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Abstract: Side scan sonar images have great application prospects in underwater surveys, target
detection, and engineering activities. However, the acquired sonar images exhibit low illumination,
scattered noise, distorted outlines, and unclear edge textures due to the complicated undersea
environment and intrinsic device flaws. Hence, this paper proposes a multi-scale fusion strategy for
side scan sonar (SSS) image correction to improve the low contrast and noise interference. Initially,
an SSS image was decomposed into low and high frequency sub-bands via the non-subsampled
shearlet transform (NSST). Then, modified multi-scale retinex (MMSR) was employed to enhance
the contrast of the low frequency sub-band. Next, sparse dictionary learning (SDL) was utilized
to eliminate high frequency noise. Finally, the process of NSST reconstruction was completed by
fusing the emerging low and high frequency sub-band images to generate a new sonar image. The
experimental results demonstrate that the target features, underwater terrain, and edge contours
could be clearly displayed in the image corrected by the multi-scale fusion strategy when compared
to eight correction techniques: BPDHE, MSRCR, NPE, ALTM, LIME, FE, WT, and TVRLRA. Effective
control was achieved over the speckle noise of the sonar image. Furthermore, the AG, STD, and E
values illustrated the delicacy and contrast of the corrected images processed by the proposed strategy.
The PSNR value revealed that the proposed strategy outperformed the advanced TVRLRA technology
in terms of filtering performance by at least 8.8%. It can provide sonar imagery that is appropriate for
various circumstances.

Keywords: sonar image correction; side scan sonar; non-subsampled shearlet transform; retinex
theory; dictionary learning

1. Introduction

The increasing frequency of marine surveys and engineering activities is closely
related to the large-scale and refined exploration of underwater information. Thanks
to the advantages of a high imaging resolution and comprehensive coverage, side scan
sonar (SSS) has become widely employed in target identification, seafloor seismic analysis,
and sediment monitoring [1,2]. In addition, SSS images are used for underwater pipeline
detection, cable laying, and safety assurance in underwater engineering [3]. However, the
recorded SSS images exhibit low illumination and speckle noise due to the attenuation of
echo signals, complicated environmental factors, and changes in the detection depth [4,5].
These abnormalities have the potential to quickly cause errors in judgment, which is highly
detrimental to later scientific and technical applications. Thus, there is a pressing need to
determine how to efficiently reduce the noise and improve the visual effect.

Many studies have applied radiation distortion techniques to address the issue of low
light in sonar images. Capus examined how the beam direction affected side scan sonar
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images’ non-uniformity [6]. Zhao et al. considered the effect of sediment changes on signal
radiation distortion and established a linear relationship between distortion and the sonar
height, eliminating the distortion problem along the trajectory direction [7]. Combining
the priors of the SSS imaging process, low-rank constraints have been introduced for
the sonar illumination component. Li et al. proposed a total variation regularized low-
rank approximation (TVRLRA) model to correct the low illumination problem caused
by radiation distortion [8]. Al Rawi et al. used mixed exponential regression analysis to
compensate for low-value pixels [9]. The energy distribution function of the beam angle
also serves as a correction factor to a certain extent [10]. This type of approach necessitates
the consideration of a number of variables, including the surface sediment types, seabed
topography, and acoustic environment. Higher standards are necessary under specific
circumstances; otherwise, the image correction effect will be subpar.

The spatial domain method aims to directly act on the sonar-scattered signal and
compare it to the gray value. Such methods include Brightness Preserving Dynamic His-
togram Equalization (BPDHE) [11], unsharpened masks [12], partial differential equation
enhancement (PDEE) [13], etc. The BPDHE model improves the global contrast of images,
but its correction and improvement capabilities are limited. The question of how to select
the filter size in the unsharpened mask algorithm has still not been solved. The nonlinear
requirements of partial differential equations are complex, and the actual images are unable
to meet the corresponding conditions.

Furthermore, certain deep network and machine learning models have been utilized
to enhance the sonar image quality. Xu et al. employed a filtering level set model to weaken
the target background shadow [14]. Nevertheless, the background data surrounding the
middle are not fully taken into account. Kim et al. processed several continuous sonar
images using a denoising autoencoder (DAE) technique in order to address the noise
correction of the original sonar data [15]. Moreover, Liu et al. presented a two-stage
convolutional autoencoder (TCAE) method that allows a low-frequency sonar image to
reach a resolution comparable to that of high-frequency sonar images [16]. Thomas et al.
investigated the generation of a set of super-resolution sonar images through the application
of generative adversarial networks (GAN) and transfer learning, successfully integrating
and correcting multi-source sonar images [17]. In order to address the resilience of sonar
images under turbidity and fluctuating lighting conditions, Liu and Wang employed the
CycleGAN model to mimic the production of forward-looking side scan sonar image
sets [18]. While some machine learning techniques can produce superior corrective effects,
we cannot disregard the pragmatic concerns of time consumption and data capacity.

The side scan sonar image correction strategy based on the transform domain decom-
poses the image into low-frequency and high-frequency sub-bands for feature analysis.
This mainly includes the Laplace pyramid transform (LP) [11], wavelet transform (WT) [19],
curvelet transform (curvelet) [20], contourlet [21], and non-subsampled contourlet trans-
form (NSCT) [22]. Among them, side scan sonar images’ high-dimensional variation
information cannot be reflected by the LP and WT approaches. The manual parameter set-
tings required for curvelets and contourlets may result in the deterioration of the sub-band
information in various layer locations. It is necessary to improve the NSCT’s multi-scale
decomposition processing efficiency. Research has found that image blurring and poor
contrast in various types of images can be significantly improved by the shearlet transform
and the enhanced non-subsampled shearlet transform (NSST) [23,24]. In addition, the
NSST achieves better contrast enhancement and clear target contours. As a result, the NSST
framework can be applied for the correction and enhancement of side scan sonar images.

When dealing with dark sonar images, retinex theory can be utilized to improve
the contrast information of target contours and geographic textures. Common upgraded
versions of retinex include naturalness preserving enhanced (NPE) [25], adaptive local
tone mapping (ALTM) [26], the low light illumination map estimation model (LIME) [27],
and multi-scale retinex with color restoration (MSRCR) [28]. Ye et al. optimized the
parameters of retinex to achieve an information stretching display in the back shadow



Remote Sens. 2024, 16, 1752 3 of 22

area [29]. More instances are still required to confirm the choice of regulatory elements
and their generalizability. Muthuraman added edge preservation techniques to further
improve the edge clarity of the targets [5]. However, further research is needed to explore
the deformation and enable the improvement of retinex.

Furthermore, the assessment of the noise distribution and the features of speckle
noise can be fully taken into account when processing high-frequency sub-band images
for noise. A few filtering techniques are used in the high-frequency sub-bands to suppress
noise. Tang et al. utilized the Kalman filter algorithm to suppress Gaussian noise in side
scan sonar images and preserve the edge details to the maximum extent possible [30].
Innocentini et al. employed morphological edge detection to achieve the denoising of sonar
images under a low signal-to-noise ratio [31]. Chen et al. conducted the best estimation
from the perspective of the maximum a posteriori probability method and developed a
fully variational adaptive underwater sonar image denoising approach [32]. Referring to
the characteristics of captured sonar images, experiments have found that side scan sonar
images have inherent sparse structure characteristics [33]. Therefore, sparse dictionary
learning (SDL) can effectively distinguish useful information from noise.

Overall, the presented correction techniques have enabled improvements in global
contrast enhancement, noise reduction, and edge contours, as shown in Figure 1. Numerous
technologies are employed to address a single aspect of a phenomenon, whereas only a
small number of aspects are fully taken into account. Furthermore, real-time sonar image
rectification needs to consider difficulties like the data volume and time consumption.
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Figure 1. Classification review of side scan sonar image correction.

Therefore, this paper proposes a strategy of integrating multiple technologies to im-
prove the low illumination and high noise issues in side scan sonar images. This approach
improves the corresponding modules to adjust to the characteristics of side scan sonar
images by combining the concept of the transformation domain with an understanding of
retinex theory. The primary contributions of our suggested fusion strategy can be described
as follows:

(1) The non-subsampled shearlet transform is able to achieve the multiple decomposition
of sonar image signals, reducing image quality issues caused by motion blur, radiation
distortion, noise, etc.

(2) The modified multi-scale retinex algorithm is applied to enhance the inherent detection
energy from low-frequency sub-band images with masked information.

(3) Sparse dictionary learning helps to reduce the effects of high-frequency distortion,
noise interference, and signal redundancy stacking by representing high-frequency
images as a linear combination of as few non-zero coefficients as feasible.
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The detailed structure of this article is as follows. Section 2 introduces the proposed
multi-scale strategy and execution process. The experimental results obtained from different
perspectives are shown in Section 3. Some open-source datasets and measured data were
used to further validate the performance of the proposed technology, as shown in Section 4.
Finally, the conclusions can be found in Section 5.

2. Materials and Methods
2.1. Overall Framework

In order to improve the sonar image performance at low light levels and reduce
noise interference, this paper considers the features of sonar images from the perspectives
of multi-scale fusion and retinex theory. The framework structure of the recommended
technique is illustrated in Figure 2. The main components of our strategy include (1) the
feature decomposition of the NSST transform; (2) the low-frequency enhancement of
modified multi-scale retinex (MMSR); (3) high-frequency signal filtering using sparse
dictionary learning (SDL). The performance of the correction strategy is evaluated in terms
of subjective visual effects and objective evaluation indicators.
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2.2. Non-Subsampled Shearlet Transform

Shear waves serve as the foundation for the non-subsampling shearlet transform
(NSST). Translation invariance during image decomposition is a property of the NSST [20].
Because the NSST provides an ideal sparse representation and is direction-independent,
it is able to adapt to attenuation changes in the edge information and capture the multi-
dimensional geometric aspects of the objects in sonar images. The 3-layer NSST decompo-
sition process is depicted in Figure 3.
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Initially, the luminance image V after HSV spatial transformation is decomposed into
low- and high-frequency sub-bands using a non-subsampled Laplacian pyramid filter bank.
Then, an improved shear wave filter is employed to achieve the directional localization
of the high-frequency sub-band image. Subsequently, the secondary low-frequency and
high-frequency images are gradually extracted from the low-frequency sub-band image.
Ultimately, K-level decomposition is attained through iterative processing, yielding a total
of K high-frequency sub-band images and 1 low-frequency image. Additionally, the original
image dimensions are maintained for both the high- and low-frequency sub-band images.
The inverse transformation process of the NSST is the opposite of the above.
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2.3. Modified Multi-Scale Retinex

The low-frequency sub-band is noise-free but still contains a large amount of energy
information from the original image following the breakdown of the luminance image
transformation. The dark contrast and strong interference from the target shadow area
are the two main features of low-frequency images. Therefore, a modified multi-scale
retinex model (MMSR) is used to improve the hierarchy and dark contrast of the low-
frequency sub-band image in order to ensure the balance and continuous change of the
global grayscale, as shown in Figure 4.
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Retinex is an algorithm for the improvement of the image contrast. The retinex
concept states that the reflection signal of the target is combined with the illumination of
the environment to form an echo signal image. Thus, our challenge is to eliminate the
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illuminance effect while maintaining the intrinsic qualities of the objects in sonar images.
The initial sonar brightness signal LV can be broken down into

LV(x, y) = LL(x, y)× LR(x, y) (1)

where the brightness signal is denoted by LV, the illuminance echo image by LL, and the
reflected echo signal by LR.

The computation in the logarithmic domain exhibits a high degree of consistency
with the nonlinear changing features of the contrast between objects visible to the human
eye. As a result, we take the logarithm on both sides. The target reflected echo signal is
transformed into

LR = exp(ln(LV + ε)− ln(LL + ε)) (2)

We apply multi-scale variables to balance the processing of the reflected signals in
order to address the issues of excessive contrast augmentation and color distortion.

LR =
1

wk

wk

∑
i=1

exp(ln(LV + ε)− ln(LL + ε)) (3)

where ωk is the number of scales. Numerous tests have demonstrated that the local aspects
of the image may be guaranteed by employing three large, medium, and small scales.

Moreover, retinex theory’s implementation requires a reliable means of guaranteeing
the original brightness feature’s signal quality. For LV signals, we modify the mapping
of the global grayscale values in the log domain in order to synchronize the contrast and
detail consistency in the overall image. The global grayscale contrast transformation is

LV(x, y) =
ln(V(x, y)/Vm + 1)

ln(Vmax/Vm + 1)
(4)

where V(x, y) is the input value of the brightness component. Vmax represents the maximum
value of the brightness component. ε = 0.001 in this article, to guarantee factors larger than 0 in the
logarithmic domain. Vm is the brightness value in the average logarithmic domain, expressed as

Vm = exp

(
1
N ∑

x,y
ln(ε + V(x, y))

)
(5)

Retinex theory uses the LV value that is optimized by the global equilibrium as the
echo input signal.

Effective estimation is essential in acquiring the target’s genuine reflection signal for the
sonar’s illuminance component (LL). The multi window bilateral filter is used in this article
to estimate the illumination component. The particular manifestations of this filter, which
considers the spatial position of the calculated points and pixel grayscale values, are as follows:

LL(p) =
1

w(p) ∑
q∈Ω

LV(q) f1(p − q) f2(LV(p)− LV(q)) (6)

w(p) = ∑
q∈Ω

f1(p − q) f2(LV(p)− LV(q)) (7)

where p is the illuminance value of the target point, Ω is its neighborhood range, and q is a
point in its neighborhood. f 1 and f 2 are Gaussian kernel functions, defined as

f1 = e−
1
2

(
d(p,q)

σd

)2

, f2 = e
− 1

2

(
δ(LV(p),LV(q))

σr

)2

(8)

where d(p, q) is the Euclidean distance between two pixels. σd is the standard deviation of
the distance within the neighborhood, which characterizes the edge details and clarity of
the image. The smaller the value of σd, the greater the required edge details and blur of the
image. δ(LV(p), LV(q)) represents the difference in the brightness values between two points.
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σr is the standard deviation of the brightness within the neighborhood, representing the
required level of noise in the image. Owing to the experiment’s strong scattering sonar
image properties, σd = 3, σr = 0.1.

We select multiple kernel windows to estimate the region of the neighborhood sub-
window image that preserves the information, and we take their average to represent the
illuminance component of the image.

LL =
1

wh

wh

∑
i=1

LL(Ω = i) (9)

where ωh is the number of kernel windows. In the experiment, ωh = 3. The corresponding
neighborhood Ω ranges are 5, 8, and 15, respectively.

Additionally, nonlinear pre-compensation stretching is carried out on the image of the
illuminance component using gamma correction after it has been obtained. The image LLL
of the new illumination component is given as

LLL = LL
(1/γ) (10)

where the gamma correction factor is denoted by γ. When γ > 1, the gray value of the
low-gray area is improved as a whole, which promotes an enhancement in contrast. This
characteristic is highly suitable when dealing with the dark characteristics of low-frequency
sub-bands. In the experiment, γ = 1.8.

Finally, the enhanced low-frequency sub-band image Lz is calculated, and Lz is repre-
sented as

Lz = LLL × LR (11)

In order to accomplish basic grayscale balance, LZ uses a histogram truncation method
to cut off grayscale values with a given likelihood of occurrence at both ends, compressing
the remaining pixel values to the range of [0, 1].

2.4. Sparse Dictionary Learning

The high-frequency sub-bands decomposed by the NSST contain most of the target
edges and texture details of the source image. In addition, residual noise from the pre-
processing of the original image is present in the high-frequency sub-bands. An uneven
distribution on the seabed may have an impact on this speckle noise, which are mostly
created by sediment echo signals connected to the seabed’s sediment background. There-
fore, one of the main challenges in high-frequency sub-band processing is to properly
separate noise from important or salient signals. In sonar image rectification, denoising is
an essential step. Otherwise, an increase in contrast will also accentuate the noise effect. As
seen in Figure 5, this article employs sparse dictionary learning (SDL) to reduce the noise
interference of high-frequency sub-band images.

Firstly, we adopt an additive Gaussian noise model in the logarithmic domain. The
operation of multiplying the normalized high-frequency sub-band coefficients by 255 is
implemented to fully utilize the easier addition process. Secondly, m samples with a size
of N windows are selected at random. A linear sparse approach is adopted to estimate
new samples. Next, in order to solve the challenge of obtaining D and X variables in
unconstrained optimization, we apply the overcomplete technique of the discrete cosine
transform (DCT) [34] to construct the initial dictionary D0. The orthogonal matching pursuit
(OMP) algorithm [35] is used by the associated starting sparse matrix X0 to carry out sparse
encoding on the image blocks. The two optimization variables, dk and Xk

T , are solved for
the use of singular value decomposition (SVD) algorithms. Finally, all dictionary atoms and
sparse matrix vectors are iteratively updated until the corresponding set number of times
or the target residual error extremum is reached. The new high-frequency sub-band image
is created by performing the logarithmic inverse transformation on the new dictionary and
sparse matrix. Detailed theoretical information can be referred to in the literature [36].
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2.5. Implementation of Proposed Strategy

The detailed process of multi-scale fusion correction is shown in Algorithm 1. Initially,
the sonar image generated from the backscatter data is processed through steps such as the
time-varied gain, median filtering, and pseudo-color transformation. Then, the sonar image is
transformed into the HSV space. The NSST is decomposed in the feature V space that represents
the brightness. MMSR theory is applied to estimate the illumination of the decomposed low-
frequency sub-band image. In addition, the SDL method is adopted to suppress the noise of the
high-frequency signal. The newly generated low- and high-frequency sub-bands are utilized to
perform NSST inverse transformation and reconstruction to generate the enhanced brightness
component V′ space. Finally, the enhanced brightness V′, color component H, and saturation S
are spatially inverse-transformed to generate an enhanced pseudo-color image.

Algorithm 1 Multi-scale fusion strategy for side scan sonar image correction to improve low contrast and noise interference

Input: Read original image of side scan sonar. Set some constant item values, σd, σr, wh, Ω, γ, block, K, C, maxBlocks,
iteration. Select decomposer, decomposition direction, and level.

Output: Corrected sonar image
1: Pseudo-color processing of backscattered images;
2: Convert color image to HSV space and extract luminance component V;
3: Multi-scale decomposition of V component into low-frequency and high-frequency images is performed by NSST method;
4: Perform global mapping in low-frequency image to obtain image map LV by Equation (4);
5: Adopt bilateral filtering with sub-windows of different sizes to obtain initial illumination image LL by Equations (6)–(9);
6: Employ gamma correction strategy to obtain new illuminance image LLL by Equation (10);
7: Combine multi-scale retinex theory to obtain reflection image LR by Equation (3);
8: Multiply reflection image with new illumination image to obtain enhanced low-frequency image by Equation (11).
9: Estimate noise standard deviation of high-frequency images by Laplace filters;
10: Use DCT method to obtain initialization dictionary D0;
11: Execute OMP sparse encoding and K-SVD dictionary process to iteratively update dictionary D and sparse matrix X;
12: Reconstruct denoised high-frequency images through new dictionaries and sparse matrices;
13: Multi-scale reconstruction of brightness feature image based on enhanced low-frequency image and denoised high-frequency images;
14: Inverted color space transformation into pseudo-color side scan sonar image;
15: Return enhanced sonar image and objective evaluation indexes.



Remote Sens. 2024, 16, 1752 9 of 22

3. Experiments and Results
3.1. Data Description and Parameter Settings

Klein3000 is a dual frequency side scan sonar developed by L-3 Company in the
United States, representing a new technology in digital side scan sonar imaging. Klein3000
is employed to carry out underwater activities in the coastal area of the Pearl River Estuary.
Different scene image sets are selected for the experimental analysis to verify the feasibility
and effectiveness of the proposed correction strategy. In addition, the SonarWiz 7.12 soft-
ware is applied to preprocess the acoustic backscatter signal and perform pseudo-color
processing to form a sonar image with a spatial resolution of 0.2 m. Image pseudo-color
processing is used to better identify target details and terrain contour features. Figure 6
illustrates that only four of these images are selected for the initial class of backscatter data,
which fails to produce waterfall plots unless further adjustments are made. The measured
dataset contains many typical scenarios, with prominent issues of low illumination and
high noise, which meet the data requirements for sonar image correction.
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The suggested strategy for multi-scale and multi-directional image decomposition and
reconstruction is based on the NSST. The scale decomposer is “maxflat”. The orientation
is a set of matrices [32, 32, 16], and the decomposition level is a set of matrices [2, 3, 4].
Furthermore, Table 1 displays the parameter selection of the low and high-frequency
improvement techniques. The subsequent experimental analysis verifies the excellent
performance of the parameters in Table 1.

Table 1. Parameter selection corresponding to improvement methods for low- and high-frequency
sub-band images.

Low Frequency High Frequency

Distance STD σd = 3 Block size block = 8
Luminance STD σr = 0.1 Number of atoms K = 256
Kernel windows wh = 3 Limit factor C = 2.5

Neighborhood range Ω = [5, 8, 15] Maximum number of block samples maxBlocks = 260,000
Gamma factor γ = 1.8 Number of iterations iteration = 10
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3.2. Objective Evaluation Metrics

The correction of sonar images can be evaluated through subjective visual effects
and objective indicators. Among them, subjective vision assesses the contrast primarily
on the basis of features including brightness, the noise reduction effect, the clarity of
the terrain texture, and local target shapes. Objective evaluation indicators are used to
evaluate the quality of the correction and enhancement from various types of numerical
statistical information. The objective indicators selected in the article include the average
gradient (AG), standard deviation (STD), information entropy (E), and peak signal-to-noise
ratio (PSNR) [37–39].

(1) Average gradient

The average gradient reflects the brightness and blurriness of a side scan sonar image
by representing the terrain texture changes and surrounding detail contrast elements. The
larger the AG value, the stronger the sense of hierarchy and detail in the image. The formula
is expressed as

AG =

w−1
∑

x=1

h−1
∑

y=1

√
F2
x (x,y)+F2

y (x,y)
2

(w−1)(h−1)
Fx(x, y) = I(x + 1, y)− I(x, y)
Fy(x, y) = I(x, y + 1)− I(x, y)

(12)

where I(x, y) is the grayscale value of point (x, y). Fx (x, y) and Fy(x, y) represent the gradient
changes in the horizontal and vertical directions of the sonar image.

(2) Standard deviation

The standard deviation reflects the dispersion degree between the global grayscale
and the average grayscale of the sonar image. The distribution of grayscale information
is more extensive and the terrain texture is finer and richer with larger STD values. It is
described as

STD =

√√√√√ w
∑

i=1

h
∑

j=1
(I(i, j)− I)2

w × h
(13)

where I is the average grayscale value.

(3) Information entropy

Information entropy, which can be applied to reflect the average amount of information
in a sonar image, is the average amount of information contained in a particular grayscale
value of an image. The amount of information in the corrected sonar image increases with
a larger E value.

E = −
255

∑
i=0

num(i) log num(i) (14)

where num (i) is the ratio of the total number of pixels in the image to the number of
statistics corresponding to pixel value i.

(4) Peak signal-to-noise ratio

The purpose of the peak signal-to-noise ratio is to represent the effectiveness of
denoising. The larger the value, the better the filtering effect and the clearer the sonar
image. It can be described as

PSNR = 10 log10
Imax

2

STD
(15)

where Imax is the maximum grayscale value of a sonar image.
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3.3. Comparison of Background Color Effects

The S1 image in the measured dataset was selected to demonstrate the value of pseudo-
color processing. Figure 7 illustrates how the varying backdrop colors of the images bring
about distinct behaviors when using sonar correction approaches. The brightness level
can be effectively improved by using the image correction technique shown in Figure 7a.
Nevertheless, it is difficult to compare different correction methods for the backdrop
and target in grayscale photographs with monochromatic backgrounds. Figure 7b offers
enhanced approaches for contrast and correction, a stronger color intensity, and the better
differentiation of human visual effects as compared to grayscale images. It is evident
that the proposed strategy can improve the reef slope’s scenery and successfully regulate
the sand slope reef’s brightness. By significantly darkening the target region, multi-area
contrast control is achieved.
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3.4. Optimal Parameter Selection for MMSR Model

The low-frequency signal decomposed by the NSST is a two-dimensional feature
image. In order to demonstrate the optimal parameters of the MMSR model in Table 1,
we conducted an experimental analysis on the window neighborhood range and gamma
factor parameters.

3.4.1. Range Selection of Window Neighborhood

We built single kernel and triple kernel windows for neighborhood estimation when
estimating the illuminance component via bilateral filters. The neighborhood ranges Ω are
matrix sets [5], [5, 8, 15], and [5, 10, 20], respectively.

Figure 8 displays the outcomes of the experiment. Figure 8a illustrates how the
contrast can be somewhat enhanced by single core processing. As observed in Figure 8b,
the image information becomes overexposed if the window neighborhood is too extensive.
The overall improvement in the low-frequency images processed by the first two methods is
insufficient. Figure 8c shows that the reasonable selection of neighborhood ranges for small,
medium, and large windows can better balance the low-frequency signal information. The
reliability of the neighborhood range selection in Table 1 is confirmed.
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Figure 8. Low-frequency image enhancement effects in different neighborhood ranges. (a) Single
kernel, Ω = [5]; (b) triple kernel, Ω = [5, 10, 20]; (c) triple kernel, Ω = [5, 8, 15].

3.4.2. Optimization of Gamma Factor

Gamma correction modifies the grayscale distribution of images using power-law
functions, which can enhance the brightness of illuminated images to a certain amount.
The contrast of high-grayscale areas needs to be improved because our side scan sonar
image set is dark and contains speckle noise. The γ must be configured to be larger than
1. We analyze the impact of the factor γ on the enhancement of illumination images by
fixing other preferred features in the table. Figure 9a shows the decomposed image at γ = 1,
indicating the need for the further enhancement of the image information. The image in
Figure 9c is overexposed, exhibiting gray and blurry features. The selected gamma factor
in Table 1 has superior overall lifting performance, with prominent terrain and background
information, as shown in Figure 9b.
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3.5. Correction Effects of Various Retinex Models

Side scan sonar images with different targets as the main body reflect a great deal of
information about underwater detection. In order to test the adaptability and universality
of the proposed sonar image correction strategy, this section selects a set of measured side
scan sonar images for experimental analysis, which includes sonar images of reefs, sand
waves, gravel, and ship anchor marks as objects. The technical approaches of the retinex
family, namely MSRCR, NPE, ALTM, and LIME, are contrasted with the suggested sonar
correction procedure. The correction performance of each technology is evaluated via the
subjective visual effect, as shown in Figure 10.

The side scan sonar image problems of low contrast and distributed speckle noise
are depicted in the original image in Figure 10. Following MSRCR correction, the image
is rather washed out and lacks the clear reflection of fine details. The target area exhibits
overexposure and color deviation, as shown in the second line in Figure 10. Further work
is required to enhance the NPE correction impact. The image is depicted in a grayscale
manner overall, with the gray and hazy background areas typically including the scattered
echo noise in the image.

The primary focus of the ALTM-processed waterfall image is easily discernible. The
hue and contrast of the image are consistent with what is seen by humans. Target segmenta-
tion in the waterfall image becomes more challenging because of the image’s overexposure



Remote Sens. 2024, 16, 1752 13 of 22

and the augmentation of the center region, which leads to an imprecise assessment of
the mixing of sand waves and their undersides. The target edges, terrain texture, reef
dispersion, and contrast are all improved in the LIME images. There is no way to reduce
the horizontal wake echo signal. The noise echo dispersion in the middle of the waterfall
image increases as it rises.

As a comparison, the suggested correction strategy emphasizes discrete detection
information and well-defined contours for targets such as gullies, landscape textures, reefs,
anchor marks, and target silhouette areas. Furthermore, the given solution is superior in
terms of the overall image contrast, local prominent details, color distribution, and noise
reduction. The proposed approach’s universality is clearly illustrated by waterfall charts of
targets with different sizes, brightness and grayscale levels, and terrain targets.
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Figure 10. The correction effects of the various retinex models.

Further analysis was conducted on the correction performance of the proposed strat-
egy and various retinex models at the levels of objective indicators, namely STD, AG, E,
and PSNR, as shown in Table 2. Table 2 illustrates that none of the approaches, i.e., MSRCR,
NPE, and ALTM, have attained ideal performance with any objective indicator, and the
values of many indicators fluctuate substantially. The LIME technique is used to process the
image with the highest AG value. Nevertheless, the AG value of the suggested strategy also
falls within the upstream level and somewhat represents the image clarity. Furthermore,
the PSNR value indicates that the suppression effect of LIME on scattered noise signals
is significantly diminished, which contradicts the idea that low illumination and noise
issues need to be improved simultaneously. The waterfall images S1–S4 processed with the
suggested technique exhibit a rise in the STD values of at least 13 points, which accurately
represent the rich and delicate geographical texture as well as the larger dispersion of
the corrected grayscale information. In addition, the PSNR index value reflects the effec-
tive weakening of scattering spots and wake noise by our method, which is far superior
regarding the performance of the other methods.
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Table 2. Objective evaluation indicators for the retinex variant models.

Image Metric MSRCR NPE ALTM LIME Processed Strategy

S1

STD 53.45 41.43 51.03 64.04 69.35
AG 9.94 10.52 13.19 17.15 14.14
E 5.62 6.89 7.20 7.45 7.46

PSNR 7.57 12.06 11.27 8.93 18.30

S2

STD 40.93 27.16 33.44 51.58 63.34
AG 6.48 8.94 8.72 11.19 10.88
E 4.62 6.64 6.67 7.05 7.10

PSNR 7.51 10.54 10.11 8.07 11.14

S3

STD 49.99 47.55 38.39 62.88 65.90
AG 8.18 9.16 11.15 14.81 12.17
E 5.75 6.84 7.29 7.41 7.51

PSNR 7.24 10.84 11.42 8.78 17.78

S4

STD 45.33 34.67 51.58 63.61 63.61
AG 6.33 8.12 8.84 13.39 9.09
E 4.99 6.95 7.31 7.30 7.53

PSNR 5.32 9.62 11.25 8.52 14.51

The grayscale statistical regularity is a quantitative method of analyzing corrected
images’ quality. Figure 11 shows the grayscale distribution characteristics of each waterfall
plot. Every sonar image possesses a discontinuous distribution of low grayscale values.
MSRCR, BPDHE, and ALTM are unable to guarantee constant changes in grayscale infor-
mation and instead exhibit sporadic step distributions, especially with BPDHE having a
large fault span. Although NPE shows an almost perfect balance, the great visual stretch-
ing effect of the contrast is limited by the disproportionate enlargement of its maximum
grayscale value. While LIME guarantees a balanced concentration and constant change in
grayscale values, there is a problematic phenomenon of abrupt stretching at the maximum
grayscale value. The image distribution as corrected by the proposed strategy indicates
that the measured image set conforms to the χ2 characteristics. Extreme abrupt signals,
such exposure and dimming, are absent from the corrected grayscale values at both ends.
The entire grayscale is steadily improved and adjusted to the right.
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3.6. Comparative Effects of Other Correction Techniques

Additionally, we selected four representative side scan sonar calibration methods,
BPDHE, FE, WT, and TVRLRA, for comparison using the measured dataset, as depicted in
Figure 12. After correction with the BPDHE and WT techniques, Figure 12 demonstrates
that the bright area in the middle of the image is overexposed, clearly displaying the
white halo phenomenon. The image that was produced following FE processing exhibits
a low overall grayscale elevation. The terrain’s backdrop sections and sand slopes are
locally darker following TVRLRA correction. The suggested method performs image
correction with strong overall contrast, modest color alterations, and distinct local features
and borders.

Subjective visual observation of the corrected image may not be sufficient to dis-
tinguish these methods. Table 3 displays the four objective metrics used to analyze the
technical performance. The STD values of the FE approach are comparatively low in Table 3,
indicating a concentrated and dark grayscale distribution of information. The E and PSNR
values of BPDHE are below one order of magnitude, revealing the problem of low average
information content and high noise levels. The comparatively low AG value of TVRLRA
reflects the lack of effective detection and enhancement of some micro-change information.
Furthermore, the PSNR index demonstrates that the suggested strategy may achieve noise
reduction on par with the advanced TVRLRA. The suggested approach can successfully
reduce the spots and salt-and-pepper noise in the sonar image of the submodule, while
simultaneously enhancing the contrast and clarity of the entire image.
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Table 3. Objective evaluation indicators for the representative correction techniques.

Image Metric BPDHE FE WT TVRLRA Processed Strategy

S1

STD 50.87 39.23 65.28 45.50 69.35
AG 11.67 11.17 12.31 9.36 14.14
E 4.63 7.02 7.46 7.10 7.46

PSNR 9.89 15.11 12.06 16.81 18.30

S2

STD 36.41 24.67 48.80 29.73 63.34
AG 6.63 7.31 8.21 5.24 10.88
E 4.10 6.47 7.10 6.50 7.10

PSNR 7.50 10.51 10.11 10.58 11.14

S3

STD 45.01 36.37 62.08 43.35 65.90
AG 10.06 9.62 10.42 7.94 12.17
E 4.79 7.04 7.51 7.20 7.51

PSNR 10.28 14.98 11.42 16.13 17.78

S4

STD 47.20 35.76 59.92 43.29 63.61
AG 8.59 8.42 8.50 6.41 9.09
E 4.50 6.96 7.31 7.06 7.53

PSNR 8.35 14.38 9.62 14.46 14.51

4. Discussion
4.1. Comparison of Filter Performance

We employ guided filtering to investigate the impact of the filter selection on the tech-
nology, taking into account the utilization of bilateral filtering in the suggested approach. As
displayed in Figure 13, the filtering impact is assessed using the PSNR index. The visual
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contrast is limited to a certain degree and exhibits partial scattered speckle noise in Figure 13b.
Bilateral filtering highlights textural information while safeguarding the target margins, as
seen in Figure 13c. Furthermore, a larger PSNR value reveals that bilateral filtering weakens
the influence of noise on image correction to a certain extent. The corrected wake speckle
noise is suppressed and the overall contrast saturation of the image is enhanced.
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4.2. Expansion of Our strategy

To verify the excellent performance of the proposed strategy, we selected three publicly
available datasets and one sonar image after radiometric correction for experimentation.
The sonar image correction results obtained from different scenes, sources, and measure-
ment conditions are shown in Figure 14. Figure 14 shows the correction effects of the
six comparison techniques.

Figure 14 reveals the limited capabilities of BPDHE correction. LIME excessively en-
hances the contrast in both the non-pseudo-color sonar image and forward-looking sonar
image. However, LIME encounters correction bias in the other two images. This phenomenon
indicates that the adaptability of the LIME technique in side scan sonar image correction
still needs to be discussed. The overall darkening of the image after advanced TVRLRA
correction is supported by the literature [8]. The non-color images processed by WT and FE
exhibit a degree of hierarchical blur and visible speckle noise. Overall, our proposed strategy
has significant advantages in denoising various types of sonar images, highlighting detailed
features and ensuring the image contrast and clarity to a certain extent.

The objective evaluation values to promote sonar image collection are displayed in
Table 4. The suggested approach performs better than the state-of-the-art FE and VRLRA
approaches, according to the PSNR. The AG, STD, and E values reflect that the proposed
strategy can ensure the information content, continuous grayscale features, and clear
hierarchy of the image during the correction process. In addition, the reflected texture,
detail changes, and other aspects are superior.

Table 4. Objective evaluation indicators for promotion of sonar image sets.

Image Metric BPDHE FE WT TVRLRA ALTM LIME Processed Strategy

P1

STD 25.06 30.42 32.32 25.66 32.32 37.38 41.70
AG 11.29 13.91 13.06 9.94 13.06 18.83 18.11
E 6.34 6.85 6.93 6.59 6.93 6.83 7.24

PSNR 12.23 15.53 13.98 14.97 13.98 7.45 16.48

P2

STD 42.99 60.5 59.87 51.16 59.87 54.4 62.17
AG 7.37 11.03 11.29 7.31 11.29 14.73 15.99
E 4.56 5.7 5.74 5.59 5.74 5.7 5.93

PSNR 9.41 12.57 12.32 16.71 12.32 8.49 17.87

P3

STD 49.53 49.04 60.65 53.71 60.65 63.07 65.78
AG 10.62 12.28 10.71 10.94 10.71 10.84 11.89
E 7.24 7.05 7.21 7.31 7.21 7.33 7.97

PSNR 10.58 17.96 10.5 17.38 10.5 11 18.07

P4

STD 62.79 64.86 72.17 67.53 73.33 77.18 68.01
AG 22.20 24.53 23.55 22.49 26.17 37.81 39.90
E 6.54 7.54 7.59 7.5 7.59 7.71 7.88

PSNR 18.21 22.25 13.1 24.76 21.38 12.02 27.51



Remote Sens. 2024, 16, 1752 19 of 22Remote Sens. 2024, 16, x FOR PEER REVIEW 20 of 24 
 

 

 P1 P2 P3 P4 

Original 
image 

    

BPDHE 

    

FE 

    

WT 

    

TVRLRA 

    

ALTM 

    

LIME 

    

Figure 14. Cont.



Remote Sens. 2024, 16, 1752 20 of 22Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 24 
 

 

Proposed 
strategy 

    

Figure 14. The effectiveness of different correction methods for multi-source scenes. 

Figure 14 reveals the limited capabilities of BPDHE correction. LIME excessively en-
hances the contrast in both the non-pseudo-color sonar image and forward-looking sonar 
image. However, LIME encounters correction bias in the other two images. This phenom-
enon indicates that the adaptability of the LIME technique in side scan sonar image cor-
rection still needs to be discussed. The overall darkening of the image after advanced 
TVRLRA correction is supported by the literature [8]. The non-color images processed by 
WT and FE exhibit a degree of hierarchical blur and visible speckle noise. Overall, our 
proposed strategy has significant advantages in denoising various types of sonar images, 
highlighting detailed features and ensuring the image contrast and clarity to a certain ex-
tent. 

The objective evaluation values to promote sonar image collection are displayed in 
Table 4. The suggested approach performs better than the state-of-the-art FE and VRLRA 
approaches, according to the PSNR. The AG, STD, and E values reflect that the proposed 
strategy can ensure the information content, continuous grayscale features, and clear hi-
erarchy of the image during the correction process. In addition, the reflected texture, detail 
changes, and other aspects are superior. 

Table 4. Objective evaluation indicators for promotion of sonar image sets. 

Image Metric BPDHE FE WT TVRLRA ALTM LIME Processed Strategy 

P1 

STD 25.06 30.42 32.32 25.66 32.32 37.38 41.70 
AG 11.29 13.91 13.06 9.94 13.06 18.83 18.11 
E 6.34 6.85 6.93 6.59 6.93 6.83 7.24 

PSNR 12.23 15.53 13.98 14.97 13.98 7.45 16.48 

P2 

STD 42.99 60.5 59.87 51.16 59.87 54.4 62.17 
AG 7.37 11.03 11.29 7.31 11.29 14.73 15.99 
E 4.56 5.7 5.74 5.59 5.74 5.7 5.93 

PSNR 9.41 12.57 12.32 16.71 12.32 8.49 17.87 

P3 

STD 49.53 49.04 60.65 53.71 60.65 63.07 65.78 
AG 10.62 12.28 10.71 10.94 10.71 10.84 11.89 
E 7.24 7.05 7.21 7.31 7.21 7.33 7.97 

PSNR 10.58 17.96 10.5 17.38 10.5 11 18.07 

P4 

STD 62.79 64.86 72.17 67.53 73.33 77.18 68.01 
AG 22.20 24.53 23.55 22.49 26.17 37.81 39.90 
E 6.54 7.54 7.59 7.5 7.59 7.71 7.88 

PSNR 18.21 22.25 13.1 24.76 21.38 12.02 27.51 

5. Conclusions 
This paper proposes a multi-scale fusion strategy to address the issues of noise filter-

ing and low contrast enhancement in side scan sonar images. The excellent quality, effec-
tiveness, and universality of the proposed strategy are validated using measured sonar 
images and publicly available datasets. The experiment comprehensively considers 
pseudo-color processing, the window neighborhood range, the gamma factor, filter 

Figure 14. The effectiveness of different correction methods for multi-source scenes.

5. Conclusions

This paper proposes a multi-scale fusion strategy to address the issues of noise fil-
tering and low contrast enhancement in side scan sonar images. The excellent quality,
effectiveness, and universality of the proposed strategy are validated using measured
sonar images and publicly available datasets. The experiment comprehensively considers
pseudo-color processing, the window neighborhood range, the gamma factor, filter selec-
tion, and correction techniques for different classifications and analyses. The experimental
results indicate that pseudo-color methods can more accurately represent the corrective
effect to a certain extent. Low-frequency signal enhancement and noise reduction can be
successfully guaranteed by the ideal parameters of the MMSR model. Compared with
the retinex variant model and existing advanced sonar image correction methods, the
proposed strategy successfully achieves advantages such as overall image contrast en-
hancement, clear contours, full color, and a clear hierarchy. The findings of the grayscale
histogram demonstrate that the suggested approach may successfully guarantee ongoing
modifications following adjustment and grayscale improvement, which is in line with the
distributional properties of the sonar image. In addition, objective indicators reveal that the
proposed strategy exhibits significant noise filtering characteristics and excellent fidelity
compared to eight correction methods: BPDHE, MSRCR, NPE, ALTM, LIME, FE, WT, and
TVRLRA. The suggested method improves the STD, E, and PSNR in a variety of scene
images by at least 8%, 4.5%, and 6%, respectively. The universality is thoroughly proven by
the promotion tests conducted on public datasets. As expected, we find that the corrected
side scan sonar image contains local speckle noise. This may be attributed to our HSV
spatial transformation, which only processes the brightness feature V component. Our next
study will aim to thoroughly investigate the noise characteristics of numerous channels in
the future.
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