A Multi-Scale Fusion Strategy for Side Scan Sonar Image Correction to Improve Low Contrast and Noise Interference
Abstract
:1. Introduction
- (1)
- The non-subsampled shearlet transform is able to achieve the multiple decomposition of sonar image signals, reducing image quality issues caused by motion blur, radiation distortion, noise, etc.
- (2)
- The modified multi-scale retinex algorithm is applied to enhance the inherent detection energy from low-frequency sub-band images with masked information.
- (3)
- Sparse dictionary learning helps to reduce the effects of high-frequency distortion, noise interference, and signal redundancy stacking by representing high-frequency images as a linear combination of as few non-zero coefficients as feasible.
2. Materials and Methods
2.1. Overall Framework
2.2. Non-Subsampled Shearlet Transform
2.3. Modified Multi-Scale Retinex
2.4. Sparse Dictionary Learning
2.5. Implementation of Proposed Strategy
Algorithm 1 Multi-scale fusion strategy for side scan sonar image correction to improve low contrast and noise interference |
Input: Read original image of side scan sonar. Set some constant item values, σd, σr, wh, Ω, γ, block, K, C, maxBlocks, iteration. Select decomposer, decomposition direction, and level. Output: Corrected sonar image 1: Pseudo-color processing of backscattered images; 2: Convert color image to HSV space and extract luminance component V; 3: Multi-scale decomposition of V component into low-frequency and high-frequency images is performed by NSST method; 4: Perform global mapping in low-frequency image to obtain image map LV by Equation (4); 5: Adopt bilateral filtering with sub-windows of different sizes to obtain initial illumination image LL by Equations (6)–(9); 6: Employ gamma correction strategy to obtain new illuminance image LLL by Equation (10); 7: Combine multi-scale retinex theory to obtain reflection image LR by Equation (3); 8: Multiply reflection image with new illumination image to obtain enhanced low-frequency image by Equation (11). 9: Estimate noise standard deviation of high-frequency images by Laplace filters; 10: Use DCT method to obtain initialization dictionary D0; 11: Execute OMP sparse encoding and K-SVD dictionary process to iteratively update dictionary D and sparse matrix X; 12: Reconstruct denoised high-frequency images through new dictionaries and sparse matrices; 13: Multi-scale reconstruction of brightness feature image based on enhanced low-frequency image and denoised high-frequency images; 14: Inverted color space transformation into pseudo-color side scan sonar image; 15: Return enhanced sonar image and objective evaluation indexes. |
3. Experiments and Results
3.1. Data Description and Parameter Settings
3.2. Objective Evaluation Metrics
- (1)
- Average gradient
- (2)
- Standard deviation
- (3)
- Information entropy
- (4)
- Peak signal-to-noise ratio
3.3. Comparison of Background Color Effects
3.4. Optimal Parameter Selection for MMSR Model
3.4.1. Range Selection of Window Neighborhood
3.4.2. Optimization of Gamma Factor
3.5. Correction Effects of Various Retinex Models
3.6. Comparative Effects of Other Correction Techniques
4. Discussion
4.1. Comparison of Filter Performance
4.2. Expansion of Our strategy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Y.; Wang, L.; Jin, S.; Zhao, J.; Huang, C.; Yu, Y. AUV-Based Side-Scan Sonar Real-Time Method for Underwater-Target Detection. J. Mar. Sci. Eng. 2023, 11, 690. [Google Scholar] [CrossRef]
- Zel, Z.; Dondurur, D.; Klaucke, I. Seismic and geoacoustic evidence for subsurface fluid flow and seepage offshore Akakoca, Southwestern Black Sea, Turkey. Geo-Mar. Lett. 2022, 42, 17. [Google Scholar]
- Wang, K.; Jin, W. The Application of Acoustic Detection Technology in The Investigation of Submarine Pipelines. J. Appl. Sci. Process Eng. 2023, 27, 2911–2921. [Google Scholar]
- Li, S.; Zhao, J.; Wu, Y.; Bian, S.; Zhai, G. SSS Radiometric Distortion Correction Based on Variational Retinex Framework with Consideration for Sediment Characteristics. IEEE Trans. Geosci. Remote Sens. 2023, 61, 3319405. [Google Scholar] [CrossRef]
- Muthuraman, D.L.; Santhanam, S.M. Contrast improvement on side scan sonar images using retinex based edge preserved technique. Mar. Geophys. Res. 2022, 43, 17. [Google Scholar] [CrossRef]
- Capus, C.G.; Banks, A.C.; Coiras, E.; Ruiz, I.T.; Smith, C.J.; Petillot, Y.R. Data correction for visualisation and classification of sidescan SONAR imagery. IET Radar Sonar Navig. 2008, 2, 155–169. [Google Scholar] [CrossRef]
- Zhao, J.; Yan, J.; Zhang, H.; Meng, J. A New Radiometric Correction Method for Side-Scan Sonar Images in Consideration of Seabed Sediment Variation. Remote Sens. 2017, 9, 575. [Google Scholar] [CrossRef]
- Li, S.; Zhao, J.; Yu, Y.; Wu, Y.; Bian, S.; Zhai, G. Anisotropic Total Variation Regularized Low-Rank Approximation for SSS Images Radiometric Distortion Correction. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5925412. [Google Scholar] [CrossRef]
- Al-Rawi, M.; Galdran, A.; Isasi, A.; Elmgren, F.; Carbonara, G.; Falotico, E.; Real-Arce, D.A.; Rodriguez, J.; Bastos, J.; Pinto, M. Intensity Normalization of Sidescan Sonar Imagery. In Proceedings of the 6th International Conference on Image Processing Theory, Tools and Applications, Oulu, Finland, 12–15 December 2016; pp. 1–6. [Google Scholar]
- Schultz, J.J.; Healy, C.A.; Parker, K.; Lowers, B. Detecting submerged objects: The application of side scan sonar to forensic contexts. Forensic Sci. Int. 2013, 231, 306–316. [Google Scholar] [CrossRef]
- Ravisankar, P.; Sharmila, T.S.; Rajendran, V. Acoustic image enhancement using Gaussian and laplacian pyramid—A multiresolution based technique. Multimed. Tools Appl. 2018, 77, 5547–5561. [Google Scholar] [CrossRef]
- Priyadharsini, R.; Sharmila, T.S.; Rajendran, V. A wavelet transform based contrast enhancement method for underwater acoustic images. Multidimens. Syst. Signal Process. 2018, 29, 1845–1859. [Google Scholar] [CrossRef]
- Kan, V.A.; Sushchenko, A.A.; Lyu, E.R. Double-scattering approximation for the bathymetry problem. In Proceedings of the 25th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, Russia, 30 June–5 July 2019; pp. 1–4. [Google Scholar]
- Xu, H.; Zhu, Z.; Yu, Y. Filtering level-set model based on saliency and gradient information for sonar image segmentation. Int. J. Mach. Learn. Cybern. 2023, 15, 1677–1692. [Google Scholar] [CrossRef]
- Kim, J.; Song, S.; Yu, S.C. Denoising auto-encoder based image enhancement for high resolution sonar image. In Proceedings of the 2017 IEEE Underwater Technology UT, Busan, Republic of Korea, 21–24 February 2017; pp. 1–5. [Google Scholar]
- Liu, T.; Yan, S.; Wang, G. Remove and recover: Two stage convolutional autoencoder based sonar image enhancement algorithm. Multimed. Tools Appl. 2023, 1–17. [Google Scholar] [CrossRef]
- Thomas, C.T.; Nambiar, A.M.; Mittal, A. A gan-based super resolution model for efficient image enhancement in underwater sonar images. In Proceedings of the OCEANS Conference 2022, Chennai, India, 21–24 February 2022; pp. 1–8. [Google Scholar]
- Liu, D.; Wang, Y.; Ji, Y.; Tsuchiya, H.; Yamashita, A.; Asama, H. Cyclegan-based realistic image dataset generation for forward-looking sonar. Adv. Robot. 2021, 35, 242–254. [Google Scholar] [CrossRef]
- Lei, H.; Li, D.; Jiang, H. Enhancement of Sonar Detection in Karst Caves Through Advanced Target Location and Image Fusion Algorithms. Trait. Signal. 2023, 40, 1593–1600. [Google Scholar] [CrossRef]
- Yoon, K.S.; Kim, W.J. Efficient edge-preserved sonar image enhancement method based on CVT for object recognition. IET Image Process. 2019, 13, 15–23. [Google Scholar] [CrossRef]
- Sharumathi, K.; Priyadharsini, R. A survey on various image enhancement techniques for underwater acoustic images. In Proceedings of the International Conference on Electrical, Electronics, and Optimization Techniques, Palanchur, India, 3–5 March 2016; pp. 2930–2933. [Google Scholar]
- Zhou, P.; Chen, G.; Wang, M.; Chen, S.; Sun, R. Side-Scan Sonar Image Fusion Based on Sum-Modified Laplacian Energy Filtering and Improved Dual-Channel Impulse Neural Network. Appl. Sci. 2020, 10, 1028. [Google Scholar] [CrossRef]
- Moussa, O.; Khlifa, N.; Morain-Nicolier, F. An effective shearlet-based anisotropic diffusion technique for despeckling ultrasound medical images. Multimed. Tools Appl. 2022, 82, 10491–10514. [Google Scholar] [CrossRef]
- Li, L.; Ma, H. Saliency-Guided Nonsubsampled Shearlet Transform for Multisource Remote Sensing Image Fusion. Sensors 2021, 21, 1756. [Google Scholar] [CrossRef]
- Shen, L.; Ma, Z.; Er, M.J.; Fan, Y.; Yin, Q. Blind Adaptive Structure-Preserving Imaging Enhancement for Low-Light Condition. IEEE Signal Process. Lett. 2022, 29, 917–921. [Google Scholar] [CrossRef]
- Cao, H.; Liu, C.; Shen, X.; Li, D.; Chen, Y. Low Illumination Image Processing Based on Adaptive Threshold and Local Tone Mapping. Laser Optoelectron. Prog. 2021, 58, 0410017. [Google Scholar]
- Xing, L.; Qu, H.; Xu, S.; Tian, Y. CLEGAN: Toward Low-Light Image Enhancement for UAVs via Self-Similarity Exploitation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5610714. [Google Scholar] [CrossRef]
- Wang, J.; Lu, K.; Xue, J.; He, N.; Shao, L. Single Image Dehazing Based on the Physical Model and MSRCR Algorithm. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2190–2199. [Google Scholar] [CrossRef]
- Ye, X.; Yang, H.; Li, C.; Jia, Y.; Li, P. A Gray Scale Correction Method for Side-Scan Sonar Images Based on Retinex. Remote Sens. 2019, 11, 1281. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, J.; Jin, S.; Zhao, J.; Wang, L.; Bian, G.; Zhao, X. Real-Time Processing and High-Quality Imaging of Navigation Strip Data Using SSS Based on AUVs. J. Mar. Sci. Eng. 2023, 11, 1769. [Google Scholar] [CrossRef]
- Innocentini, S.; Quartau, R.; Casalbore, D.; Roque, C.; Vinhas, A.; Santos, R.; Rodrigues, A. Morpho-stratigraphic characterization of the southern shelf of Porto Santo Island (Madeira Archipelago): Insights for small-scale instability processes and post-LGM sedimentary architecture. Mar. Geol. 2022, 444, 106729. [Google Scholar] [CrossRef]
- Chen, D.; Chu, X.; Ma, F.; Teng, X. A variational approach for adaptive underwater sonar image denoising. In Proceedings of the 4th International Conference on Transportation Information and Safety (ICTIS), Banff, AB, Canada, 8–10 August 2017; pp. 1177–1181. [Google Scholar]
- Huang, Y.; Li, W.; Yuan, F. Speckle Noise Reduction in Sonar Image Based on Adaptive Redundant Dictionary. J. Mar. Sci. Eng. 2020, 8, 761. [Google Scholar] [CrossRef]
- Gigleux, B.; Vincent, F.; Chaumette, E. Generalized frequency estimator with rational combination of three spectrum lines. IET Radar Sonar Navig. 2022, 16, 1107–1115. [Google Scholar] [CrossRef]
- Ma, J.H.; Rui, X. Compressive detection of multiple targets in passive bistatic radar. IET Radar Sonar Navig. 2023, 17, 537–544. [Google Scholar] [CrossRef]
- Ojha, C.; Fusco, A.; Pinto, I.M. Interferometric SAR phase denoising using proximity-based K-SVD technique. Sensors 2019, 19, 2684. [Google Scholar] [CrossRef]
- Wear, K.A. Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements from Arrays-Part I: Theory and Impact on Diagnostic Safety Indexes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021, 68, 358–375. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.W.; Zhu, T.W.; Zhou, H.Y.; Zhang, L.Y.; Jia, C. An Image Enhancement Method for Side-Scan Sonar Images Based on Multi-Stage Repairing Image Fusion. Electronics 2023, 12, 3553. [Google Scholar] [CrossRef]
- Mousania, Y.; Karimi, S.; Farmani, A. Optical remote sensing, brightness preserving and contrast enhancement of medical images using histogram equalization with minimum cross-entropy-Otsu algorithm. Opt. Quantum Electron. 2023, 55, 105. [Google Scholar] [CrossRef]
Low Frequency | High Frequency | ||
---|---|---|---|
Distance STD | σd = 3 | Block size | block = 8 |
Luminance STD | σr = 0.1 | Number of atoms | K = 256 |
Kernel windows | wh = 3 | Limit factor | C = 2.5 |
Neighborhood range | Ω = [5, 8, 15] | Maximum number of block samples | maxBlocks = 260,000 |
Gamma factor | γ = 1.8 | Number of iterations | iteration = 10 |
Image | Metric | MSRCR | NPE | ALTM | LIME | Processed Strategy |
---|---|---|---|---|---|---|
S1 | STD | 53.45 | 41.43 | 51.03 | 64.04 | 69.35 |
AG | 9.94 | 10.52 | 13.19 | 17.15 | 14.14 | |
E | 5.62 | 6.89 | 7.20 | 7.45 | 7.46 | |
PSNR | 7.57 | 12.06 | 11.27 | 8.93 | 18.30 | |
S2 | STD | 40.93 | 27.16 | 33.44 | 51.58 | 63.34 |
AG | 6.48 | 8.94 | 8.72 | 11.19 | 10.88 | |
E | 4.62 | 6.64 | 6.67 | 7.05 | 7.10 | |
PSNR | 7.51 | 10.54 | 10.11 | 8.07 | 11.14 | |
S3 | STD | 49.99 | 47.55 | 38.39 | 62.88 | 65.90 |
AG | 8.18 | 9.16 | 11.15 | 14.81 | 12.17 | |
E | 5.75 | 6.84 | 7.29 | 7.41 | 7.51 | |
PSNR | 7.24 | 10.84 | 11.42 | 8.78 | 17.78 | |
S4 | STD | 45.33 | 34.67 | 51.58 | 63.61 | 63.61 |
AG | 6.33 | 8.12 | 8.84 | 13.39 | 9.09 | |
E | 4.99 | 6.95 | 7.31 | 7.30 | 7.53 | |
PSNR | 5.32 | 9.62 | 11.25 | 8.52 | 14.51 |
Image | Metric | BPDHE | FE | WT | TVRLRA | Processed Strategy |
---|---|---|---|---|---|---|
S1 | STD | 50.87 | 39.23 | 65.28 | 45.50 | 69.35 |
AG | 11.67 | 11.17 | 12.31 | 9.36 | 14.14 | |
E | 4.63 | 7.02 | 7.46 | 7.10 | 7.46 | |
PSNR | 9.89 | 15.11 | 12.06 | 16.81 | 18.30 | |
S2 | STD | 36.41 | 24.67 | 48.80 | 29.73 | 63.34 |
AG | 6.63 | 7.31 | 8.21 | 5.24 | 10.88 | |
E | 4.10 | 6.47 | 7.10 | 6.50 | 7.10 | |
PSNR | 7.50 | 10.51 | 10.11 | 10.58 | 11.14 | |
S3 | STD | 45.01 | 36.37 | 62.08 | 43.35 | 65.90 |
AG | 10.06 | 9.62 | 10.42 | 7.94 | 12.17 | |
E | 4.79 | 7.04 | 7.51 | 7.20 | 7.51 | |
PSNR | 10.28 | 14.98 | 11.42 | 16.13 | 17.78 | |
S4 | STD | 47.20 | 35.76 | 59.92 | 43.29 | 63.61 |
AG | 8.59 | 8.42 | 8.50 | 6.41 | 9.09 | |
E | 4.50 | 6.96 | 7.31 | 7.06 | 7.53 | |
PSNR | 8.35 | 14.38 | 9.62 | 14.46 | 14.51 |
Image | Metric | BPDHE | FE | WT | TVRLRA | ALTM | LIME | Processed Strategy |
---|---|---|---|---|---|---|---|---|
P1 | STD | 25.06 | 30.42 | 32.32 | 25.66 | 32.32 | 37.38 | 41.70 |
AG | 11.29 | 13.91 | 13.06 | 9.94 | 13.06 | 18.83 | 18.11 | |
E | 6.34 | 6.85 | 6.93 | 6.59 | 6.93 | 6.83 | 7.24 | |
PSNR | 12.23 | 15.53 | 13.98 | 14.97 | 13.98 | 7.45 | 16.48 | |
P2 | STD | 42.99 | 60.5 | 59.87 | 51.16 | 59.87 | 54.4 | 62.17 |
AG | 7.37 | 11.03 | 11.29 | 7.31 | 11.29 | 14.73 | 15.99 | |
E | 4.56 | 5.7 | 5.74 | 5.59 | 5.74 | 5.7 | 5.93 | |
PSNR | 9.41 | 12.57 | 12.32 | 16.71 | 12.32 | 8.49 | 17.87 | |
P3 | STD | 49.53 | 49.04 | 60.65 | 53.71 | 60.65 | 63.07 | 65.78 |
AG | 10.62 | 12.28 | 10.71 | 10.94 | 10.71 | 10.84 | 11.89 | |
E | 7.24 | 7.05 | 7.21 | 7.31 | 7.21 | 7.33 | 7.97 | |
PSNR | 10.58 | 17.96 | 10.5 | 17.38 | 10.5 | 11 | 18.07 | |
P4 | STD | 62.79 | 64.86 | 72.17 | 67.53 | 73.33 | 77.18 | 68.01 |
AG | 22.20 | 24.53 | 23.55 | 22.49 | 26.17 | 37.81 | 39.90 | |
E | 6.54 | 7.54 | 7.59 | 7.5 | 7.59 | 7.71 | 7.88 | |
PSNR | 18.21 | 22.25 | 13.1 | 24.76 | 21.38 | 12.02 | 27.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Chen, J.; Tang, P.; Gan, J.; Zhang, H. A Multi-Scale Fusion Strategy for Side Scan Sonar Image Correction to Improve Low Contrast and Noise Interference. Remote Sens. 2024, 16, 1752. https://doi.org/10.3390/rs16101752
Zhou P, Chen J, Tang P, Gan J, Zhang H. A Multi-Scale Fusion Strategy for Side Scan Sonar Image Correction to Improve Low Contrast and Noise Interference. Remote Sensing. 2024; 16(10):1752. https://doi.org/10.3390/rs16101752
Chicago/Turabian StyleZhou, Ping, Jifa Chen, Pu Tang, Jianjun Gan, and Hongmei Zhang. 2024. "A Multi-Scale Fusion Strategy for Side Scan Sonar Image Correction to Improve Low Contrast and Noise Interference" Remote Sensing 16, no. 10: 1752. https://doi.org/10.3390/rs16101752
APA StyleZhou, P., Chen, J., Tang, P., Gan, J., & Zhang, H. (2024). A Multi-Scale Fusion Strategy for Side Scan Sonar Image Correction to Improve Low Contrast and Noise Interference. Remote Sensing, 16(10), 1752. https://doi.org/10.3390/rs16101752