Emerging Technologies for Remote Sensing of Floating and Submerged Plastic Litter
Abstract
:1. Introduction
2. Marine Plastic Litter
3. Emerging Technologies
3.1. Fluid Lensing
3.2. Multi-Angle Polarimetry
3.3. LiDAR
3.4. MiDAR
3.5. Thermal Infrared Sensing (TIS)
3.6. RADAR
4. Review of Detection Capabilities
4.1. Remote Sensing of Proxies
4.2. Capabilities of Fluid Lensing
4.3. Capabilities of Polarimetry
4.4. Capabilities of Backscatter LiDAR
4.5. Capabilities of Fluorescence LiDAR
4.6. Capabilities of MiDAR
4.7. Capabilities of TIS
4.8. Capabilities of RADAR
5. Conclusions
- Fluid lensing is the only technology with the capability to image marine plastic litter shapes at depth through surface waves.
- Polarimetry is still an area of active research which provides additional sensing capabilities on top of existing VIS–SWIR techniques. Although theoretical potential has been explored, more investigations are required in experimental (in situ) settings.
- Fluorescence LiDAR is a sensor with the potential to detect and also characterise submerged plastics during the day and at night, but it is unlikely to be deployable from a satellite.
- MiDAR is capable of remotely sensing reflectance at fine spatial and temporal scales and could be combined with fluid lensing in experiments to detect marine plastics in the natural underwater environment.
- TIS can observe the water surface day and night with the potential to detect and characterise plastics and would be worthwhile to explore further on the upcoming higher resolution satellites, but there is a limitation to reaching greater spatial resolutions with this technology.
- RADAR techniques are not able to provide direct observations of marine plastic litter; however, anomalies and proxies can be routinely observed from satellite through clouds and during the night.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sensor | Type | Manufacturer | Platform | Waveband |
---|---|---|---|---|
AirHARP | Polarimeter | UMBC | aircraft | VIS–NIR |
CZMIL SuperNova | LiDAR backscatter | Teledyne | aircraft | VIS (green) |
FLIR Vue Pro | Pan | FLIR | drone | LWIR |
FLIR Duo R | RGB and Pan | FLIR | drone | VIS and LWIR |
FluidCam 1 | RGB fluid lensing | NASA | drone/aircraft | VIS |
FluidCam 2 | Pan fluid lensing | NASA | drone/aircraft | UV–NIR |
HYPER-CAM mini | HS | Telops | aircraft | LWIR |
HyTES | HS | JPL | drone/aircraft | LWIR |
MiDAR | Active HS imaging | NASA/ACES | drone/aircraft | UV–NIR |
OWL | HS | Specim | aircraft | LWIR |
Pi-SAR-L2 | SAR | JAXA | aircraft | L-band |
PRISM | HS | NASA JPL | aircraft | VIS–NIR |
Zenmuse XT2 | RGB and Pan | DJI and FLIR | drone | VIS and LWIR |
Sensor | Mission | Type | Revisit | Best Spatial Resolution in Band (m) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time | VIS | NIR | SWIR | MWIR | LWIR | SAR | GNSS | Status | |||
ASTER | Terra | MS | 16 d | 15 | 15 | 30 | 90 | current | |||
CALIOP | CALIPSO | LiDAR (1) | 16 d | 333 | 333 | current | |||||
C-band SAR | Sentinel-1 | RADAR | 6 d | 5 | current | ||||||
DDMI | CYGNSS | RADAR | 3–7 h | 25,000 | current | ||||||
HARP2 | PACE | Polarimeter (2) | 2 d | 2600 | 2600 | current | |||||
ATLAS | ICESat-2 | LiDAR (3) | 91 d | 0.7 (4) | current | ||||||
IIR | CALIPSO | MS | 16 d | 1000 | current | ||||||
LSTR | Sentinel-LSTM | MS | 4 d | 37 | 37 | future | |||||
PHyTIR | ECOSTRESS | MS | 3 d | 60 | current | ||||||
SLSTR | Sentinel-3 | MS | <1 d | 500 | 500 | 500 | 1000 | 1000 | current | ||
TIRS (−2) | Landsat 8 (9) | MS | 16 d (5) | 100 | current | ||||||
SBG TIR | SBG-TIR | HS | t.b.d. | t.b.d. | t.b.d | future | |||||
SPEXone | PACE | Polarimeter (6) | 1 mo | 2500 | current | ||||||
X-band SAR | TerraSAR-X | RADAR | 2.5–11 d | 5 | current |
References
- Drowning in Plastics–Marine Litter and Plastic Waste Vital Graphics. Available online: https://www.unep.org/resources/report/drowning-plastics-marine-litter-and-plastic-waste-vital-graphics. (accessed on 9 January 2024).
- Born, M.P.; Brüll, C. From model to nature—A review on the transferability of marine (micro-) plastic fragmentation studies. Sci. Total Environ. 2022, 811, 151389. [Google Scholar] [CrossRef]
- Amelia, T.S.M.; Khalik, W.M.A.W.M.; Ong, M.C.; Shao, Y.T.; Pan, H.-J.; Bhubalan, K. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog. Earth Planet Sci. 2021, 8, 12. [Google Scholar] [CrossRef]
- García-Gómez, J.C.; Garrigós, M.; Garrigós, J. Plastic as a Vector of Dispersion for Marine Species with Invasive Potential. A Review. Front. Ecol. Evol. 2021, 9, 629756. [Google Scholar] [CrossRef]
- Van Sebille, E.; Aliani, S.; Law, K.L.; Maximenko, N.; Alsina, J.; Bagaev, A.; Bergmann, M.; Chapron, B.; Chubarenko, I.; Cózar, A.; et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 2020, 15, 023003. [Google Scholar] [CrossRef]
- Maximenko, N.; Corradi, P.; Law, K.L.; Van Sebille, E.; Garaba, S.P.; Lampitt, R.S.; Galgani, F.; Martínez-Vicente, V.; Goddijn-Murphy, L.; Veiga, J.M.; et al. Toward the Integrated Marine Debris Observing System. Front. Mar. Sci. 2019, 6, 447. [Google Scholar] [CrossRef]
- GESAMP. Guidelines for the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean; GESAMP: Nairobi, Kenya, 2019; Volume 99, 130p. [Google Scholar]
- Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A.; et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 2018, 8, 4666. [Google Scholar] [CrossRef] [PubMed]
- Garaba, S.P.; Aitken, J.; Slat, B.; Dierssen, H.M.; Lebreton, L.; Zielinski, O.; Reisser, J. Sensing Ocean Plastics with an Airborne Hyperspectral Shortwave Infrared Imager. Environ. Sci. Technol. 2018, 52, 11699–11707. [Google Scholar] [CrossRef] [PubMed]
- Garaba, S.P.; Dierssen, H.M. An airborne remote sensing case study of synthetic hydrocarbon detection using short wave infrared absorption features identified from marine-harvested macro- and microplastics. Remote Sens. Environ. 2018, 205, 224–235. [Google Scholar] [CrossRef]
- Goddijn-Murphy, L.; Peters, S.; Van Sebille, E.; James, N.A.; Gibb, S. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics. Mar. Pollut. Bull. 2018, 126, 255–262. [Google Scholar] [CrossRef]
- Goddijn-Murphy, L.M.; Dufaur, J. Proof of concept for a model of light reflectance of plastics floating on natural waters. Mar. Pollut. Bull. 2018, 135, 1145–1157. [Google Scholar] [CrossRef]
- Martínez-Vicente, V.; Clark, J.R.; Corradi, P.; Aliani, S.; Arias, M.; Bochow, M.; Bonnery, G.; Cole, M.; Cózar, A.; Donnelly, R.; et al. Measuring Marine Plastic Debris from Space: Initial Assessment of Observation Requirements. Remote Sens. 2019, 11, 2443. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papageorgiou, D.; Suaria, G.; Aliani, S. Floating marine litter detection algorithms and techniques using optical remote sensing data: A review. Mar. Pollut. Bull. 2021, 170, 112675. [Google Scholar] [CrossRef] [PubMed]
- Veettil, B.K.; Hong Quan, N.; Hauser, L.T.; Doan Van, D.; Quang, N.X. Coastal and marine plastic litter monitoring using remote sensing: A review. Est. Coast. Shelf Sci. 2022, 279, 108160. [Google Scholar] [CrossRef]
- Castagna, A.; Dierssen, H.M.; Devriese, L.I.; Everaert, G.; Knaeps, E.; Sterckx, S. Evaluation of plastic detection algorithms over land and aquatic floating targets from hyperspectral field and airborne data. Remote Sens. Environ. 2023, 298, 113834. [Google Scholar] [CrossRef]
- Karakuş, O. On advances, challenges and potentials of remote sensing image analysis in marine debris and suspected plastics monitoring. Front. Remote Sens. 2023, 4, 1302384. [Google Scholar] [CrossRef]
- Acuña-Ruz, T.; Uribe, D.; Taylor, R.; Amézquita, L.; Guzmán, M.C.; Merrill, J.; Martínez, P.; Voisin, L.; Mattar, B.C. Anthropogenic marine debris over beaches: Spectral characterization for remote sensing applications. Remote Sens. Environ. 2018, 217, 309–322. [Google Scholar] [CrossRef]
- Zhou, S.; Kaufmann, H.; Bohn, N.; Bochow, M.; Kuester, T.; Segl, K. Identifying distinct plastics in hyperspectral experimental lab-, aircraft-, and satellite data using machine/deep learning methods trained with synthetically mixed spectral data. Remote Sens. Environ. 2022, 281, 113263. [Google Scholar] [CrossRef]
- Martínez-Vicente, V. The need for a dedicated marine plastic litter satellite mission. Nat. Rev. Earth Environ. 2022, 3, 728–729. [Google Scholar] [CrossRef]
- Biermann, L.; Clewley, D.; Martínez-Vicente, V.; Topouzelis, K. Finding Plastic Patches in Coastal Waters using Optical Satellite Data. Sci. Rep. 2020, 10, 5364. [Google Scholar] [CrossRef]
- Kikaki, K.; Kakogeorgiou, I.; Mikeli, P.; Raitsos, D.E.; Karantzalos, K. MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing data. PLoS ONE 2022, 17, e0262247. [Google Scholar] [CrossRef]
- Hu, C. Remote detection of marine debris using satellite observations in the visible and near infrared spectral range: Challenges and potentials. Remote Sens. Environ. 2021, 259, 112414. [Google Scholar] [CrossRef]
- Hu, C. Remote detection of marine debris using Sentinel-2 imagery: A cautious note on spectral interpretations. Mar. Pollut. Bull. 2022, 183, 114082. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-J.; Garaba, S.P.; Sainte-Rose, B. Detecting the Great Pacific Garbage Patch floating plastic litter using WorldView-3 satellite imagery. Opt. Express 2021, 29, 35288–35298. [Google Scholar] [CrossRef] [PubMed]
- Garaba, S.P.; Harmel, T. Top-of-atmosphere hyper and multispectral signatures of submerged plastic litter with changing water clarity and depth. Opt. Express 2022, 30, 16553–16571. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, I.; Basurko, O.C.; Rubio, A.; Delpey, M.; Granado, I.; Declerck, A.; Mader, J.; Cózar, A. Litter Windrows in the South-East Coast of the Bay of Biscay: An Ocean Process Enabling Effective Active Fishing for Litter. Front. Mar. Sci. 2020, 7, 308. [Google Scholar] [CrossRef]
- Cózar, A.; Aliani, S.; Basurko, O.C.; Arias, M.; Isobe, A.; Topouzelis, K.; Rubio, A.; Morales-Caselles, C. Marine Litter Windrows: A Strategic Target to Understand and Manage the Ocean Plastic Pollution. Front. Mar. Sci 2021, 8, 571796. [Google Scholar] [CrossRef]
- Indirect and Proxy Remote Sensing Derived Data for Marine Litter Monitoring—IOCCG. Available online: https://ioccg.org/rsmld-activities-datasets/indirect-proxy-data-for-rsmld-monitoring/ (accessed on 7 July 2023).
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Rebelein, A.; Int-Veen, I.; Kammann, U.; Scharsack, J.P. Microplastic fibers—Underestimated threat to aquatic organisms? Sci. Total Environ. 2021, 777, 146045. [Google Scholar] [CrossRef]
- Lebreton, L.; Royer, S.J.; Peytavin, A.; Strietman, W.J.; Smeding-Zuurendonk, I.; Egger, M. Industrialised fishing nations largely contribute to floating plastic pollution in the North Pacific subtropical gyre. Sci. Rep. 2022, 12, 12666. [Google Scholar] [CrossRef]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, S.; Zhu, L.; McWilliams, J.C.; Galgani, L.; Md Amin, R.; Nakajima, R.; Jiang, W.; Chen, M. Accumulation, transformation and transport of microplastics in estuarine fronts. Nat. Rev. Earth. Environ. 2022, 3, 795–805. [Google Scholar] [CrossRef]
- Lekner, J.; Dorf, M.C. Why some things are darker when wet. Appl. Opt. 1988, 27, 1278–1280. [Google Scholar] [CrossRef]
- Fazey, F.M.; Ryan, P.G. Biofouling on buoyant marine plastics: An experimental study into the effect of size on surface longevity. Environ. Pollut. 2016, 210, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Goddijn-Murphy, L.; Williamson, B.J.; McIlvenny, J.; Corradi, P. Using a UAV Thermal Infrared Camera for Monitoring Floating Marine Plastic Litter. Remote Sens. 2022, 14, 3179. [Google Scholar] [CrossRef]
- Ryan, P.G. Does size and buoyancy affect the long-distance transport of floating debris? Environ. Res. Lett. 2015, 10, 084019. [Google Scholar] [CrossRef]
- D’Asaro, E.A.; Shcherbinab, A.Y.; Klymakc, J.M.; Molemakere, J.; Novellif, G.; Guigand, C.M.; Haza, A.C.; Haus, B.K.; Ryan, E.H.; Jacobs, G.A.; et al. Ocean convergence and the dispersion of flotsam. Proc. Natl. Acad. Sci. USA 2018, 115, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.C.; Ruf, C.S. Toward the detection and imaging of ocean microplastics with a spaceborne RADAR. IEEE Trans Geosci Remote Sens. 2021, 60, 4202709. [Google Scholar] [CrossRef]
- Chirayath, V.; Li, A. Next-Generation Optical Sensing Technologies for Exploring Ocean Worlds—NASA FluidCam, MiDAR, and NeMO-Net. Front. Mar. Sci. 2019, 6, 521. [Google Scholar] [CrossRef]
- Liu, C.; Yuen, J.; Torralba, A. Sift flow: Dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 978–994. [Google Scholar] [CrossRef]
- Chirayath, V.; Earle, S.A. Drones that see through waves–preliminary results from airborne fluid lensing for centimetre-scale aquatic conservation. Aquat. Conserv. 2016, 26, 237–250. [Google Scholar] [CrossRef]
- US62/634,803; Chirayath, V. System and Method for Imaging Underwater Environments Using Fluid Lensing. United States Patent and Trade Office: Washington, DC, USA, 2018.
- Ottaviani, M.; Cairns, B.; Chowdhary, J.; Van Diedenhoven, B.; Knobelspiesse, K.; Hostetler, C.; Ferrare, R.; Burton, S.; Hair, J.; Obland, M.D. Polarimetric retrievals of surface and cirrus clouds properties in the region affected by the Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 121, 389–403. [Google Scholar] [CrossRef]
- Stramski, D.; Reynolds, R.A.; Gernez, P.; Röttgers, R.; Wurl, O. Inherent optical properties and particle characteristics of the sea-surface microlayer. Prog. Oceanogr. 2019, 176, 102117. [Google Scholar] [CrossRef]
- Foster, R.; Gilerson, A. Polarized Transfer Functions of the Ocean Surface for Above-Surface Determination of the Vector Submarine Light Field. Appl. Opt. 2016, 55, 9476–9494. [Google Scholar] [CrossRef] [PubMed]
- Cox, C.S.; Munk, W.H. Statistics of the Sea Surface Derived from Sun Glitter. J. Mar. Res. 1954, 13, 198–227. [Google Scholar]
- Kozarac, Z.; Risović, D.; Frka, S.; Möbius, D. Reflection of light from the air/water interface covered with sea-surface microlayers. Mar. Chem. 2005, 96, 99–113. [Google Scholar] [CrossRef]
- Gao, M.; Franz, B.A.; Knobelspiesse, K.; Zhai, P.-W.; Martins, V.; Burton, S.; Cairns, B.; Ferrare, R.; Gales, J.; Hasekamp, O. Efficient multi-angle polarimetric inversion of aersols and ocean color powered by a deep neural network forward model. Atmos. Meas. Tech. 2021, 14, 4083–4110. [Google Scholar] [CrossRef]
- Stamnes, S.; Hostetler, C.; Ferrare, R.; Burton, S.; Liu, X.; Hair, J.; Hu, Y.; Wasilewski, A.; Martin, W.; Van Diedenhoven, B. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the “MAPP” algorithm with comparison to high-spectral-resolution LiDAR aerosol and ocean products. Appl. Opt. 2018, 57, 2394–2413. [Google Scholar] [CrossRef]
- Röttgers, R.; McKee, D.; Utschig, C. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region. Opt. Express 2014, 22, 25093–25108. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, P.; Kattawar, G.; Riedi, J.; Labonnote, L.C.; Baum, B.A.; Platnick, S.; Huang, H.-L. Influence of ice particle model on satellite ice cloud retrieval: Lessons learned from MODIS and POLDER cloud product comparison. Atmos. Chem. Phys. 2009, 9, 7115–7129. [Google Scholar] [CrossRef]
- Carnesecchi, F.; Byfield, V.; Cipollini, P.; Corsini, G.; Diani, M. An optical model for the interpretation of remotely sensed multispectral images of oil spill. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, and Large Water Regions, SPIE Remote Sensing, Cardiff, UK, 15–18 September 2008; 2008. [Google Scholar] [CrossRef]
- Otremba, Z. The impact on the reflectance in VIS of a type of crude oil film floating on the water surface. Opt. Express 2000, 7, 129–134. [Google Scholar] [CrossRef]
- Aas, E. Refractive index of phytoplankton derived from its metabolite composition. J. Plankton Res. 1996, 18, 2223–2249. [Google Scholar] [CrossRef]
- Trolley, G. Investigating Natural Biofilms on Marine Microplastics and the Implications for Ocean Color Remote Sensing. Master’s Thesis, University of Connecticut, Storrs, CT, USA, 2023. [Google Scholar]
- Koestner, D.; Foster, R.; El-Habashi, A. On the potential for optical detection of microplastics in the ocean. Oceanography 2023, 36, 49–51. [Google Scholar] [CrossRef]
- Koestner, D.; Foster, R.; El-Habashi, A.; Cheatham, S. Measurements of the inherent optical properties of aqueous suspensions of microplastics. Limnol. Oceanogr. Lett. 2024. [Google Scholar] [CrossRef]
- Yu, S.; Dai, J.; Liao, R.; Chen, L.; Zhong, W.; Wang, H.; Jiang, Y.; Li, J.; Ma, H. Probing the nanoplastics adsorbed by microalgae in water using polarized light scattering. Optik 2021, 231, 166407. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Liao, R.; Wang, H.; Chen, Y.; Xiang, J.; Xu, X.; Ma, H. Recognition of microplastics suspended in seawater via refractive index by Mueller matrix polarimetry. Mar. Pollut. Bull. 2023, 188, 114706. [Google Scholar] [CrossRef] [PubMed]
- Valentino, M.; Bĕhal, J.; Bianco, V.; Itri, S.; Mossotti, R.; Fontana, G.D.; Battistini, T.; Stella, E.; Miccio, L.; Ferraro, P. Intelligent polarization-sensitive holographic flow-cytometer: Towards specificity in classifying natural and microplastic fibers. Sci. Total Environ. 2022, 815, 152708. [Google Scholar] [CrossRef] [PubMed]
- Remer, L.A.; Knobelspiesse, K.D.; Zhai, P.-W.; Xu, F.; Kalashnikova, O.; Chowdhary, J.; Hasekamp, O.; Dubovik, O.; Wu, L.; Ahmad, Z.; et al. Retrieving aerosol characteristics from the PACE mission, Part 2: Multi-angle and polarimetry. Front. Environ. Sci. 2019, 7, 94. [Google Scholar] [CrossRef]
- Chowdhary, J.; Zhai, P.-W.; Boss, E.; Dierssen, H.; Frouin, R.; Ibrahim, A.; Lee, Z.; Remer, L.A.; Twardowski, M.; Xu, F. Modeling atmosphere-ocean radiative transfer: A PACE mission perspective. Front. Earth Sci. 2019, 7, 100. [Google Scholar] [CrossRef]
- Rodgers, C.D. Information content and optimisation of high spectral resolution remote measurements. Adv. Space Res. 1998, 21, 361–367. [Google Scholar] [CrossRef]
- Knobelspiesse, K. Rodgers Information Content Assessment (ICA) Technique. Github. 2022. Available online: https://github.com/knobelsp/RodgersICA.git (accessed on 15 August 2023).
- Measures, R.M. Laser Remote Sensing: Fundamentals and Applications; John Wiley & Sons, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Mace, T.H. At-sea detection of marine debris: Overview of technologies, processes, issues, and options. Mar. Pollut. Bull. 2012, 65, 23–27. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y.; Trepte, C.; Zeng, S.; Churnside, J.H. Ocean subsurface studies with the CALIPSO spaceborne lidar. J. Geophys. Res. Oceans 2014, 119, 4305–4317. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.X.; Powell, K.A.; Liu, Z.Y.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef]
- Pichel, W.G.; Veenstra, T.S.; Churnside, J.H.; Arabini, E.; Friedman, K.S.; Foley, D.G.; Brainard, R.E.; Kiefer, D.; Ogle, S.; Clemente-Colón, P.; et al. GhostNet marine debris survey in the Gulf of Alaska—Satellite guidance and aircraft observations. Mar. Pollut. Bull. 2012, 65, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Feygels, D.V.; Aitken, J.; Ramnath, V.; Kopilevich, D.Y.; Marthouse, R.; Duong, D.H.; Smith, B.; Clark, N.; Renz, E.; Reisser, D.J. Coastal zone mapping and imaging lidar (CZMIL) participation in the ocean cleanup’s aerial expedition project. In Proceedings of the OCEANS 2017—Anchorage, Anchorage, AK, USA, 18–21 September 2017; pp. 1–7. [Google Scholar]
- Palombi, L.; Raimondi, V. Experimental Tests for Fluorescence LiDAR Remote Sensing of Submerged Plastic Marine Litter. Remote Sens. 2022, 14, 5914. [Google Scholar] [CrossRef]
- Raimondi, V.; Di Maggio, P.; Gonnelli, A.; Palombi, L.; deVries, R.; Ciapponi, A.; Corradi, P. Remote Sensing of Plastic Marine Litter by Means of Fluorescence LIDAR. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 1733–1735. [Google Scholar] [CrossRef]
- Doneus, M.; Miholjek, I.; Mandlburger, G.; Doneus, N.; Verhoeven, G.; Briese, C.; Pregesbauer, M. Airborne Laser Bathymetry for Documentation of Submerged Archaeological Sites in Shallow Water. ISPRS Arch. 2015, XL-5/W5, 99–107. [Google Scholar] [CrossRef]
- Costa, B.M.; Battista, T.A.; Pittman, S.J. Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sens. Environ. 2009, 113, 1082–1100. [Google Scholar] [CrossRef]
- Li, K.; He, Y.; Ma, J.; Jiang, Z.; Hou, C.; Chen, W.; Zhu, X.; Chen, P.; Tang, J.; Wu, S.; et al. A Dual-Wavelength Ocean Lidar for Vertical Profiling of Oceanic Backscatter and Attenuation. Remote Sens. 2020, 12, 2844. [Google Scholar] [CrossRef]
- Rogers, S.R.; Webster, T.; Livingstone, W.; O’Driscoll, N.J. Airborne Laser-Induced Fluorescence (LIF) Light Detection and Ranging (LiDAR) for the Quantification of Dissolved Organic Matter Concentration in Natural Waters. Estuaries Coasts 2012, 35, 959–975. [Google Scholar] [CrossRef]
- Churnside, J.H.; Brown, E.D.; Parker-Stetter, S.; Horne, J.K.; Hunt, G.L., Jr.; Hillgruber, N.; Sigler, M.F.; Vollenweider, J.J. Airborne Remote Sensing of a Biological Hot Spot in the Southeastern Bering Sea. Remote Sens. 2011, 3, 621–637. [Google Scholar] [CrossRef]
- Raimondi, V.; Palombi, L.; Lognoli, D.; Masini, A.; Simeone, E. Experimental Tests and Radiometric Calculations for the Feasibility of Fluorescence LiDAR-Based Discrimination of Oil Spills from UAV. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 46–54. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C.E. A Review of Oil Spill Remote Sensing. Sensors 2018, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Li, Y.; Wang, J.; Zhao, G.; Svanberg, S. Aquatic environment monitoring using a drone-based fluorosensor. Appl. Phys. B 2019, 125, 108. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Hu, Y.; Hostetler, C.A.; Dall’Olmo, G.; Rodier, S.D.; Hair, J.W.; Trepte, C.R. Space-based LiDAR measurements of global ocean carbon stocks. Geophys. Res. Lett. 2013, 40, 4355–4360. [Google Scholar] [CrossRef]
- Geiss, A.; Vaughan, M.; Dabas, A.; Flament, T.; Stieglitz, H.; Isaksen, L.; Rennie, M.; de Kloe, J.; Marseille, G.-J.; Stoffelen, A.; et al. Initial assessment of the performance of the first Wind LiDAR in space on Aeolus. EPJ Web Conf. 2020, 237, 01010. [Google Scholar] [CrossRef]
- Hostetler, C.A.; Behrenfeld, M.J.; Hu, Y.; Hair, J.W.; Schulien, J.A. Spaceborne LiDAR in the Study of Marine Systems. Annu. Rev. Mar. Sci. 2018, 10, 121–147. [Google Scholar] [CrossRef] [PubMed]
- Jamet, C.; Ibrahim, A.; Ahmad, Z.; Angelini, F.; Babin, M.; Behrenfeld, M.J.; Boss, E.; Cairns, B.; Churnside, J.; Chowdhary, J.; et al. Going Beyond Standard Ocean Color Observations: LiDAR and Polarimetry. Front. Mar. Sci. 2019, 6, 251. [Google Scholar] [CrossRef]
- Chen, G.; Tang, J.; Zhao, C.; Wu, S.; Yu, F.; Ma, C.; Xu, Y.; Chen, W.; Zhang, Y.; Liu, J.; et al. Concept Design of the “Guanlan” Science Mission: China’s Novel Contribution to Space Oceanography. Front. Mar. Sci. 2019, 6, 194. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, P.; Mao, Z. SOLS: An Open-Source Spaceborne Oceanic LiDAR Simulator. Remote Sens. 2022, 14, 1849. [Google Scholar] [CrossRef]
- CES December/January 2017/18. Available online: https://ces.pagelizard.co.uk/webviewer/#cesdecemberjanuary201718/cleaning_up_the_great_pacific_garbage_patch. (accessed on 3 May 2024).
- Ge, Z.; Shi, H.; Mei, X.; Da, Z.; Li, D. Semi-automatic recognition of marine debris on beaches. Nat. Sci. Rep. 2016, 6, 25759. [Google Scholar] [CrossRef]
- Allen, N.S.; Homer, J.; McKellar, J.F. The Use of Luminescence Spectroscopy in Aiding the Identification of Commercial Polymers. Analyst 1976, 101, 260. [Google Scholar] [CrossRef]
- Ahmad, S.R. UV Laser Induced Fluorescence in High-Density Polyethylene. J. Phys. D Appl. Phys. 1983, 16, L137–L144. [Google Scholar] [CrossRef]
- Htun, M.T. Characterization of high-density polyethylene using laser-induced fluorescence (LIF). J. Polym. Res. 2012, 19, 9823. [Google Scholar] [CrossRef]
- Spizzichino, V.; Caneve, L.; Colao, F.; Ruggiero, L. Characterization and Discrimination of Plastic Materials Using La-ser-Induced Fluorescence. Appl. Spectrosc. 2016, 70, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Monteleone, A.; Schary, W.; Wenzel, F.; Langhals, H.; Dietrich, D.R. Label-free identification and differentiation of different microplastics using phasor analysis of fluorescence lifetime imaging microscopy (FLIM)-generated data. Chem. Biol. Interact. 2021, 342, 109466. [Google Scholar] [CrossRef] [PubMed]
- Lenz, R.; Enders, K.; Stedmon, C.A.; Mackenzie, D.M.; Nielsen, T.G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 2015, 100, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Käppler, A.; Fischer, D.; Oberbeckmann, S.; Schernewski, G.; Labrenz, M.; Eichhorn, K.J.; Voit, B. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 2016, 408, 8377–8391. [Google Scholar] [CrossRef]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.; Ribeiro-Claro, P.J. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Chirayath, V. MiDAR Fluid Lensing–Merging NASA’s MiDAR Active Multispectral Imaging Technology with Fluid Lensing for Next-Generation Aquatic Remote Sensing of Marine Systems and Debris. In Proceedings of the AGU23, San Fransisco, CA, USA, 11–15 December 2023. [Google Scholar]
- Chirayath, V.; Bagshaw, E.; Kate Craft, K. Oceans Across the Solar System and the Search for Extraoceanic Life: Technologies for Remote Sensing and In Situ Exploration. Oceanography 2022, 35, 54–65. [Google Scholar] [CrossRef]
- Maximenko, N.; Arvesen, J.; Asner, G.; Carlton, J.; Castrence, M.; Centurioni, L.; Wilcox, C. Remote Sensing of Marine Debris to Study Dynamics, Balances and Trends. In Proceedings of the Workshop on Mission Concepts for Marine Debris Sensing, Honolulu, HI, USA, 19–21 January 2016. (Published in Decadal Survey for Earth Science and Applications from Space, 2016, 22). [Google Scholar]
- Chirayath, V. (University of Miami, FL 33149, USA). Personal communication, 2023.
- Goddijn-Murphy, L.; Williamson, B. On Thermal Infrared Remote Sensing of Plastic Pollution in Natural Waters. Remote Sens. 2019, 11, 2159. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papakonstantinou, A.; Garaba, S.P. Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018). Int. J. Appl. Earth Obs. 2019, 79, 175. [Google Scholar] [CrossRef]
- Ramdani, F.; Sianturi, R.S.; Furqon, M.T.; Tri Ananta, M.T. Mapping riparian zone macro litter abundance using combination of optical and thermal sensor. Sci. Rep. 2022, 12, 6081. [Google Scholar] [CrossRef]
- Riley, D.N.; Hecker, C.A. Mineral Mapping with Airborne Hyperspectral Thermal Infrared Remote Sensing at Cuprite, Nevada, USA. In Thermal Infrared Remote Sensing: Sensors, Methods, Applications; Kuenzer, C., Dech, S., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 17, pp. 495–514. [Google Scholar]
- Garaba, S.P.; Acuña-Ruz, T.; Mattar, C.B. Hyperspectral longwave infrared reflectance spectra of naturally dried algae, anthropogenic plastics, sands and shells. Earth Syst. Sci. Data 2020, 12, 2665–2678. [Google Scholar] [CrossRef]
- Acuña-Ruz, T.; Mattar, B.C. Thermal Infrared Spectral Database of Marine Litter Debris in Archipelago of Chiloé, Chile; PANGAEA: Bremen, Germany, 2020. [Google Scholar] [CrossRef]
- Peckham, J.; O’Young, S.; Jacobs, J.T. Comparison of medium and long wave infrared imaging for ocean based sensing. J. Ocean Technol. 2015, 10, 112–128. [Google Scholar]
- Kelly, J.; Kljun, N.; Olsson, P.-O.; Mihai, L.; Liljeblad, B.; Weslien, P.; Klemedtsson, L.; Eklundh, L. Challenges and Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera. Remote Sens. 2019, 11, 567. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M.; Sabins, F.F. Thermal infrared remote sensing of crude oil slicks. Remote Sens. Environ. 1993, 45, 225–231. [Google Scholar] [CrossRef]
- HotSat-1: UK Spacecraft Maps Heat Variations across Earth—BBC News. Available online: https://www.bbc.co.uk/news/science-environment-67010377 (accessed on 9 January 2024).
- Savastano, S.; Cester, I.; Perpinyà, M.; Romero, L. A first approach to the automatic detection of marine litter in SAR images using artificial intelligence. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 8704–8707. [Google Scholar] [CrossRef]
- Arii, M.; Koiwa, M.; Aoki, Y. Applicability of SAR to marine debris surveillance after the Great East Japan Earthquake. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1729–1744. [Google Scholar] [CrossRef]
- Murata, H.; Komatsu, T.; Yonezawa, C. Detection and discrimination of aquacultural facilities in Matsushima Bay, Japan, for integrated coastal zone management and marine spatial planning using full polarimetric L-band airborne synthetic aperture radar. Int. J. Remote Sens. 2019, 40, 5141–5157. [Google Scholar] [CrossRef]
- Simpson, M.D.; Marino, A.; de Maagt, P.; Gandini, E.; Hunter, P.; Spyrakos, E.; Tyler, A.; Telfer, T. Monitoring of Plastic Islands in River Environment Using Sentinel-1 SAR Data. Remote Sens. 2022, 14, 4473. [Google Scholar] [CrossRef]
- Serafino, F.; Bianco, A. Use of X-Band RADARs to monitor small garbage islands. Remote Sens. 2021, 13, 3558. [Google Scholar] [CrossRef]
- Tracking Plastics from Space, Deltares, October 2021. Available online: https://www.deltares.nl/en/news/tracking-plastics-from-space (accessed on 15 August 2023).
- Simpson, M.D.; Marino, A.; de Maagt, P.; Gandini, E.; de Fockert, A.; Hunter, P.; Spyrakos, E.; Telfer, T.; Tyler, A. Investigating the Backscatter of Marine Plastic Litter Using a C- and X-Band Ground Radar, during a Measurement Campaign in Deltares. Remote Sens. 2023, 15, 1654. [Google Scholar] [CrossRef]
- da Costa, T.S.; Felício, J.M.; Vala, M.; Leonor, N.; Costa, J.R.; Marques, P.; Moreira, A.A.; Caldeirinha, R.; Matos, S.A.; Fernandes, C.A.; et al. Detection of Low Permittivity Floating Plastic Sheets at Microwave Frequencies. In Proceedings of the EuCAP 2023, Florence, Italy, 26–31 March 2023. [Google Scholar]
- Gonga, A.; Pérez-Portero, A.; Camps, A.; Pascual, D.; de Fockert, A.; de Maagt, P. GNSS-R Observations of Marine Plastic Litter in a Water Flume: An Experimental Study. Remote Sens. 2023, 15, 637. [Google Scholar] [CrossRef]
- Vala, M.; Felício, J.M.; da Costa, T.S.; Leonor, N.; Costa, J.R.; Marques, P.; Moreira, A.A.; Matos, S.A.; Caldeirinha, R.F.S.; Fernandes, C.A.; et al. On the Feasibility of Using Passive mm-Wave Imaging for Marine Litter Detection at the W-band. In Proceedings of the EuCAP 2023, Florence, Italy, 26–31 March 2023. [Google Scholar]
- Rickard, P.C.; Uher, G.; Robert, C.; Upstill-Goddard, R. Reconsideration of seawater surfactant activity analysis based on an inter-laboratory comparison study. Mar. Chem. 2019, 208, 103–111. [Google Scholar] [CrossRef]
- Galgani, L.; Tzempelikou, E.; Kalantzi, I.; Tsiola, A.; Tsapakis, M.; Pitta, P.; Esposito, C.; Tsotskou, A.; Magiopoulos, I.; Benavides, R. Marine plastics alter the organic matter composition of the air-sea boundary layer, with influences on CO2 exchange: A large-scale analysis method to explore future ocean scenarios. Sci. Total Environ. 2023, 857, 159624. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.P.; Dierssen, H.M.; Kudela, R.M.; Scholin, C.A.; Johnson, K.S.; Sullivan, J.M.; Fischer, A.; Rienecker, E.; McEnaney, P.; Chavez, F. Coastal ocean physics and red tides: An example from Monterey Bay, California. Oceanography 2005, 18, 246–255. [Google Scholar] [CrossRef]
- Alpers, W.; Espedal, H.A. Chapter 11. Oils and Surfactants. In Synthetic Aperture RADAR Marine User’s Manual; Jackson, C.R., Apel, J.R., Eds.; U.S Department of Commerce National Oceanic and Atmospheric Administration (NOAA): Washington, DC, USA, 2004; pp. 263–276. [Google Scholar]
- Sun, Y.; Bakker, T.; Ruf, C.; Pan, Y. Effects of microplastics and surfactants on surface roughness of water waves. Sci. Rep. 2023, 13, 1978. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.; Marino, A.; de Maagt, P.; Gandini, E.; Hunter, P.; Spyrakos, E.; Tyler, A.; Ackermann, N.; Hajnsek, I.; Nunziata, F.; et al. Monitoring surfactants pollution potentially related to plastics in the world gyres using RADAR remote sensing. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Lebreton, L.; van der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Krauth, T.; Wagner, S. Export of plastic debris by rivers into the sea. Environ. Sci. Technol. 2017, 51, 12246–12253. [Google Scholar] [CrossRef] [PubMed]
- Haram, L.E.; Carlton, J.T.; Centurioni, L.; Choong, H.; Cornwell, B.; Crowley, M.; Egger, M.; Hafner, J.; Hormann, V.; Lebreton, L. Extent and reproduction of coastal species on plastic debris in the North Pacific Subtropical Gyre. Nat. Ecol. Evol. 2023, 7, 687–697. [Google Scholar] [CrossRef]
- Chong, F.; Spencer, M.; Maximenko, N.; Hafner, J.; McWhirter, A.C.; Helm, R.R. High concentrations of floating neustonic life in the plastic-rich North Pacific Garbage Patch. PLoS Biol. 2023, 21, e3001646. [Google Scholar] [CrossRef]
- Acha, E.M.; Piola, A.; Iribarne, O.; Mianzan, H. Frontal Types. In Ecological Processes at Marine Fronts; Springer Briefs in Environmental Science; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
Term | Description |
---|---|
Flotsam | Floating material of natural or anthropogenic origin. |
Marine litter or marine debris | Any persistent, manufactured, or processed solid material that is directly or indirectly discarded, disposed of, or abandoned into the open ocean, coastal, or inland aquatic environment (UNEP [1]). |
Marine plastic litter or marine plastic debris | A subset of marine litter formed by a wide range of synthetic polymers and associated additives, covering a wide range of composition and properties, as defined by community standards (GESAMP [7]). |
Detection | Discrimination of marine plastic litter from the environmental background, including other marine litter, based on the measurement of a physical quality that can be directly ascribed to the presence of plastics. |
Characterisation | Classification of the composition (e.g., polymer type) and sizes of marine plastic litter. |
Quantification | Estimation of the concentration, abundance, and/or area coverage of marine plastic litter. |
Monitoring | Repeated measuring of marine plastic litter to detect a trend in space or time. |
Tracking | Assessment of the spatial, temporal and concentration dynamics of marine plastic litter. |
Anomaly | A signal that is different from the background (or expected value) that can be an indicator of the presence of marine plastic litter. |
Proxy | One or a combination of indirect variables that correlate with the presence of marine plastic litter. |
Floating | Operationally defined as marine plastic litter collected within 1 m of the sea surface. |
Emergent | Any part of the marine plastic litter that is above the sea surface. |
Convergent Zone | Min. Scale | Description | Region |
---|---|---|---|
Langmuir circulation | 1 m–1 km | Wind-driven three-dimensional rotating cells that form surface convergence, seen as wind rows, at the boundary of counter-rotating cells. | Global |
Internal waves | 10’s m–10’s km | Caused by tidal and non-tidal mechanisms, they can produce convergent troughs on the sea surface that move in phase with the wave | Primarily coastal |
Estuarine fronts | 100 m–10 km | Form at the interfaces between the freshwater river outflow and the seawater; primarily observed as salinity, coloured dissolved organic matter, and turbidity fronts | Coastal river plumes |
Submesoscale convergence | 100 m–10’s km | Eddies stir two different water masses to form a complex pattern of submesoscale filaments and fronts with convergence associated with cyclonic vorticity. | Global |
Shelfbreak fronts | 10 km–100 km | Most common frontal type that is aligned with the shelfbreak separating coastal shelf and oceanic water | Ocean/Coast Boundary |
Subtropical convergence fronts | 1000’s km | Fronts forming in the centre of major ocean gyres due to Ekman wind convergence that brings together waters of different temperature | Open ocean |
Technology | Plastic | Vegetation | Bubbles | Surfactants |
---|---|---|---|---|
High spatial resolution | Shape and colour anomaly | Blue/green ratio | Increase magnitude | Increase magnitude Glint anomaly |
Multispectral | Colour anomaly | Red edge reflectance | Increase magnitude | Increase magnitude Glint anomaly |
Hyperspectral | Spectral signature | Spectral signature | Spectral signature | Possible spectral signature Glint anomaly |
Fluid lensing | 3D shape and colour anomaly | 3D shape and colour anomaly | 3D shape and colour anomaly | Possible anomaly |
Polarimetry | Depolarising Glint anomaly | Depolarising Glint anomaly | Depolarising Glint anomaly | Glint retrieval of index of refraction |
Backscatter LiDAR | Increase backscatter | Increase backscatter | Increase backscatter | Possible backscatter anomaly |
Fluorescence LiDAR | Fluorescent signature | Fluorescent signature | Backscatter anomaly | Possible fluorescent signature |
MiDAR | Fluorescent and reflectance signature | Fluorescent and reflectance signature | Reflectance anomaly | Possible fluorescent and reflectance signature |
Panchromatic TIS | Brightness anomaly | Brightness anomaly | Not seen | Brightness anomaly |
Hyperspectral TIS | Spectral signature | Spectral signature | Not seen | Possible spectral signature |
RADAR | Increase reflectance | Increase reflectance | Increase reflectance | Decrease reflectance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goddijn-Murphy, L.; Martínez-Vicente, V.; Dierssen, H.M.; Raimondi, V.; Gandini, E.; Foster, R.; Chirayath, V. Emerging Technologies for Remote Sensing of Floating and Submerged Plastic Litter. Remote Sens. 2024, 16, 1770. https://doi.org/10.3390/rs16101770
Goddijn-Murphy L, Martínez-Vicente V, Dierssen HM, Raimondi V, Gandini E, Foster R, Chirayath V. Emerging Technologies for Remote Sensing of Floating and Submerged Plastic Litter. Remote Sensing. 2024; 16(10):1770. https://doi.org/10.3390/rs16101770
Chicago/Turabian StyleGoddijn-Murphy, Lonneke, Victor Martínez-Vicente, Heidi M. Dierssen, Valentina Raimondi, Erio Gandini, Robert Foster, and Ved Chirayath. 2024. "Emerging Technologies for Remote Sensing of Floating and Submerged Plastic Litter" Remote Sensing 16, no. 10: 1770. https://doi.org/10.3390/rs16101770
APA StyleGoddijn-Murphy, L., Martínez-Vicente, V., Dierssen, H. M., Raimondi, V., Gandini, E., Foster, R., & Chirayath, V. (2024). Emerging Technologies for Remote Sensing of Floating and Submerged Plastic Litter. Remote Sensing, 16(10), 1770. https://doi.org/10.3390/rs16101770