An Improved Gross Primary Production Model Considering Atmospheric CO2 Fertilization: The Qinghai–Tibet Plateau as a Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. In Situ Measurements
2.2.2. Remote Sensing Data
2.2.3. Meteorological Data
2.2.4. Atmospheric CO2 Concentration Data
2.3. Framework for GPP Generation
2.3.1. The Improved GPP Estimation Model
2.3.2. Analysis of Spatio-Temporal Patterns and Changing Trends of GPP
2.3.3. Sensitivity Analysis of the Environmental Factors to the GPP Estimation
3. Results
4. Discussion
4.1. Advantages and Limitations of the Improved GPP Estimation Model
4.2. Generating Long Time Series and Spatio-Temporally Continuous GPP Data
4.3. Spatio-Temporal Distribution Characteristics of GPP over the Qinghai–Tibet Plateau Plateau
4.4. Contributions of Environmental Variables to GPP Estimation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to Accelerating Atmospheric CO2 Growth from Economic Activity, Carbon Intensity, and Efficiency of Natural Sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [PubMed]
- Veroustraete, F.; Sabbe, H.; Eerens, H. Estimation of Carbon Mass Fluxes over Europe Using the C-Fix Model and Euroflux Data. Remote Sens. Environ. 2002, 83, 376–399. [Google Scholar] [CrossRef]
- Mäkelä, A.; Pulkkinen, M.; Kolari, P.; Lagergren, F.; Berbigier, P.; Lindroth, A.; Loustau, D.; Nikinmaa, E.; Vesala, T.; Hari, P. Developing an Empirical Model of Stand GPP with the LUE Approach: Analysis of Eddy Covariance Data at Five Contrasting Conifer Sites in Europe. Glob. Chang. Biol. 2008, 14, 92–108. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Yamamoto, H.; Tani, H.; Zhong, G.; Yin, S. An Attempt to Introduce Atmospheric CO2 Concentration Data to Estimate the Gross Primary Production by the Terrestrial Biosphere and Analyze Its Effects. Ecol. Indic. 2018, 84, 218–234. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Jin, C.; Dong, J.; Zhou, S.; Wagle, P.; Joiner, J.; Guanter, L.; Zhang, Y.; Zhang, G.; et al. Consistency between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America. Remote Sens. Environ. 2016, 183, 154–169. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Piao, S.; Qin, D.; Dong, W.; Xia, J.; Lin, H.; Chen, M. Influence of Vegetation Growth on the Enhanced Seasonality of Atmospheric CO2. Global Biogeochem. Cycles 2018, 32, 32–41. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, R.; Wang, Y.; Li, X.; Liu, S.; Liang, S.; Chen, J.M.; Ju, W.; Zhang, L.; Yuan, W. Improved Estimate of Global Gross Primary Production for Reproducing Its Long-Term Variation, 1982–2017. Earth Syst. Sci. Data 2020, 12, 2725–2746. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The Impacts of Climate Change on Water Resources and Agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Xia, M.; Jia, K.; Zhao, W.; Liu, S.; Wei, X.; Wang, B. Spatio-Temporal Changes of Ecological Vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 123, 107274. [Google Scholar] [CrossRef]
- Chen, X.; An, S.; Inouye, D.W.; Schwartz, M.D. Temperature and Snowfall Trigger Alpine Vegetation Green-up on the World’s Roof. Glob. Chang. Biol. 2015, 21, 3635–3646. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Y.; Yang, Y.; Zhou, W.; Gang, C.; Zhang, Y.; Li, J.; An, R.; Wang, K.; Odeh, I.; et al. Quantitative Assess the Driving Forces on the Grassland Degradation in the Qinghai–Tibet Plateau, in China. Ecol. Inform. 2016, 33, 32–44. [Google Scholar] [CrossRef]
- Che, M.; Chen, B.; Innes, J.L.; Wang, G.; Dou, X.; Zhou, T.; Zhang, H.; Yan, J.; Xu, G.; Zhao, H. Spatial and Temporal Variations in the End Date of the Vegetation Growing Season throughout the Qinghai–Tibetan Plateau from 1982 to 2011. Agric. For. Meteorol. 2014, 189–190, 81–90. [Google Scholar] [CrossRef]
- Kuang, X.; Jiao, J.J. Review on Climate Change on the Tibetan Plateau during the Last Half Century. J. Geophys. Res. Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.; Dorji, T.; Liu, Q.; Cong, N.; Chen, X.; An, S.; Wang, S.; Wang, T.; Zhang, G. Plant Phenological Responses to Climate Change on the Tibetan Plateau: Research Status and Challenges. Natl. Sci. Rev. 2015, 2, 454–467. [Google Scholar] [CrossRef]
- Wang, T.; Yang, D.; Yang, Y.; Piao, S.; Li, X.; Cheng, G.; Fu, B. Permafrost Thawing Puts the Frozen Carbon at Risk over the Tibetan Plateau. Sci. Adv. 2020, 6, eaaz3513. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, G.R.; Zhu, X.J.; Zhang, L.M.; Wang, Q.F.; Jiao, C.C. A Dataset of Primary Production, Respiration and Net Production in Chinese Typical Terrestrial Ecosystems Based on Literature Integration. China Sci. Data 2019, 4, 50–58. [Google Scholar]
- He, H.; Ge, R.; Ren, X.; Zhang, L.; Chang, Q.; Xu, Q.; Zhou, G.; Xie, Z.; Wang, S.; Wang, H.; et al. Reference Carbon Cycle Dataset for Typical Chinese Forests via Colocated Observations and Data Assimilation. Sci. Data 2021, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.F.; Liu, Q.; Wang, L.Z.; Liang, S.L.; Wen, J.G.; Qu, Y.; Liu, S.H. A Statistics-Based Temporal Filter Algorithm to Map Spatiotemporally Continuous Shortwave Albedo from MODIS Data. Hydrol. Earth Syst. Sci. 2013, 17, 2121–2129. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The First High-Resolution Meteorological Forcing Dataset for Land Process Studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef]
- Houweling, S.; Hartmann, W.; Aben, I.; Schrijver, H.; Skidmore, J.; Roelofs, G.-J.; Breon, F.-M. Evidence of Systematic Errors in SCIAMACHY-Observed CO 2 Due to Aerosols. Atmos. Chem. Phys. 2005, 5, 3003–3013. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, H.; Han, G.; Mao, F.; Xu, H.; Shi, T.; Hu, H.; Sun, T.; Gong, W. A Regional Spatiotemporal Downscaling Method for CO2 Columns. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8084–8093. [Google Scholar] [CrossRef]
- Hilker, T.; Coops, N.C.; Wulder, M.A.; Black, T.A.; Guy, R.D. The Use of Remote Sensing in Light Use Efficiency Based Models of Gross Primary Production: A Review of Current Status and Future Requirements. Sci. Total Environ. 2008, 404, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Veroustraete, F.; Patyn, J.; Myneni, R.B. Estimating Net Ecosystem Exchange of Carbon Using the Normalized Difference Vegetation Index and an Ecosystem Model. Remote Sens. Environ. 1996, 58, 115–130. [Google Scholar] [CrossRef]
- Keenan, T.F.; Prentice, I.C.; Canadell, J.G.; Williams, C.A.; Wang, H.; Raupach, M.; Collatz, G.J. Recent Pause in the Growth Rate of Atmospheric CO2 Due to Enhanced Terrestrial Carbon Uptake. Nat. Commun. 2016, 7, 13428. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Mann, H.B. Nonparametric Tests against Trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Yang, L.; Jia, K.; Liang, S.; Liu, M.; Wei, X.; Yao, Y.; Zhang, X.; Liu, D. Spatio-Temporal Analysis and Uncertainty of Fractional Vegetation Cover Change over Northern China during 2001–2012 Based on Multiple Vegetation Data Sets. Remote Sens. 2018, 10, 549. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-Temporal Analysis of Vegetation Variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Xia, M.; Jia, K.; Wang, X.; Bai, X.; Li, C.; Zhao, W.; Hu, X.; Cherubini, F. A Framework for Regional Ecosystem Authenticity Evaluation–a Case Study on the Qinghai-Tibet Plateau of China. Glob. Ecol. Conserv. 2021, 31, e01849. [Google Scholar] [CrossRef]
- Vazquez-Cruz, M.A.; Guzman-Cruz, R.; Lopez-Cruz, I.L.; Cornejo-Perez, O.; Torres-Pacheco, I.; Guevara-Gonzalez, R.G. Global Sensitivity Analysis by Means of EFAST and Sobol’ Methods and Calibration of Reduced State-Variable TOMGRO Model Using Genetic Algorithms. Comput. Electron. Agric. 2014, 100, 1–12. [Google Scholar] [CrossRef]
- Frazier, A.E.; Renschler, C.S.; Miles, S.B. Evaluating Post-Disaster Ecosystem Resilience Using MODIS GPP Data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 43–52. [Google Scholar] [CrossRef]
- Nuarsa, I.W.; As-syakur, A.R.; Gunadi, I.G.A.; Sukewijaya, I.M. Changes in Gross Primary Production (GPP) over the Past Two Decades Due to Land Use Conversion in a Tourism City. ISPRS Int. J. Geo-Inf. 2018, 7, 57. [Google Scholar] [CrossRef]
- You, N.; Meng, J.; Zhu, L.; Jiang, S.; Zhu, L.; Li, F.; Kuo, L. Isolating the Impacts of Land Use/Cover Change and Climate Change on the GPP in the Heihe River Basin of China. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005734. [Google Scholar] [CrossRef]
- Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C. Quantifying Photosynthetic Capacity and Its Relationship to Leaf Nitrogen Content for Global-scale Terrestrial Biosphere Models. Glob. Chang. Biol. 2009, 15, 976–991. [Google Scholar] [CrossRef]
- Xu, S.; Cheng, J. A New Land Surface Temperature Fusion Strategy Based on Cumulative Distribution Function Matching and Multiresolution Kalman Filtering. Remote Sens. Environ. 2021, 254, 112256. [Google Scholar] [CrossRef]
- Fang, J.; Piao, S.; Field, C.B.; Pan, Y.; Guo, Q.; Zhou, L.; Peng, C.; Tao, S. Increasing Net Primary Production in China from 1982 to 1999. Front. Ecol. Environ. 2003, 1, 293–297. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, X.; Li, Y.; Wang, T.; Shen, M.; Du, M.; He, H.; Li, Y.; Luo, W.; Ma, M. Spatiotemporal Pattern of Gross Primary Productivity and Its Covariation with Climate in China over the Last Thirty Years. Glob. Chang. Biol. 2018, 24, 184–196. [Google Scholar] [CrossRef]
Data Name | Spatial Resolution | Temporal Resolution | Data Source |
---|---|---|---|
MODIS reflectance | 500 m | 8-day | https://lpdaac.usgs.gov/products/mod09a1v061/ (accessed on 18 November 2021) |
Temperature | 0.1° | monthly | http://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/ (accessed on 18 November 2021) |
Precipitation | 0.1° | monthly | http://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/ (accessed on 18 November 2021) |
Downward shortwave radiation | 0.1° | monthly | http://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/ (accessed on 18 November 2021) |
Atmospheric CO2 concentration | 0.5° | monthly | http://www.geodata.cn/data/datadetails.html?dataguid=10258900032081&docId=23265 (SCIAMACHY based) (accessed on 18 November 2021) |
0.5° × 0.125° | https://www.whughg.cn/2021/10/31/index/ (OCO-2 based) (accessed on 18 November 2021) | ||
Land cover | 500 m | yearly | https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 18 November 2021) |
Vegetation Types | Vegetation Types | ||
---|---|---|---|
DNF | 0.873 | GRA | 0.645 |
GRA | 0.645 | DRL | 0.959 |
DRL | 0.959 | SAV | 0.552 |
SAV | 0.552 | OTH | 0 |
OTH | 0 | WET | 1.137 |
WET | 1.137 |
Temperature Zone | Dry and Wet Areas | Natural Areas |
---|---|---|
III (warm temperate zone) | D (arid region) | IIID1 (Tarim and Turpan Basins) |
II (mid-temperate Zone) | D (arid region) | IID2 (Alxa and Hexi Corridor) |
HI (the plateau sub-cold zone) | B (semi-humid region) | HIB1 (Golonaqu hilly plateau) |
C (semi-arid region) | HIC1 (Qingnan Plateau wide valley) | |
HIC2 (Qiangtang Plateau lake basin) | ||
D (arid region) | HID1 (Kunlun alpine Plateau) | |
HII (the plateau temperate zone) | A/B (humid/sub-humid region) | HIIA/B1 (Sichuan Xizang east high mountains and deep valleys) |
C (semi-arid region) | HIIC1 (Qingdong Qilian Mountain) | |
HIIC2 (South Tibet mountains) | ||
D (arid region) | HIID1 (Qaidam Basin) | |
HIID2 (the north Kunlun Mountains) | ||
HIID3 (Ali mountain) | ||
IV (Northern subtropical) | A (humid region) | IVA2 (Hanzhong basin) |
V (mid-subtropical) | A (humid region) | VA4 (Sichuan Basin) |
VA5 (yunnan plateau) | ||
VA6 (the southern flank of the Eastern Himalaya) |
Variable | Vmin | Vmax | Weight |
---|---|---|---|
TEM | −40 °C | 30 °C | 1 |
PRE | 0 mm | 1000 mm | 1 |
SRA | 100 MJ/m2 | 1000 MJ/m2 | 1 |
NDVI | −1 | 1 | 1 |
CO2 | 340 ppm | 420 ppm | 1 |
I | 0 | 200 | 1 |
LUCC | 1 | 17 | 1 |
TEMopt | −15 °C | 40 °C | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Jia, K.; Zhao, L.; Tao, G.; Zhao, W.; Liu, Y.; Yao, Y.; Zhang, X. An Improved Gross Primary Production Model Considering Atmospheric CO2 Fertilization: The Qinghai–Tibet Plateau as a Case Study. Remote Sens. 2024, 16, 1856. https://doi.org/10.3390/rs16111856
Li J, Jia K, Zhao L, Tao G, Zhao W, Liu Y, Yao Y, Zhang X. An Improved Gross Primary Production Model Considering Atmospheric CO2 Fertilization: The Qinghai–Tibet Plateau as a Case Study. Remote Sensing. 2024; 16(11):1856. https://doi.org/10.3390/rs16111856
Chicago/Turabian StyleLi, Jie, Kun Jia, Linlin Zhao, Guofeng Tao, Wenwu Zhao, Yanxu Liu, Yunjun Yao, and Xiaotong Zhang. 2024. "An Improved Gross Primary Production Model Considering Atmospheric CO2 Fertilization: The Qinghai–Tibet Plateau as a Case Study" Remote Sensing 16, no. 11: 1856. https://doi.org/10.3390/rs16111856
APA StyleLi, J., Jia, K., Zhao, L., Tao, G., Zhao, W., Liu, Y., Yao, Y., & Zhang, X. (2024). An Improved Gross Primary Production Model Considering Atmospheric CO2 Fertilization: The Qinghai–Tibet Plateau as a Case Study. Remote Sensing, 16(11), 1856. https://doi.org/10.3390/rs16111856