Onboard Data Prioritization Using Multi-Class Image Segmentation for Nanosatellites
Abstract
:1. Introduction
2. Methodology
2.1. System Design
2.2. Segmentation Dataset
2.3. Segmentation Architecture
2.4. Evaluation Metrics
- is the coverage for class c in the image;
- represents the pixel value for class c at position in the image;
- a is the width of the image;
- b is the height of the image.
- is the weighting assigned to class c;
- n is the number of classes;
- is the priority index.
3. Results
3.1. Model Performance Testing
3.2. Hardware Performance Testing
3.3. Validation Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
mIoU | Mean Intersection of Union |
CubeSat | Nanosatellite |
HF | High Frequency |
UHF | Ultra High Frequency |
GMSK | Gaussian minimum-shift keying |
BPSK | Binary Phase-Shift Keying |
FSK | Frequency-shift keying |
AFSK | Audio frequency-shift keying |
GFSK | Gaussian Frequency-shift keying |
PSPNet | Pyramid Spatial Pooling Network |
CSI | Critical Success Index |
CS-CNN | Cloud Segmentation Convolutional Neural Network |
OBC | Onboard Computer |
EPS | Electrical Power System |
COM | Communication System |
RAB | Rear Access Board |
BPB | Backplane Board |
MULT-SPEC | Multispectral Imaging mission |
S-FWD/APRS | Store-and-Forward/Digital Repeating mission |
IMG-CLS | Image Classification mission |
CPLD | Complex Programmable Logic Device |
RPi0 | Raspberry Pi Zero |
TVT | Thermal Vaccum Testing |
GSD | Ground Sampling Distance |
TCI | True Color Image |
SCL | Scene Classification Map |
FPN | Feature Pyramid Network |
References
- Heidt, H.; Puig-Suari, J.; Moore, A.S.; Nakasuka, S.; Twiggs, R.J. CubeSat: A new Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation. In Proceedings of the AIAA/USU Conference on Small Satellites, Logan, UT, USA, 6–11 August 2000. [Google Scholar]
- Francisco, C.; Henriques, R.; Barbosa, S. A Review on CubeSat Missions for Ionospheric Science. Aerospace 2023, 10, 622. [Google Scholar] [CrossRef]
- Liu, S.; Theoharis, P.I.; Raad, R.; Tubbal, F.; Theoharis, A.; Iranmanesh, S.; Abulgasem, S.; Khan, M.U.A.; Matekovits, L. A survey on CubeSat missions and their antenna designs. Electronics 2022, 11, 2021. [Google Scholar] [CrossRef]
- Robson, D.J.; Cappelletti, C. Biomedical payloads: A maturing application for CubeSats. Acta Astronaut. 2022, 191, 394–403. [Google Scholar] [CrossRef]
- Bomani, B.M. CubeSat Technology Past and Present: Current State-of-the-Art Survey; Technical report; NASA: Washington, DC, USA, 2021. [Google Scholar]
- White, D.J.; Giannelos, I.; Zissimatos, A.; Kosmas, E.; Papadeas, D.; Papadeas, P.; Papamathaiou, M.; Roussos, N.; Tsiligiannis, V.; Charitopoulos, I. SatNOGS: Satellite Networked Open Ground Station; Valparaiso University: Valparaiso, IN, USA, 2015. [Google Scholar]
- Bouwmeester, J.; Guo, J. Survey of worldwide pico-and nanosatellite missions, distributions and subsystem technology. Acta Astronaut. 2010, 67, 854–862. [Google Scholar] [CrossRef]
- Nagel, G.W.; Novo, E.M.L.d.M.; Kampel, M. Nanosatellites applied to optical Earth observation: A review. Rev. Ambiente Água 2020, 15, e2513. [Google Scholar] [CrossRef]
- Eapen, A.M.; Bendoukha, S.A.; Al-Ali, R.; Sulaiman, A. A 6U CubeSat Platform for Low Earth Remote Sensing: DEWASAT-2 Mission Concept and Analysis. Aerospace 2023, 10, 815. [Google Scholar] [CrossRef]
- Zhao, M.; O’Loughlin, F. Mapping Irish Water Bodies: Comparison of Platforms, Indices and Water Body Type. Remote Sens. 2023, 15, 3677. [Google Scholar] [CrossRef]
- Rastinasab, V.; Hu, W.; Shahzad, W.; Abbas, S.M. CubeSat-Based Observations of Lunar Ice Water Using a 183 GHz Horn Antenna: Design and Optimization. Appl. Sci. 2023, 13, 9364. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, J.; Xu, W. Shift pooling PSPNet: Rethinking pspnet for building extraction in remote sensing images from entire local feature pooling. Remote Sens. 2022, 14, 4889. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Guo, X.; Wan, J.; Liu, S.; Xu, M.; Sheng, H.; Yasir, M. A scse-linknet deep learning model for daytime sea fog detection. Remote Sens. 2021, 13, 5163. [Google Scholar] [CrossRef]
- Chaurasia, A.; Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Drönner, J.; Korfhage, N.; Egli, S.; Mühling, M.; Thies, B.; Bendix, J.; Freisleben, B.; Seeger, B. Fast cloud segmentation using convolutional neural networks. Remote Sens. 2018, 10, 1782. [Google Scholar] [CrossRef]
- Jeppesen, J.H.; Jacobsen, R.H.; Inceoglu, F.; Toftegaard, T.S. A cloud detection algorithm for satellite imagery based on deep learning. Remote Sens. Environ. 2019, 229, 247–259. [Google Scholar] [CrossRef]
- Zhang, Z.; Iwasaki, A.; Xu, G.; Song, J. Cloud detection on small satellites based on lightweight U-net and image compression. J. Appl. Remote Sens. 2019, 13, 026502. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. pp. 234–241. [Google Scholar]
- Cespedes, A.J.J.; Bautista, I.Z.C.; Maeda, G.; Kim, S.; Masui, H.; Yamauchi, T.; Cho, M. An Overview of the BIRDS-4 Satellite Project and the First Satellite of Paraguay. In Proceedings of the 11th Nanosatellite Symposium, Online, 17 March 2021. [Google Scholar]
- Maskey, A.; Lepcha, P.; Shrestha, H.R.; Chamika, W.D.; Malmadayalage, T.L.D.; Kishimoto, M.; Kakimoto, Y.; Sasaki, Y.; Tumenjargal, T.; Maeda, G.; et al. One Year On-Orbit Results of Improved Bus, LoRa Demonstration and Novel Backplane Mission of a 1U CubeSat Constellation. Trans. Jpn. Soc. Aeronaut. Space Sci. 2022, 65, 213–220. [Google Scholar] [CrossRef]
- Guertin, S.M. Raspberry Pis for Space Guideline; NASA: Washington, DC, USA, 2022. [Google Scholar]
- Bai, X.; Oppel, P.; Cairns, I.H.; Eun, Y.; Monger, A.; Betters, C.; Musulin, Q.; Bowden-Reid, R.; Ho-Baillie, A.; Stals, T.; et al. The CUAVA-2 CubeSat: A Second Attempt to Fly the Remote Sensing, Space Weather Study and Earth Observation Instruments. In Proceedings of the 36th Annual Small Satellite Conference, Logan, UT, USA, 5–10 August 2023. [Google Scholar]
- Danos, J.; Page, C.; Jones, S.; Lewis, B. USU’s GASPACS CubeSat; USU: Logan, UT, USA, 2022. [Google Scholar]
- Garrido, C.; Obreque, E.; Vidal-Valladares, M.; Gutierrez, S.; Diaz Quezada, M.; Gonzalez, C.; Rojas, C.; Gutierrez, T. The First Chilean Satellite Swarm: Approach and Lessons Learned. In Proceedings of the 36th Annual Small Satellite Conference, Logan, UT, USA, 5–10 August 2023. [Google Scholar]
- Drzadinski, N.; Booth, S.; LaFuente, B.; Raible, D. Space Networking Implementation for Lunar Operations. In Proceedings of the 37th Annual Small Satellite Conference, Logan, UT, USA, 5–10 August 2023. number SSC23-IX-08. [Google Scholar]
- Azami, M.H.b.; Orger, N.C.; Schulz, V.H.; Oshiro, T.; Cho, M. Earth observation mission of a 6U CubeSat with a 5-meter resolution for wildfire image classification using convolution neural network approach. Remote Sens. 2022, 14, 1874. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A processor for users. In Proceedings of the living planet symposium 2016, Prague, Czech Republic, 9–13 May 2016; pp. 1–8. [Google Scholar]
- Park, J.H.; Inamori, T.; Hamaguchi, R.; Otsuki, K.; Kim, J.E.; Yamaoka, K. Rgb image prioritization using convolutional neural network on a microprocessor for nanosatellites. Remote Sens. 2020, 12, 3941. [Google Scholar] [CrossRef]
- Haq, M.A. Planetscope Nanosatellites Image Classification Using Machine Learning. Comput. Syst. Sci. Eng. 2022, 42. [Google Scholar]
- Yao, Y.; Jiang, Z.; Zhang, H.; Zhou, Y. On-board ship detection in micro-nano satellite based on deep learning and COTS component. Remote Sens. 2019, 11, 762. [Google Scholar] [CrossRef]
- Doran, G.; Wronkiewicz, M.; Mauceri, S. On-board downlink prioritization balancing science utility and data diversity. In Proceedings of the 5th Planetary Data Workshop & Planetary Science Informatics & Analytics, Virtual, 2 June–2 July 2021; Volume 2549, p. 7048. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Chatar, K.A.; Fielding, E.; Sano, K.; Kitamura, K. Data downlink prioritization using image classification on-board a 6U CubeSat. In Proceedings of the Sensors Systems, and Next-Generation Satellites XXVII, Amsterdam, Netherlands, 6–7 September 2022; Volume 12729, pp. 129–142. [Google Scholar]
Parameter | Details |
---|---|
CPU | Broadcom BCM2835 |
Clock Speed | 1 GHz |
Core/s | 1 core |
RAM | 512 MB |
Power Consumption | 1W @ 100% usage |
Parameter | UNet | LinkNet | PSPNet | FPN |
---|---|---|---|---|
Model Type | Encoder-Decoder | Encoder-Decoder | Pyramid | Feature Pyramid |
Inference Speed | Moderate | Fast | Moderate | Moderate |
Model Size | Large | Small | Large | Large |
Global Context | Limited | Limited | High | Limited |
Performance at Scale | Moderate | Limited | Limited | Strong |
Fine Detail Handling | Moderate | Limited | Moderate | Limited |
Complexity | High | Low | Moderate | High |
Memory Consumption | High | Low | High | Moderate |
Suitability | Well-defined object boundaries | Faster inference | Captures global context | Scales objects at different levels |
Image Size | Patch Size | Training Time (min) | Single Patch Inference Time(s) | Full Image Inference Time (s) | mIoU |
---|---|---|---|---|---|
640 × 480 | 64 × 64 | 17.3 | 0.12 | 8.4 | 0.75 |
32 × 32 | 24.2 | 0.11 | 34.6 | 0.75 | |
16 × 16 | 36.7 | 0.11 | 137.5 | 0.72 | |
1280 × 960 | 64 × 64 | 17.3 | 0.14 | 42.3 | 0.75 |
32 × 32 | 38.6 | 0.10 | 123.3 | 0.75 | |
16 × 16 | 55.9 | 0.08 | 384.5 | 0.73 |
Model Architecture | Model Backbone | Parameters (M) | Training Time (min) | Model File Size (MB) | Inference Execution Time (RPi0) (s) | Inference Execution Time (RPi4) (s) |
---|---|---|---|---|---|---|
UNet | MobileNetV2 | 8 M | 14.4 | 31.3 | 151.2 | 22.2 |
EfficientNetB0 | 10.1 M | 17.3 | 39.3 | 159.1 | 36.2 | |
ResNet34 | 24.5 M | 24.1 | 95.5 | - | 40.6 | |
SEResNeXt50 | 32.1 M | 81.5 | 125.3 | - | 44.8 | |
FPN | MobileNetV2 | 5.2 M | 13.2 | 20.2 | 147.4 | 18.2 |
EfficientNetB0 | 7.1 M | 14.1 | 27.4 | 155.4 | 17.7 | |
ResNet34 | 23.9 M | 25.2 | 93.5 | - | 30.5 | |
LinkNet | EfficientNetB0 | 6.1 M | 12.2 | 23.7 | 141.6 | 17.4 |
ResNet34 | 21.6 M | 21.7 | 84.5 | - | 28.7 | |
PSP | ResNet34 | 2.7 M | 11.4 | 10.7 | 111.7 | 7.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatar, K.; Kitamura, K.; Cho, M. Onboard Data Prioritization Using Multi-Class Image Segmentation for Nanosatellites. Remote Sens. 2024, 16, 1729. https://doi.org/10.3390/rs16101729
Chatar K, Kitamura K, Cho M. Onboard Data Prioritization Using Multi-Class Image Segmentation for Nanosatellites. Remote Sensing. 2024; 16(10):1729. https://doi.org/10.3390/rs16101729
Chicago/Turabian StyleChatar, Keenan, Kentaro Kitamura, and Mengu Cho. 2024. "Onboard Data Prioritization Using Multi-Class Image Segmentation for Nanosatellites" Remote Sensing 16, no. 10: 1729. https://doi.org/10.3390/rs16101729
APA StyleChatar, K., Kitamura, K., & Cho, M. (2024). Onboard Data Prioritization Using Multi-Class Image Segmentation for Nanosatellites. Remote Sensing, 16(10), 1729. https://doi.org/10.3390/rs16101729