for Approximating Gross Primary Productivity of Grasslands. Rangel. Ecol. Manag. 2014, 67, 9–18. [Google Scholar] [CrossRef]
- Jiang, C.; Guan, K.; Wu, G.; Peng, B.; Wang, S. A Daily, 250 m and Real-Time Gross Primary Productivity Product (2000–Present) Covering the Contiguous United States. Earth Syst. Sci. Data 2021, 13, 281–298. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, A. Uncertainty Analysis of Multiple Terrestrial Gross Primary Productivity Products. Glob. Ecol. Biogeogr. 2022, 31, 2204–2218. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Şen, Z. Innovative Trend Analysis Methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Tucker, C.; Yan, D.; Dannenberg, M.; Reed, S.C.; Smith, W. Science at the Frontier: Multimethod Research to Evaluate Ecosystem Change across Multiple Scales. New Phytol. 2018, 218, 1318–1320. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.E.; Beringer, J.; Donohue, R.J.; Evans, B.; Exbrayat, J.-F.; Hutley, L.B.; Tapper, N.J. Seasonal, Interannual and Decadal Drivers of Tree and Grass Productivity in an Australian Tropical Savanna. Glob. Chang. Biol. 2018, 24, 2530–2544. [Google Scholar] [CrossRef]
- Ma, J.; Xiao, X.; Miao, R.; Li, Y.; Chen, B.; Zhang, Y.; Zhao, B. Trends and Controls of Terrestrial Gross Primary Productivity of China during 2000–2016. Environ. Res. Lett. 2019, 14, 084032. [Google Scholar] [CrossRef]
- Gupta, S.; Deb Burman, P.K.; Tiwari, Y.K.; Dumka, U.C.; Kumari, N.; Srivastava, A.; Raghubanshi, A.S. Understanding Carbon Sequestration Trends Using Model and Satellite Data under Different Ecosystems in India. Sci. Total Environ. 2023, 897, 166381. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cui, Y.; Li, W.; Li, M.; Li, N.; Shi, Z.; Dong, J.; Xiao, X. Urbanization Expands the Fluctuating Difference in Gross Primary Productivity between Urban and Rural Areas from 2000 to 2018 in China. Sci. Total Environ. 2023, 901, 166490. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Zhang, Y. Spatiotemporal Patterns of Evapotranspiration, Gross Primary Productivity, and Water Use Efficiency of Cropland in Agroecosystems and Their Relation to the Water-Saving Project in the Shiyang River Basin of Northwestern China. Comput. Electron. Agric. 2020, 172, 105379. [Google Scholar] [CrossRef]
- He, P.; Ma, X.; Meng, X.; Han, Z.; Liu, H.; Sun, Z. Spatiotemporal Evolutionary and Mechanism Analysis of Grassland GPP in China. Ecol. Indic. 2022, 143, 109323. [Google Scholar] [CrossRef]
- Yang, R.; Wang, J.; Zeng, N.; Sitch, S.; Tang, W.; McGrath, M.J.; Cai, Q.; Liu, D.; Lombardozzi, D.; Tian, H.; et al. Divergent Historical GPP Trends among State-of-the-Art Multi-Model Simulations and Satellite-Based Products. Earth Syst. Dyn. 2022, 13, 833–849. [Google Scholar] [CrossRef]
- Tang, X.; Li, H.; Huang, N.; Li, X.; Xu, X.; Ding, Z.; Xie, J. A Comprehensive Assessment of MODIS-Derived GPP for Forest Ecosystems Using the Site-Level FLUXNET Database. Environ. Earth Sci. 2015, 74, 5907–5918. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, D.; Ding, H.; Chen, X.; Zhang, J. Distribution, Trends and Drivers of Precipitation Use Efficiency in the Loess Plateau. Hydrol. Process. 2024, 38, e15102. [Google Scholar] [CrossRef]
- Cai, S.; Zuo, D.; Wang, H.; Xu, Z.; Wang, G.Q.; Yang, H. Assessment of Agricultural Drought Based on Multi-Source Remote Sensing Data in a Major Grain Producing Area of Northwest China. Agric. Water Manag. 2023, 278, 108142. [Google Scholar] [CrossRef]
- Lv, Y.; Li, X.; Chi, W. Maximum Gross Primary Productivity Dominates the Trend in Gross Primary Productivity in China’s Deciduous Forest Ecosystems. Forests 2023, 14, 1880. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Chen, Y.; Fan, M.; Chen, Y.; Gang, C.; You, Y.; Wang, Z. Dynamics of Global Dryland Vegetation Were More Sensitive to Soil Moisture: Evidence from Multiple Vegetation Indices. Agric. For. Meteorol. 2023, 331, 109327. [Google Scholar] [CrossRef]
- Sarkar, D.P.; Uma Shankar, B.; Ranjan Parida, B. A Novel Approach for Retrieving GPP of Evergreen Forest Regions of India Using Random Forest Regression. Remote Sens. Appl. Soc. Environ. 2024, 33, 101116. [Google Scholar] [CrossRef]
- Hutley, L.B.; Beringer, J.; Fatichi, S.; Schymanski, S.J.; Northwood, M. Gross Primary Productivity and Water Use Efficiency Are Increasing in a High Rainfall Tropical Savanna. Glob. Chang. Biol. 2022, 28, 2360–2380. [Google Scholar] [CrossRef]
- O, S.; Park, S.K. Global Ecosystem Responses to Flash Droughts Are Modulated by Background Climate and Vegetation Conditions. Commun. Earth Environ. 2024, 5, 88. [Google Scholar] [CrossRef]
- Evrendilek, F.; Karakaya, N.; Aslan, G.; Ertekin, C. Using Eddy Covariance Sensors to Quantify Carbon Metabolism of Peatlands: A Case Study in Turkey. Sensors 2011, 11, 522–538. [Google Scholar] [CrossRef]
- Șaylan, L.; Ceyhan, E.S.; Bakanoğullarİ, F.; Çaldağ, B.; Özkoca, Y.; Uysal, S.K.; Altınbas, N.; Eitzinger, J. Analysis of Seasonal Carbon Dioxide Exchange of Winter Wheat Using Eddy Covariance Method in the Northwest Part of Turkey. Ital. J. Agrometeorol. 2018, 23, 39–52. [Google Scholar]
- Yesilkoy, S.; Akatas, N.; Caldag, B.; Saylan, L. Comparison of Modeled and Measured CO2 Exchanges over Winter Wheat in the Thrace Part of Turkey. Fresenius Environ. Bull. 2017, 26, 93–99. [Google Scholar]
- Gulbeyaz, O.; Bond-Lamberty, B.; Akyurek, Z.; West, T.O. A New Approach to Evaluate the MODIS Annual NPP Product (MOD17A3) Using Forest Field Data from Turkey. Int. J. Remote Sens. 2018, 39, 2560–2578. [Google Scholar] [CrossRef]
- Stoy, P.C.; Roh, J.; Bromley, G.T. It’s the Heat and the Humidity: The Complementary Roles of Temperature and Specific Humidity to Recent Changes in the Energy Content of the Near-Surface Atmosphere. Geophys. Res. Lett. 2022, 49, e2021GL096628. [Google Scholar] [CrossRef]
- Tayanç, M.; İm, U.; Doğruel, M.; Karaca, M. Climate Change in Turkey for the Last Half Century. Clim. Chang. 2009, 94, 483–502. [Google Scholar] [CrossRef]
- Türkeș, M.; Yozgatlıgil, C.; Batmaz, İ.; İyigün, C.; Kartal Koç, E.; Fahmi, F.; Aslan, S. Has the Climate Been Changing in Turkey? Regional Climate Change Signals Based on a Comparative Statistical Analysis of Two Consecutive Time Periods, 1950–1980 and 1981–2010. Clim. Res. 2016, 70, 77–93. [Google Scholar] [CrossRef]
- Selek, B.; Tuncok, I.K.; Selek, Z. Changes in Climate Zones across Turkey. J. Water Clim. Chang. 2018, 9, 178–195. [Google Scholar] [CrossRef]
- Demircan, M.; Gürkan, H.; Eskioğlu, O.; Arabacı, H.; Coşkun, M. Climate Change Projections for Turkey: Three Models and Two Scenarios. Turk. J. Water Sci. Manag. 2017, 1, 22–43. [Google Scholar] [CrossRef]
- Turkes, M.; Turp, M.T.; An, N.; Ozturk, T.; Kurnaz, M.L. Impacts of Climate Change on Precipitation Climatology and Variability in Turkey; Harmancioglu, N.B., Altinbilek, D., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 467–491. ISBN 978-3-030-11729-0. [Google Scholar]
- Erşahin, S.; Bilgili, B.C.; Dikmen, Ü.; Ercanli, İ. Net Primary Productivity of Anatolian Forests in Relation to Climate, 2000–2010. For. Sci. 2016, 62, 698–709. [Google Scholar] [CrossRef]
- Bilgili, B.C.; Erşahin, S.; Kavakligil, S.S.; Öner, N. Net Primary Productivity of A Mountain Forest Ecosystem as Affected by Climate and Topography. CERNE 2020, 26, 356–368. [Google Scholar] [CrossRef]
- Aksu, H.; Taflan, G.Y.; Yaldiz, S.G.; Akgül, M.A. Evaluation of IMERG for GPM Satellite-Based Precipitation Products for Extreme Precipitation Indices over Turkiye. Atmos. Res. 2023, 291, 106826. [Google Scholar] [CrossRef]
- Demir, V.; Citakoglu, H. Forecasting of Solar Radiation Using Different Machine Learning Approaches. Neural Comput. Appl. 2023, 35, 887–906. [Google Scholar] [CrossRef]
- Biltekin, D.; Eriş, K.K.; Çağatay, M.N.; Henry, P.; Yakupoğlu, N. New Records of Vegetation and Climate Changes in the Sea of Marmara during the Marine Isotope Stages 3, 4 and 5 (a-C). Quat. Int. 2023, 667, 1–18. [Google Scholar] [CrossRef]
- Zeybekoğlu, U.; Keskin, A.Ü. Defining Rainfall Intensity Clusters in Turkey by Using the Fuzzy C-Means Algorithm. Geofizika 2020, 37, 181–195. [Google Scholar] [CrossRef]
- Bi, W.; He, W.; Zhou, Y.; Ju, W.; Liu, Y.; Liu, Y.; Zhang, X.; Wei, X.; Cheng, N. A Global 0.05° Dataset for Gross Primary Production of Sunlit and Shaded Vegetation Canopies from 1992 to 2020. Sci. Data 2022, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R.; et al. Evaluation of MODIS NPP and GPP Products across Multiple Biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Xie, X.; Li, A.; Tian, J.; Wu, C.; Jin, H. A Fine Spatial Resolution Estimation Scheme for Large-Scale Gross Primary Productivity (GPP) in Mountain Ecosystems by Integrating an Eco-Hydrological Model with the Combination of Linear and Non-Linear Downscaling Processes. J. Hydrol. 2023, 616, 128833. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Kern, S. MODIS Collection 6 Global 8-Daily Gross Primary Production. 2021, (Version 2020_fv0.01) [Data set]. [CrossRef]
- Wang, J.; Sun, R.; Zhang, H.; Xiao, Z.; Zhu, A.; Wang, M.; Yu, T.; Xiang, K. New Global MuSyQ GPP/NPP Remote Sensing Products from 1981 to 2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5596–5612. [Google Scholar] [CrossRef]
- Sun, R.; Xiao, Z.; Wang, J.; Zhu, A.; Wang, M. Algorithm of Global Gross and Net Primary Productivity Products. 2020. Available online: https://zenodo.org/records/3996814 (accessed on 11 December 2023).
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A Simple Surface Conductance Model to Estimate Regional Evaporation Using MODIS Leaf Area Index and the Penman-Monteith Equation. Water Resour. Res. 2008, 44, W10419. [Google Scholar] [CrossRef]
- Pei, Y.; Dong, J.; Zhang, Y.; Yang, J.; Zhang, Y.; Jiang, C.; Xiao, X. Performance of Four State-of-the-Art GPP Products (VPM, MOD17, BESS and PML) for Grasslands in Drought Years. Ecol. Inform. 2020, 56, 101052. [Google Scholar] [CrossRef]
- Gan, R.; Zhang, Y.; Shi, H.; Yang, Y.; Eamus, D.; Cheng, L.; Chiew, F.H.S.; Yu, Q. Use of Satellite Leaf Area Index Estimating Evapotranspiration and Gross Assimilation for Australian Ecosystems. Ecohydrology 2018, 11, e1974. [Google Scholar] [CrossRef]
- Li, B.; Ryu, Y.; Jiang, C.; Dechant, B.; Liu, J.; Yan, Y.; Li, X. BESSv2.0: A Satellite-Based and Coupled-Process Model for Quantifying Long-Term Global Land–Atmosphere Fluxes. Remote Sens. Environ. 2023, 295, 113696. [Google Scholar] [CrossRef]
- Naeem, S.; Zhang, Y.; Zhang, X.; Rehman, A.U.; Tang, Z.; Xu, Z.; Li, C.; Azeem, T. Recent Change in Ecosystem Water Use Efficiency in China Mainly Dominated by Vegetation Greening and Increased CO2. Remote Sens. Environ. 2023, 298, 113811. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Ma, N.; Kong, D.; Tian, J.; Shao, X.; Tang, Q. Greening-Induced Increase in Evapotranspiration over Eurasia Offset by CO2-Induced Vegetational Stomatal Closure. Environ. Res. Lett. 2021, 16, 124008. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Kong, D. Global Monthly GPP, ET, Ec, Es and Ei Simulated by PML-V2 with AVHRR Data at a 0.05 Degree Resolution over 1982–2014. Figshare. [Dataset]. 2023. [CrossRef]
- He, M.; Ju, W.; Zhou, Y.; Chen, J.; He, H.; Wang, S.; Wang, H.; Guan, D.; Yan, J.; Li, Y.; et al. Development of a Two-Leaf Light Use Efficiency Model for Improving the Calculation of Terrestrial Gross Primary Productivity. Agric. For. Meteorol. 2013, 173, 28–39. [Google Scholar] [CrossRef]
- Bi, W.; Zhou, Y. A Global 0.05° Dataset for Gross Primary Production of Sunlit and Shaded Vegetation Canopies (1992–2020). 2022 [Dataset]. Dryad. [CrossRef]
- Li, X.; Xiao, J. Mapping Photosynthesis Solely from Solar-Induced Chlorophyll Fluorescence: A Global, Fine-Resolution Dataset of Gross Primary Production Derived from OCO-2. Remote Sens. 2019, 11, 2563. [Google Scholar] [CrossRef]
- Gu, Q.; Zheng, H.; Yao, L.; Wang, M.; Ma, M.; Wang, X.; Tang, X. Performance of the Remotely-Derived Products in Monitoring Gross Primary Production across Arid and Semi-Arid Ecosystems in Northwest China. Land 2020, 9, 288. [Google Scholar] [CrossRef]
- Tramontana, G.; Jung, M.; Schwalm, C.R.; Ichii, K.; Camps-Valls, G.; Ráduly, B.; Reichstein, M.; Arain, M.A.; Cescatti, A.; Kiely, G.; et al. Predicting Carbon Dioxide and Energy Fluxes across Global FLUXNET Sites with Regression Algorithms. Biogeosciences 2016, 13, 4291–4313. [Google Scholar] [CrossRef]
- Jung, M.; Koirala, S.; Weber, U.; Ichii, K.; Gans, F.; Camps-Valls, G.; Papale, D.; Schwalm, C.; Tramontana, G.; Reichstein, M. The FLUXCOM Ensemble of Global Land-Atmosphere Energy Fluxes. Sci. Data 2019, 6, 74. [Google Scholar] [CrossRef]
- Running, S.W.; Baldocchi, D.D.; Turner, D.P.; Gower, S.T.; Bakwin, P.S.; Hibbard, K.A. A Global Terrestrial Monitoring Network Integrating Tower Fluxes, Flask Sampling, Ecosystem Modeling and EOS Satellite Data. Remote Sens. Environ. 1999, 70, 108–127. [Google Scholar] [CrossRef]
- Liao, Z.; Zhou, B.; Zhu, J.; Jia, H.; Fei, X. A Critical Review of Methods, Principles and Progress for Estimating the Gross Primary Productivity of Terrestrial Ecosystems. Front. Environ. Sci. 2023, 11, 1093095. [Google Scholar] [CrossRef]
- Zhu, W.; Xie, Z.; Zhao, C.; Zheng, Z.; Qiao, K.; Peng, D.; Fu, Y.H. Remote Sensing of Terrestrial Gross Primary Productivity: A Review of Advances in Theoretical Foundation, Key Parameters and Methods. GISci. Remote Sens. 2024, 61, 2318846. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Zhang, Y.; Duveiller, G.; Jung, M.; Lyapustin, A.; Wang, Y.; Tucker, C. Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data. Remote Sens. 2018, 10, 1346. [Google Scholar] [CrossRef]
- Falge, E.; Tenhunen, J.; Baldocchi, D.; Aubinet, M.; Bakwin, P.; Berbigier, P.; Bernhofer, C.; Bonnefond, J.-M.; Burba, G.; Clement, R.; et al. Phase and Amplitude of Ecosystem Carbon Release and Uptake Potentials as Derived from FLUXNET Measurements. Agric. For. Meteorol. 2002, 113, 75–95. [Google Scholar] [CrossRef]
- He, S.; Zhang, Y.; Ma, N.; Tian, J.; Kong, D.; Liu, C. A Daily and 500m Coupled Evapotranspiration and Gross Primary Production Product across China during 2000–2020. Earth Syst. Sci. Data 2022, 14, 5463–5488. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Pagliacci, F.; Salpina, D. Territorial Hotspots of Exposure to Climate Disaster Risk. The Case of Agri-Food Geographical Indications in the Veneto Region. Land Use Policy 2022, 123, 106404. [Google Scholar] [CrossRef]
- Avand, M.; Moradi, H.; Ramazanzadeh Lasboyee, M. Predicting Temporal and Spatial Variability in Flood Vulnerability and Risk of Rural Communities at the Watershed Scale. J. Environ. Manage. 2022, 323, 116261. [Google Scholar] [CrossRef]
- Shah, W.U.H.; Hao, G.; Yasmeen, R.; Yan, H.; Shen, J.; Lu, Y. Role of China’s Agricultural Water Policy Reforms and Production Technology Heterogeneity on Agriculture Water Usage Efficiency and Total Factor Productivity Change. Agric. Water Manag. 2023, 287, 108429. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend Detection in Hydrologic Data: The Mann–Kendall Trend Test under the Scaling Hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Berhanu, K.G.; Lohani, T.K.; Hatiye, S.D. Long-Term Spatiotemporal Dynamics of Groundwater Storage in the Data-Scarce Region: Tana Sub-Basin, Ethiopia. Heliyon 2024, 10, e24474. [Google Scholar] [CrossRef]
- Güçlü, Y.S. Improved Visualization for Trend Analysis by Comparing with Classical Mann-Kendall Test and ITA. J. Hydrol. 2020, 584, 124674. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, Y.; Liu, P.; Zhang, J.; Xing, W.; Tong, X.; Zhang, J.; Meng, P. Regulation of Biophysical Drivers on Carbon and Water Fluxes over a Warm-Temperate Plantation in Northern China. Sci. Total Environ. 2024, 907, 167408. [Google Scholar] [CrossRef] [PubMed]
- Patakamuri, S.K.; Das, B. Trendchange: Innovative Trend Analysis and Time-Series Change Point Analysis; The R project for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- De Souza, U.B.; Escola, J.P.L.; da Brito, L.C. A Survey on Hilbert-Huang Transform: Evolution, Challenges and Solutions. Digit. Signal Process. A Rev. J. 2022, 120, 103292. [Google Scholar] [CrossRef]
- Guo, B.; Chen, Z.; Guo, J.; Liu, F.; Chen, C.; Liu, K. Analysis of the Nonlinear Trends and Non-Stationary Oscillations of Regional Precipitation in Xinjiang, Northwestern China, Using Ensemble Empirical Mode Decomposition. Int. J. Environ. Res. Public Health 2016, 13, 345. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, X.; Lin, Z.; Zhang, M.; Mi, Y.; Huang, C.; Yang, H. Climatic and Human Impacts on Quasi-Periodic and Abrupt Changes of Sedimentation Rate at Multiple Time Scales in Lake Taihu, China. J. Hydrol. 2016, 543, 739–748. [Google Scholar] [CrossRef]
- Lee, H.S. Estimation of Extreme Sea Levels along the Bangladesh Coast Due to Storm Surge and Sea Level Rise Using EEMD and EVA. J. Geophys. Res. Ocean. 2013, 118, 4273–4285. [Google Scholar] [CrossRef]
- Adarsh, S.; Janga Reddy, M. Evaluation of Trends and Predictability of Short-term Droughts in Three Meteorological Subdivisions of India Using Multivariate EMD-based Hybrid Modelling. Hydrol. Process. 2019, 33, 130–143. [Google Scholar] [CrossRef]
- Kim, D.; Oh, H.-S. EMD: A Package for Empirical Mode Decomposition and Hilbert Spectrum. R J. 2009, 1, 40. [Google Scholar] [CrossRef]
- Kim, D.; Oh, H.-S. EMD: Empirical Mode Decomposition and Hilbert Spectral Analysis; The R project for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Jia, L.; Wang, H.; Jiang, L.; Du, W. Weak Fault Detection of Rolling Element Bearing Combining Robust EMD with Adaptive Maximum Second-Order Cyclostationarity Blind Deconvolution. J. Vib. Control 2023, 29, 2374–2391. [Google Scholar] [CrossRef]
- Yang, W.; Peng, Z.; Wei, K.; Shi, P.; Tian, W. Superiorities of Variational Mode Decomposition over Empirical Mode Decomposition Particularly in Time–Frequency Feature Extraction and Wind Turbine Condition Monitoring. IET Renew. Power Gener. 2017, 11, 443–452. [Google Scholar] [CrossRef]
- Santhosh, M.; Venkaiah, C.; Vinod Kumar, D.M. Ensemble Empirical Mode Decomposition Based Adaptive Wavelet Neural Network Method for Wind Speed Prediction. Energy Convers. Manag. 2018, 168, 482–493. [Google Scholar] [CrossRef]
- Vernay, A.; Hasselquist, N.; Leppä, K.; Klosterhalfen, A.; Gutierrez Lopez, J.; Stangl, Z.R.; Chi, J.; Kozii, N.; Marshall, J.D. Partitioning Gross Primary Production of a Boreal Forest among Species and Strata: A Multi-Method Approach. Agric. For. Meteorol. 2024, 345, 109857. [Google Scholar] [CrossRef]
- Deligöz, A.; Bayar, E.; Karatepe, Y.; Genç, M. Photosynthetic Capacity, Nutrient and Water Status Following Precommercial Thinning in Anatolian Black Pine. For. Ecol. Manag. 2019, 451, 117533. [Google Scholar] [CrossRef]
- Fkiri, S.; Rzigui, T.; Ghazghazi, H.; Khouja, L.M.; Khaldi, A.; Guibal, F.; Nasr, Z. Ecotype Effects on Photosynthesis Performance Using A/PFFD among Pinus Nigra Arn. Not. Bot. Horti Agrobot. Cluj-Napoca 2023, 51, 12599. [Google Scholar] [CrossRef]
- Fu, Z.; Ciais, P.; Prentice, I.C.; Gentine, P.; Makowski, D.; Bastos, A.; Luo, X.; Green, J.K.; Stoy, P.C.; Yang, H.; et al. Atmospheric Dryness Reduces Photosynthesis along a Large Range of Soil Water Deficits. Nat. Commun. 2022, 13, 989. [Google Scholar] [CrossRef]
- Ozdogan, M.; Woodcock, C.E.; Salvucci, G.D.; Demir, H. Changes in Summer Irrigated Crop Area and Water Use in Southeastern Turkey from 1993 to 2002: Implications for Current and Future Water Resources. Water Resour. Manag. 2006, 20, 467–488. [Google Scholar] [CrossRef]
- Mirabbasi, R.; Ahmadi, F.; Jhajharia, D. Comparison of Parametric and Non-Parametric Methods for Trend Identification in Groundwater Levels in Sirjan Plain Aquifer, Iran. Hydrol. Res. 2020, 51, 1455–1477. [Google Scholar] [CrossRef]
- Bürger, G. Trends? Complicated Answers to a Simple Question. Hydrol. Sci. J. 2023, 68, 1680–1692. [Google Scholar] [CrossRef]
- Jung, M.; Schwalm, C.; Migliavacca, M.; Walther, S.; Camps-Valls, G.; Koirala, S.; Anthoni, P.; Besnard, S.; Bodesheim, P.; Carvalhais, N.; et al. Scaling Carbon Fluxes from Eddy Covariance Sites to Globe: Synthesis and Evaluation of the FLUXCOM Approach. Biogeosciences 2020, 17, 1343–1365. [Google Scholar] [CrossRef]
- Du, Y.; Zhu, K.; Zhang, Z. CSIF and GOSIF Do Not Accurately Capture the Vegetation Greening During the Spring of 2020. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, A. Would the Obtainable Gross Primary Productivity (GPP) Products Stand up? A Critical Assessment of 45 Global GPP Products. Sci. Total Environ. 2021, 783, 146965. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gu, H.; Wang, M.; Gu, Q.; Ding, Z.; Ma, M.; Liu, R.; Tang, X. Contrasting Performance of the Remotely-Derived GPP Products over Different Climate Zones across China. Remote Sens. 2019, 11, 1855. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, J.; He, W.; Zhou, Y.; Tu Nguyen, N.; Bi, W.; Wei, X.; Chen, H. How Well Do Light-Use Efficiency Models Capture Large-Scale Drought Impacts on Vegetation Productivity Compared with Data-Driven Estimates? Ecol. Indic. 2023, 146, 109739. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.-S.; Park, S.-W.; Kug, J.-S. An Abrupt Shift in Gross Primary Productivity over Eastern China-Mongolia and Its Inter-Model Diversity in Land Surface Models. Sci. Rep. 2023, 13, 22971. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Ma, M.; Geng, L. Improving Estimation of Gross Primary Production in Dryland Ecosystems by a Model-Data Fusion Approach. Remote Sens. 2019, 11, 225. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, G.; Hamdi, R.; Ma, X.; Li, Y.; Yuan, X.; Li, C.; Ling, Q.; Hellwich, O.; Termonia, P.; et al. Can Gross Primary Productivity Products Be Effectively Evaluated in Regions with Few Observation Data? GISci. Remote Sens. 2023, 60, 2213489. [Google Scholar] [CrossRef]
Dataset | Date Range | Data Length (Months) | Units | Scale Factor | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|---|---|
MODIS | 02/2000–12/2020 | 253 | kg C m−2 m−1 | - | 50 km | 8 days |
FLUXCOM | 01/1979–12/2018 | 480 | g C m−2 m−1 | - | 50 km | monthly |
TL-LUE | 01/1992–12/2020 | 348 | g C m−2 m−1 | 0.1 | 5 km | monthly |
PMLV2 | 01/1980–12/2014 | 420 | umol m−2 s−1 | - | 5 km | monthly |
GOSIF | 03/2000–12/2022 | 274 | g C m−2 m−1 | 0.01 | 5 km | monthly |
MuSyQ | 01/1981–12/2018 | 456 | g C m−2 d−1 | 0.01 | 5 km | 8 days |
Region | Datasets | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antalya | TL-LUE | ↔ | ↟ | ↟ | ↟ | ↟ | ↟ | ↟ | ↑ | ↑ | ↑ | ↟ | ↑ |
FLUXCOM | ↔ | ↑ | ↑ | ↔ | ↔ | ↔ | ↔ | ↔ | ↔ | ↔ | ↔ | ↑ | |
GOFIS | ↔ | ↑ | ↔ | ↑ | ↑ | ↑ | ↑ | ↟ | ↟ | ↑ | ↑ | ↟ | |
MODIS | ↔ | ↓ | ↓ | ↑ | ↟ | ↑ | ↔ | ↟ | ↟ | ↟ | |||
MuSyQ | ↔ | ↟ | ↟ | ↟ | ↟ | ↑ | ↔ | ↔ | ↔ | ↑ | ↑ | ↔ | |
PMLV2 | ↔ | ↔ | ↑ | ↟ | ↟ | ↟ | ↟ | ↑ | ↟ | ↔ | ↑ | ↑ | |
Erzincan | TL-LUE | ↔ | ↔ | ↑ | ↟ | ↟ | ↟ | ↑ | ↔ | ↔ | ↔ | ↔ | ↔ |
FLUXCOM | ↔ | ↔ | ↔ | ↔ | ↔ | ↔ | ↔ | ↔ | ↔ | ↔ | ↔ | ↔ | |
GOFIS | ↔ | ↔ | ↔ | ↔ | ↑ | ↑ | ↔ | ↔ | ↑ | ↑ | ↑ | ↔ | |
MODIS | ↔ | ↓ | ↓ | ↓ | ↟ | ↟ | ↟ | ↟ | ↟ | ↟ | |||
MuSyQ | ↔ | ↟ | ↑ | ↔ | ↟ | ↟ | ↟ | ↑ | ↑ | ↑ | ↑ | ↔ | |
PMLV2 | ↔ | ↔ | ↑ | ↑ | ↟ | ↟ | ↑ | ↑ | ↟ | ↑ | ↑ | ↔ | |
Izmir | TL-LUE | ||||||||||||
FLUXCOM | |||||||||||||
GOFIS | |||||||||||||
MODIS | |||||||||||||
MuSyQ | |||||||||||||
PMLV2 | |||||||||||||
Kirklareli | TL-LUE | ||||||||||||
FLUXCOM | |||||||||||||
GOFIS | |||||||||||||
MODIS | |||||||||||||
MuSyQ | |||||||||||||
PMLV2 | |||||||||||||
Konya | TL-LUE | ||||||||||||
FLUXCOM | |||||||||||||
GOFIS | |||||||||||||
MODIS | |||||||||||||
MuSyQ | |||||||||||||
PMLV2 | |||||||||||||
Samsun | TL-LUE | ||||||||||||
FLUXCOM | |||||||||||||
GOFIS | |||||||||||||
MODIS | |||||||||||||
MuSyQ | |||||||||||||
PMLV2 | |||||||||||||
Sanliurfa | TL-LUE | ||||||||||||
FLUXCOM | |||||||||||||
GOFIS | |||||||||||||
MODIS | |||||||||||||
MuSyQ | |||||||||||||
PMLV2 |
Dataset | Antalya | Erzincan | Izmir | Kirklareli | Konya | Samsun | Sanliurfa | |
---|---|---|---|---|---|---|---|---|
TL-LUE | Z | 3.16 * | 1.17 | 2.61 * | 2 * | 3.03 * | 1.58 | 3.68 ** |
p | 0.001 | 0.23 | 0.008 | 0.044 | 0.002 | 0.11 | 0.0002 | |
Slope | 0.0021 | 0.00005 | 0.002 | 0.0015 | 0.0005 | 0.001 | 0.0007 | |
FLUXCOM | Z | 0.61 | 0.24 | 0.36 | 0.21 | −1.7 | −0.98 | −0.48 |
p | 0.539 | 0.8 | 0.71 | 0.82 | 0.86 | 0.92 | 0.62 | |
Slope | 0.0001 | 0.00002 | 0.00004 | 0.00003 | −0.0001 | −0.00002 | −0.0005 | |
GOFIS | Z | 1.9 | 1.05 | 2.13 * | 1.41 | 2.6 * | 1.37 | 4.69 ** |
p | 0.056 | 0.29 | 0.032 | 0.15 | 0.009 | 0.16 | 0.000 | |
Slope | 0.0013 | 0.0004 | 0.002 | 0.0014 | 0.0012 | 0.0013 | 0.0021 | |
MODIS | Z | 1.38 | 0.95 | 0.8 | 1.07 | 1.73 | 0.9 | 1.73 |
p | 0.166 | 0.34 | 0.42 | 0.28 | 0.08 | 0.36 | 0.08 | |
Slope | 0.0015 | 0.0003 | 0.0008 | 0.0013 | 0.0008 | 0.0013 | 0.0006 | |
MuSyQ | Z | 2.07 * | 2.09 * | 0.29 | 3.57 ** | 5.28 ** | 2.27 * | 6.66 ** |
p | 0.038 | 0.035 | 0.29 | 0.0003 | 0.000 | 0.022 | 0.000 | |
Slope | 0.0006 | 0.0002 | 0.001 | 0.0019 | 0.0008 | 0.001 | 0.0014 | |
PMLV2 | Z | 3.08 * | 1.75 | 2.74 * | 1.93 | 3.44 ** | 2.66 * | 2.87 * |
p | 0.002 | 0.08 | 0.006 | 0.052 | 0.000 | 0.007 | 0.004 | |
Slope | 0.0012 | 0.0003 | 0.0015 | 0.001 | 0.0007 | 0.0016 | 0.0006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Başakın, E.E.; Stoy, P.C.; Demirel, M.C.; Pham, Q.B. Spatiotemporal Variability of Gross Primary Productivity in Türkiye: A Multi-Source and Multi-Method Assessment. Remote Sens. 2024, 16, 1994. https://doi.org/10.3390/rs16111994
Başakın EE, Stoy PC, Demirel MC, Pham QB. Spatiotemporal Variability of Gross Primary Productivity in Türkiye: A Multi-Source and Multi-Method Assessment. Remote Sensing. 2024; 16(11):1994. https://doi.org/10.3390/rs16111994
Chicago/Turabian StyleBaşakın, Eyyup Ensar, Paul C. Stoy, Mehmet Cüneyd Demirel, and Quoc Bao Pham. 2024. "Spatiotemporal Variability of Gross Primary Productivity in Türkiye: A Multi-Source and Multi-Method Assessment" Remote Sensing 16, no. 11: 1994. https://doi.org/10.3390/rs16111994
APA StyleBaşakın, E. E., Stoy, P. C., Demirel, M. C., & Pham, Q. B. (2024). Spatiotemporal Variability of Gross Primary Productivity in Türkiye: A Multi-Source and Multi-Method Assessment. Remote Sensing, 16(11), 1994. https://doi.org/10.3390/rs16111994