A Comprehensive Examination of the Medvezhiy Glacier’s Surges in West Pamir (1968–2023)
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Climate Data
3.1.1. Multispectral Data
3.1.2. Glacier Surface Velocity Data
3.1.3. DEM
3.2. Glacier Parameter Extraction
4. Results
4.1. Glacier Surge from 1968 to 2023
4.2. Glacier Velocity Changes
4.3. Glacier Elevation Changes
5. Discussion
5.1. Unveiling Glacier Surge Dynamics
5.2. Interplay of Climate Change
5.3. Perils of Glacier Surges
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bajracharya, S.R.; Mool, P.K.; Shrestha, B.R. Impact of Climate Change on Himalayan Glaciers and Glacial Lakes: Case Studies on GLOF and Associated Hazards in Nepal and Bhutan; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2007. [Google Scholar]
- Carey, M.; Huggel, C.; Bury, J.; Portocarrero, C.; Haeberli, W. An integrated socio-environmental framework for glacier hazard management and climate change adaptation: Lessons from Lake 513, Cordillera Blanca, Peru. Clim. Chang. 2012, 112, 733–767. [Google Scholar] [CrossRef]
- Komatsu, T.; Watanabe, T. Glacier-Related Hazards and Their Assessment in the Tajik Pamir: A Short Review. Geogr. Stud. 2014, 88, 117–131. [Google Scholar] [CrossRef]
- Sevestre, H.; Benn, D.I. Climatic and geometric controls on the global distribution of surge-type glaciers: Implications for a unifying model of surging. J. Glaciol. 2015, 61, 646–662. [Google Scholar] [CrossRef]
- Kotlyakov, V.; Osipova, G.; Tsvetkov, D. Monitoring surging glaciers of the Pamirs, central Asia, from space. Ann. Glaciol. 2008, 48, 125–134. [Google Scholar] [CrossRef]
- Truffer, M.; Kääb, A.; Harrison, W.D.; Osipova, G.B.; Nosenko, G.A.; Espizua, L.; Gilbert, A.; Fischer, L.; Huggel, C.; Burns, P.A.C.; et al. Glacier surges. In Snow and Ice-Related Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2021; pp. 417–466. [Google Scholar]
- Paterson, W. The Physics of Glaciers 3rd Edition Pargamon; Capıtulos: Oxford, UK, 1994. [Google Scholar]
- Osipova, G.B.; Tsvetkov, D.G.; Shchetinnikov, A.S.; Rudak, M.S. Catalog of surging glaciers in the Pamirs. Materialy Glyatsiologicheskikh Issledovaniy. Data Glaciol. Stud. 1998, 85, 3–136. (In Russian) [Google Scholar]
- Rankl, M.; Kienholz, C.; Braun, M. Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere 2014, 8, 977–989. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef]
- Paul, F. Repeat glacier collapses and surges in the Amney Machen Mountain Range, Tibet, possibly triggered by a developing rock-slope instability. Remote Sens. 2019, 11, 708. [Google Scholar] [CrossRef]
- Wilson, R.; Harrison, S.; Reynolds, J.; Hubbard, A.; Glasser, N.; Wündrich, O.; Anacona, P.I.; Mao, L.; Shannon, S. The 2015 Chileno Valley glacial lake outburst flood, Patagonia. Geomorphology 2019, 332, 51–65. [Google Scholar] [CrossRef]
- Haga, O.N.; McNabb, R.; Nuth, C.; Altena, B.; Schellenberger, T.; Kääb, A. From high friction zone to frontal collapse: Dynamics of an ongoing tidewater glacier surge, Negribreen, Svalbard. J. Glaciol. 2020, 66, 742–754. [Google Scholar] [CrossRef]
- Karimov, F. Methods for predicting the dynamics of pulsating glaciers. In Proceedings of the Analysis, Forecast and Management of Natural Risks in the Modern World (GEORISK-2015), (Conference paper). Moscow, Russia, 12–14 October 2015. (In Russian). [Google Scholar]
- Gulomov, M.N. Geomorphological features and regime of pulsating glaciers of the Vanj river valley. Sci. New Technol. Innov. 2016, 75–79. (In Russian) [Google Scholar]
- Karimov, F.K. The surge of Medvezhiy glacier in Tajikistan: Status as of August 2021. Inf. Anal. Syst. 2022, 288–296. (In Russian) [Google Scholar]
- Kotlyakov, V.M.; Desinov, L.V.; Desinov, S.L.; Rudakov, V.A. Shifts of the Pamir glaciers in the first 20 years of the 21st century. Reports of the Russian Academy of Sciences. Earth Sci. 2020, 495, 64–68. [Google Scholar]
- Dilmuradov, N.; Sokolov, L. Pulsating glaciers in Tajikistan. Izv. AN Taj. SSR. Dep. Physic.-Math. Chem. Geol. 1983, 83–91. (In Russian) [Google Scholar]
- Sokolov, L.N. Pulsating glaciers and glacial disasters. In The Nature and Natural Resources; Donish: Dushanbe, Tajikistan, 1982; pp. 294–300. (In Russian) [Google Scholar]
- Consortium, R. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space; Digital Media: CO, USA, 2017. [Google Scholar]
- Kotlyakov, V.M.; Khromova, T.E.; Nosenko, G.A.; Popova, V.V.; Chernova, L.P.; Murav’ev, A.Y. New data on current changes in the mountain glaciers of Russia. In Doklady Earth Sciences; Pleiades Publishing: New York, NY, USA, 2015; Volume 464, pp. 1094–1100. [Google Scholar]
- Vinogradov, O.N. Completion of Work on the Creation of the Catalog of Glaciers of the USSR; Moscow State University: Moscow, Russia, 1984; Issue 51; pp. 10–16. [Google Scholar]
- Krenke, A. Mass Transfer in the Glacial Systems on the Territory of the USSR; Gidrometeoizdat: Leningrad, Russia, 1982. [Google Scholar]
- Kotlyakov, V.M.; Chernova, L.P.; Khromova, T.E.; Muraviev, A.Y.; Kachalin, A.B.; Tiuflin, A.S. Unique Surges of Medvezhy Glacier. In Doklady Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kotlyakov, V.M.; Chernova, L.P.; Muraviev, A.Y.; Khromova, T.Y. Dynamics of surging glaciers in the sugran river basin (Pamirs). In Doklady Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Dolgushin, L.; Osipova, G. New Data on the recent glacier surges. Mater. Glyatsiol. 1971, 18, 191–217. [Google Scholar]
- Garelik, I.S.; Kotlyakov, V.M.; Osipova, G.B.; Tsvetkov, D.G. Computer analysis of the dynamics of pulsating glaciers. Mapp. Sci. Remote Sens. 1996, 33, 207–216. [Google Scholar] [CrossRef]
- Osipova, G.B. Fifty years of studying the Medvezhiy Glacier (West Pamirs) by the Institute of Geography, RAS. Ice Snow 2015, 55, 129–140. (In Russian) [Google Scholar] [CrossRef]
- Desinov, L.V. Ripple of the Kopka glacier in 2002. Bull. Vladikavkaz Sci. Cent. 2004, 4, 72–87. (In Russian) [Google Scholar]
- Goerlich, F.; Bolch, T.; Paul, F. More dynamic than expected: An updated survey of surging glaciers in the Pamir. Earth Syst. Sci. Data 2020, 12, 3161–3176. [Google Scholar] [CrossRef]
- Bazai, N.A.; Cui, P.; Liu, D.; Carling, P.A.; Wang, H.; Zhang, G.; Li, Y.; Hassan, J. Glacier surging controls glacier lake formation and outburst floods: The example of the Khurdopin Glacier, Karakoram. Glob. Planet. Chang. 2022, 208, 103710. [Google Scholar] [CrossRef]
- King, O.; Bhattacharya, A.; Bolch, T. The presence and influence of glacier surging around the Geladandong ice caps, North East Tibetan Plateau. Adv. Clim. Chang. Res. 2021, 12, 299–312. [Google Scholar] [CrossRef]
- Bhambri, R.; Hewitt, K.; Kawishwar, P.; Pratap, B. Surge-type and surge-modified glaciers in the Karakoram. Sci. Rep. 2017, 7, 15391. [Google Scholar] [CrossRef] [PubMed]
- Falaschi, D.; Bolch, T.; Lenzano, M.G.; Tadono, T.; Vecchio, A.L.; Lenzano, L. New evidence of glacier surges in the Central Andes of Argentina and Chile. Prog. Phys. Geogr. Earth Environ. 2018, 42, 792–825. [Google Scholar] [CrossRef]
- Shangguan, D.; Liu, S.; Ding, Y.; Guo, W.; Xu, B.; Xu, J.; Jiang, Z. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing. J. Glaciol. 2016, 62, 944–953. [Google Scholar] [CrossRef]
- Zhang, Z.; Tao, P.; Liu, S.; Zhang, S.; Huang, D.; Hu, K.; Lu, Y. What controls the surging of Karayaylak glacier in eastern Pamir? New insights from remote sensing data. J. Hydrol. 2022, 607, 127577. [Google Scholar] [CrossRef]
- Wendt, A.; Mayer, C.; Lambrecht, A.; Floricioiu, D. A glacier surge of Bivachny Glacier, Pamir Mountains, observed by a time series of high-resolution digital elevation models and glacier velocities. Remote Sens. 2017, 9, 388. [Google Scholar] [CrossRef]
- Abdullaev, S.; Maslov, V. On the connection of the melting of the Medvezhy glacier with dust invasions. Materials of the symposium of physicists of Tajikistan dedicated to the 85th anniversary of the academician, 2021. In Proceedings of the Symposium of Physicists of Tajikistan, Dedicated to the 85th Anniversary of Academician R. Marupov, Dushanbe, Tajikistan, 25–26 November 2021. publishing house «Donish», 2022; 124 p. (In Russian). [Google Scholar]
- Dolgoushin, D. Glacier surges and the problem of their forecasting. IAHS Publ. 1975, 104, 292–304. [Google Scholar]
- Dolgushin, L.D.; Osipova, G.; Chairs, B. The Movement of the Medvezhy Glacier in 1973 and the Main Features of the Glacier Evolution that Preceded It. Chronicle, Discussions. M. 1974, Issue 24, p. 77–86. Available online: https://istina.cemi-ras.ru/publications/article/7859451/ (accessed on 8 March 2024). (In Russian).
- Zabirov, R. Glaciation of the Pamirs. In Moscow, Gosudarstvennoye Izdatel’stvo Geograficheskoy Literatury; State Publishing House for Geographical Literature: Moscow, Russia, 1955. [Google Scholar]
- TMS-84, Meteorological Station Humrogi for the Period 1955–2019//Archival Data Agency for Hydrometeorology of the Republic of Tajikistan (Date of Access: December 2019–January 2020). Available online: https://www.meteo.tj/ru/ (accessed on 10 January 2020).
- Milewski, A.; Elkadiri, R.; Durham, M. Assessment and comparison of TMPA satellite precipitation products in varying climatic and topographic regimes in Morocco. Remote Sens. 2015, 7, 5697–5717. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Safarov, M.; Fazylov, A. Application of modern remote sensing technologies for monitoring mudslide-prone areas of mountainous territories. Georisk 2020, 14, 32–41. [Google Scholar]
- Hamandawana, H.; Eckardt, F.; Ringrose, S. Proposed methodology for georeferencing and mosaicking Corona photographs. Int. J. Remote Sens. 2007, 28, 5–22. [Google Scholar] [CrossRef]
- Banerjee, A.; Kang, S.; Guo, W.; Meadows, M.E.; Wang, W.; Sengupta, D.; Zhang, T. Glacier retreat and lake outburst floods in the central Himalayan region from 2000 to 2022. Nat. Hazards 2024, 120, 5485–5508. [Google Scholar] [CrossRef]
- Patel, L.K.; Sharma, P.; Laluraj, C.M.; Thamban, M.; Singh, A.; Ravindra, R. A geospatial analysis of Samudra Tapu and Gepang Gath glacial lakes in the Chandra Basin, Western Himalaya. Nat. Hazards 2017, 86, 1275–1290. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Konovalov, V.G. Modern problems of remote sensing of the Earth from space. In Collection of Scientific Articles; IKI RAN: Moscow, Russia, 2012; pp. 281–288. [Google Scholar]
- Gardner, A.S.; Moholdt, G.; Scambos, T.; Fahnstock, M.; Ligtenberg, S.; van den Broeke, M.; Nilsson, J. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 2018, 12, 521–547. [Google Scholar] [CrossRef]
- Dehecq, A.; Gourmelen, N.; Gardner, A.S.; Brun, F.; Goldberg, D.; Nienow, P.W.; Berthier, E.; Vincent, C.; Wagnon, P.; Trouvé, E. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 2019, 12, 22–27. [Google Scholar] [CrossRef]
- Friedl, P.; Seehaus, T.; Braun, M. Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data. Earth Syst. Sci. Data 2021, 13, 4653–4675. [Google Scholar] [CrossRef]
- Huggel, C.; Kääb, A.; Haeberli, W.; Teysseire, P.; Paul, F. Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Can. Geotech. J. 2002, 39, 316–330. [Google Scholar] [CrossRef]
- Huggel, C.; Kääb, A.; Haeberli, W.; Krummenacher, B. Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: Evaluation and application in the Swiss Alps. Nat. Hazards Earth Syst. Sci. 2003, 3, 647–662. [Google Scholar] [CrossRef]
- Romstad, B.; Harbitz, C.B.; Domaas, U. A GIS method for assessment of rock slide tsunami hazard in all Norwegian lakes and reservoirs. Nat. Hazards Earth Syst. Sci. 2009, 9, 353–364. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Li, C.; Yu, L.; Liu, D.; Gong, P. Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution. ISPRS J. Photogramm. Remote Sens. 2015, 103, 38–47. [Google Scholar] [CrossRef]
- Duncan, C.; Masek, J.; Fielding, E. How steep are the Himalaya? Characteristics and implications of along-strike topographic variations. Geology 2003, 31, 75–78. [Google Scholar] [CrossRef]
- Singh, G.; Nela, B.R.; Bandyopadhyay, D.; Mohanty, S.; Kulkarni, A.V. Discovering anomalous dynamics and disintegrating behaviour in glaciers of Chandra-Bhaga sub-basins, part of Western Himalaya using DInSAR. Remote Sens. Environ. 2020, 246, 111885. [Google Scholar] [CrossRef]
- Jiang, Z.-L.; Liu, S.-Y.; Peters, J.; Lin, J.; Long, S.-C.; Han, Y.-S.; Wang, X. Analyzing Yengisogat Glacier surface velocities with ALOS PALSAR data feature tracking, Karakoram, China. Environ. Earth Sci. 2012, 67, 1033–1043. [Google Scholar] [CrossRef]
- Yan, S.; Guo, H.; Liu, G.; Ruan, Z. Mountain glacier displacement estimation using a DEM-assisted offset tracking method with ALOS/PALSAR data. Remote Sens. Lett. 2013, 4, 494–503. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Osipova, G.B. Catalog of Glaciers of the USSR. Vol. 14 (Central Asia), Issue 3 (AmuDarya River Basin), Part 11 (Vanch River Basin); Hydrometeoizdat: Leningrad, Russia, 1978; p. 84. [Google Scholar]
- Ananicheva, M. Estimation of the areas, volumes and heights of the boundary of the feeding of glacier systems of the Northeast of Russia from the space images of the beginning of the 21st century. Ice Snow 2014, 1, 35–48. [Google Scholar]
- Konovalov, V.; Desinov, L. Remote sensing monitoring of the long-term regime of the Pamirs glaciers. IAHS Publ. 2007, 316, 149. [Google Scholar]
- Dolgushin, L.D.; Osipova, G.B. Surging Glaciers; Gidrometeoizdat: Newark, Russia, 1982. [Google Scholar]
- Kotlyakov, V.M.; Desinov, L.V. Medvezhiy Glacier surge in 2011. Ice Snow 2012, 52, 128–131. [Google Scholar] [CrossRef]
- Dyurgerov, M.B.; Aizin, V.B.; Buynitskiy, A.B. Nakopleniye massy v oblasti pitaniyalednika Medvezh’yego za periody mezhdu yego podvizhkami [Mass accumulation in the accumulation area of Medvezhiy Glacier during its quiescence periods]. Mater. Glyatsiol. Issled 1985, 54, 131–135. [Google Scholar]
- Kotlyakov, V.; Chernova, L.; Khromova, T.; Zverkova, N. Glacier surges and glacial disasters. Dokl. Earth Sci. 2017, 472, 57–61. [Google Scholar] [CrossRef]
- Kotlyakov, V.M.; Desinov, L.V.; Desinov, S.L.; Rudakov, V.A. Surges of the Pamir glaciers in 2020. Ice Snow 2021, 61, 471–480. [Google Scholar]
- National Action Plan for Climate Change Mitigation. The Main Directorate for Hydrometeorology and Observations of the Environment—Dushanbe 2003. Available online: https://unfccc.int/resource/docs/nap/tainap01e.pdf/ (accessed on 3 February 2023).
- Nie, Y.; Pritchard, H.D.; Liu, Q.; Hennig, T.; Wang, W.; Wang, X.; Liu, S.; Nepal, S.; Samyn, D.; Hewitt, K.; et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2021, 2, 91–106. [Google Scholar] [CrossRef]
- Jianchu, X.; Shrestha, A.; Eriksson, M. Climate change and its impacts on glaciers and water resource management in the Himalayan Region. In Assessment of Snow, Glaciers and Water Resources in Asia; International Hydrological Programme of UNESCO and Hydrology and Water Resources Programme of WMO: Koblenz, Germany, 2009; Volume 44, p. 54. [Google Scholar]
- Dimri, A.P.; Allen, S.; Huggel, C.; Mal, S.; Ballesteros-Cánovas, J.A.; Rohrer, M.; Shukla, A.; Tiwari, P.; Maharana, P.; Bolch, T.; et al. Climate change, cryosphere and impacts in the Indian Himalayan Region. Curr. Sci. 2021, 120, 774–790. [Google Scholar] [CrossRef]
- Khromova, T.; Osipova, G.; Tsvetkov, D.; Dyurgerov, M.; Barry, R. Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sens. Environ. 2006, 102, 24–32. [Google Scholar] [CrossRef]
Name | PCC | R2 | NSE | KGE | PBIAS (%) |
---|---|---|---|---|---|
Average Temperature, °C | 0.96 | 0.93 | −0.41 | −11.50 | 2026.05 |
Annual Precipitation, mm | 0.68 | 0.46 | 0.04 | −10.49 | 40.52 |
Date of Acquisition | Image | Resolution (m) | PATH | ROW | Purpose | Source |
---|---|---|---|---|---|---|
18 August 1968 15 September 1971 | Corona KH-4B | Stereo High ~1.82 | DS1104-2169DA104b, 105b, 106b | Map glacial surging during the period 1968–2023 | USGS Earth Explorer | |
12 July 1973 | Hexagon KH-9 | ~4.72 | DZB1206-500007L016001 | |||
13 July 1975 | Hexagon KH-9 | ~4.72 | DZB1210-500134L006001 | Observations on the rise of the Medvezhiy glacier and the emergence of a glacial lake | ||
12 July 1973 6 August 1977 | Landsat-5 | Thematic Mapper 60 × 60 (NASA, United States of America (U.S.A), California) | 163 | 033 | ||
20 August 1980 | Hexagon KH-9 | ~4.72 | DZB1216-500273L008001 | |||
30 May 1989 30 March 1990 14 July 1991 | Landsat-5 | Thematic Mapper 30 × 30 (NASA, U.S.A, California) | ||||
16 September 2000 | Landsat-7 “ETM+” | Enhanced Thematic Mapper Plus 30 × 30 (Lockheed Martin Space Systems, U.S.A, California) | 163 | 033 | Identification of hazardous areas | |
26 July 2001 | ||||||
5 August 2002 | ||||||
18 September 2003 | ||||||
4 September 2004 | Change in the area of glaciers | |||||
10 September 2006 | ||||||
13 September 2007 | ||||||
13 August 2008 | Landsat-5 | Thematic Mapper 30 × 30 | ||||
15 July 2009 | ||||||
4 September 2010 | ||||||
22 August 2011 | ||||||
27 August 2013 | Landsat-8 | Operational Land Imager (OLI) 30 × 30 (NASA and USGS, U.S.A, California) | Observations of the latest surge of the Medvezhiy glacier | |||
30 August 2014 | ||||||
17 August 2015 | ||||||
3 August 2016 | ||||||
22 August 2017 | ||||||
25 August 2018 | ||||||
28 August 2019 | ||||||
30 August 2020 | ||||||
20 August 2023 | DJI Phantom 4 | 0.15 | Glacier terminus position | |||
12 February 2000 | SRTM | 30 | Elevation change | |||
1989–2018 | ITS_LIVE | 240 | Annual glacier velocity |
Years | Maximum Decrease in the Middle Part m/Year | Maximum Increase in Tongue Part m/Year |
---|---|---|
2000–2004 | 6.1 | −4.8 |
2005–2009 | 5.1 | −2.7 |
2010–2014 | 7.3 | −3.08 |
2015–2019 | 5.7 | −4.8 |
Year | Terminal Advance, m | Glacier Area, km2 | The Volume of the Dammed Lake | Observation Type |
---|---|---|---|---|
1963 | 1750 | - | 14.5 million m3, with catastrophic breaks across the glacier | Ground reconnaissance [28] |
1973 | 1925 | 32.26 | 16.4 million m3, with catastrophic breaks across the glacier | Ground observations, phototheodolite surveys [28] |
1975 | 1260 | 31.62 | - | Satellite data (Landsat TM) |
1977 | 1250 | 32 | - | Satellite data (Hexagon KH-9) |
1988–1989 | 1100 | 31.10 | The volume is insignificant, the descent along the left edge of the glacier | Aero-topographic monitoring, and ground measurements of Tajikhydromet [28] |
2001 | 450 | 30.69 | The lake did not form | Agency for Hydrometeorology of the Committee for Environmental protection under the Government of the Republic of Tajikistan [28] |
2011 | More than 800 m | 31.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murodov, M.; Li, L.; Safarov, M.; Lv, M.; Murodov, A.; Gulakhmadov, A.; Khusrav, K.; Qiu, Y. A Comprehensive Examination of the Medvezhiy Glacier’s Surges in West Pamir (1968–2023). Remote Sens. 2024, 16, 1730. https://doi.org/10.3390/rs16101730
Murodov M, Li L, Safarov M, Lv M, Murodov A, Gulakhmadov A, Khusrav K, Qiu Y. A Comprehensive Examination of the Medvezhiy Glacier’s Surges in West Pamir (1968–2023). Remote Sensing. 2024; 16(10):1730. https://doi.org/10.3390/rs16101730
Chicago/Turabian StyleMurodov, Murodkhudzha, Lanhai Li, Mustafo Safarov, Mingyang Lv, Amirkhamza Murodov, Aminjon Gulakhmadov, Kabutov Khusrav, and Yubao Qiu. 2024. "A Comprehensive Examination of the Medvezhiy Glacier’s Surges in West Pamir (1968–2023)" Remote Sensing 16, no. 10: 1730. https://doi.org/10.3390/rs16101730
APA StyleMurodov, M., Li, L., Safarov, M., Lv, M., Murodov, A., Gulakhmadov, A., Khusrav, K., & Qiu, Y. (2024). A Comprehensive Examination of the Medvezhiy Glacier’s Surges in West Pamir (1968–2023). Remote Sensing, 16(10), 1730. https://doi.org/10.3390/rs16101730