Development of an Integrated Urban Flood Model and Its Application in a Concave-Down Overpass Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Discretization of Subcatchments
2.3. Model Development
2.3.1. Surface Runoff Module
2.3.2. Pipe Convergence Module
2.3.3. Inundation Module
2.4. Precipitation Data
2.4.1. Actual Rainstorm Events
2.4.2. Designed Rainfall Events
2.5. Model Parameterization and Calibration
2.6. Landscape Pattern
2.7. Drainage Capacity
3. Results
3.1. Validation of Flood Simulation
3.2. Flood Simulation under Different Rainstorm Scenarios
3.3. Hydrological and Hydraulic Processes That Affect Flood Conditions
3.3.1. Surface Runoff Process
3.3.2. Overflow from Drainage Networks
3.3.3. Overflow Expansion Process
4. Discussion
4.1. Model Evaluation
4.1.1. Uncertainties from the Model Structures
4.1.2. Uncertainties from Estimations of Inputs
4.2. Prevention and Control Measures for Urban Flood
4.2.1. Rainstorm Event
4.2.2. Terrain Factor
4.2.3. Drainage System
4.2.4. Underlying Surface
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, Z.; Li, J.; Li, L. Method for Flood Submergence Analysis Based on GIS Grid Model. J. Hydraul. Eng. 2004, 6, 56–60. [Google Scholar]
- Li, R.; Pan, X.; Di, S.; Yang, M.; Su, Y. Diagnostic Analysis of the Waterlogging Influence Factors in Beijing City: A Case Study of Shangqingqiao Catchment. J. Nat. Resour. 2018, 33, 1940–1952. [Google Scholar]
- Fu, C.; Liu, J.; Wang, H.; Xiang, C.; Fu, X.; Luan, Q. Urban Storm Flooding: Characteristics and Management in Beijing. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 246, p. 01042. [Google Scholar]
- Liu, C.; Zhao, Y.; Zhao, J. Modeling Method and Reason Analysis of Urban Flooding in Concave-down Overpass Area. Hebei J. Ind. Sci. Technol. 2014, 31, 389–394. [Google Scholar]
- Yin, Z.; Guo, W.; Li, N.; Xie, Y. Numerical Simulation of Urban Ponding in Beijing. Meteorol. Mon. 2015, 41, 1111–1118. [Google Scholar]
- Jiang, J. Research on the Water Infiltration Technology during the Rainy Seasons in the Recessed Overpass of Beijing. Urban Geol. 2016, 11, 62–68. [Google Scholar] [CrossRef]
- You, F.; Hu, H.; Guo, L. The Early Warning Methods on Risk Degree of Urban Rainstorm Flash Flood and Its Application in Beijing. Torrential Rain Disasters 2013, 32, 263–267. [Google Scholar]
- Agonafir, C.; Lakhankar, T.; Khanbilvardi, R.; Krakauer, N.; Radell, D.; Devineni, N. A Review of Recent Advances in Urban Flood Research. Water Secur. 2023, 19, 100141. [Google Scholar] [CrossRef]
- Fatichi, S.; Vivoni, E.R.; Ogden, F.L.; Ivanov, V.Y.; Mirus, B.; Gochis, D.; Downer, C.W.; Camporese, M.; Davison, J.H.; Ebel, B.; et al. An Overview of Current Applications, Challenges, and Future Trends in Distributed Process-Based Models in Hydrology. J. Hydrol. 2016, 537, 45–60. [Google Scholar] [CrossRef]
- Rossman, L.A.; Huber, W.C. Hydrology. In Storm Water Management Model Reference Manual; EPA/600/R-15/162A; United States Environmental Protection Agency: Cincinnati, OH, USA, 2016; Volume 1. [Google Scholar]
- Agarwal, S.; Kumar, S. Urban Flood Modeling Using SWMM for Historical and Future Extreme Rainfall Events under Climate Change Scenario. Indian J. Ecol. 2020, 47, 48–53. [Google Scholar]
- Rossman, L.A.; Dickinson, R.E.; Schade, T.; Chan, C.C.; Burgess, E.; Sullivan, D.; Lai, F.H. SWMM 5—The next Generation of EPA’s Storm Water Management Model. J. Water Manag. Model. 2004, 12, 339–358. [Google Scholar] [CrossRef]
- Lyu, F.; Hu, J.; Lu, A.; Gan, Y. Building of Mathematical Model for Drainage System at an Underpass in Beijing. China Water Wastewater 2014, 30, 103–108. [Google Scholar]
- Ren, M.; Xu, Z.; Chu, Q.; Wang, Z.; Du, C. Simulation of Rainstorm Waterlogging Processes at the Lixia Overpass Bridge in Jinan City. South-North Water Transf. Water Sci. Technol. 2018, 16, 9–15. [Google Scholar]
- Agudelo-Otálora, L.M.; Moscoso-Barrera, W.D.; Paipa-Galeano, L.A.; Mesa-Sciarrotta, C. Comparison of Physical Models and Artificial Intelligence for Prediction of Flood Levels. Tecnol. Cienc. Agua 2018, 9, 209–235. [Google Scholar] [CrossRef]
- Yang, J.; Chu, X. A New Modeling Approach for Simulating Microtopography-Dominated, Discontinuous Overland Flow on Infiltrating Surfaces. Adv. Water Resour. 2015, 78, 80–93. [Google Scholar] [CrossRef]
- Chen, K.-F.; Leandro, J. A Conceptual Time-Varying Flood Resilience Index for Urban Areas: Munich City. Water 2019, 11, 830. [Google Scholar] [CrossRef]
- Chu, X.; Yang, J.; Chi, Y.; Zhang, J. Dynamic Puddle Delineation and Modeling of Puddle-to-Puddle Filling-Spilling-Merging-Splitting Overland Flow Processes: Dynamic Puddle Delineation and Modeling of P2P Processes. Water Resour. Res. 2013, 49, 3825–3829. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, N.; Habiyakare, T.; Yu, H. Development of a Cellular Automata-Based Distributed Hydrological Model for Simulating Urban Surface Runoff. J. Hydrol. 2023, 627, 130348. [Google Scholar] [CrossRef]
- Zhang, N.; Jing, Y.; Liu, C.; Li, Y.; Shen, J. A Cellular Automaton Model for Grasshopper Population Dynamics in Inner Mongolia Steppe Habitats. Ecol. Model. 2016, 329, 5–17. [Google Scholar] [CrossRef]
- Yao, S.; Chen, N.; Du, W.; Wang, C.; Chen, C. A Cellular Automata Based Rainfall-Runoff Model for Urban Inundation Analysis Under Different Land Uses. Water Resour. Manag. 2021, 35, 1991–2006. [Google Scholar] [CrossRef]
- Rinaldi, P.R.; Dalponte, D.D.; Vénere, M.J.; Clausse, A. Cellular Automata Algorithm for Simulation of Surface Flows in Large Plains. Simul. Model. Pract. Theory 2007, 15, 315–327. [Google Scholar] [CrossRef]
- Mignot, E.; Li, X.; Dewals, B. Experimental Modelling of Urban Flooding: A Review. J. Hydrol. 2019, 568, 334–342. [Google Scholar] [CrossRef]
- Guidolin, M.; Chen, A.S.; Ghimire, B.; Keedwell, E.C.; Djordjević, S.; Savić, D.A. A Weighted Cellular Automata 2D Inundation Model for Rapid Flood Analysis. Environ. Model. Softw. 2016, 84, 378–394. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, N.; Zhang, H. Applications of Advanced Technologies in the Development of Urban Flood Models. Water 2023, 15, 622. [Google Scholar] [CrossRef]
- Zheng, Z.; Lai, C.; Wang, Z.; Wu, X. Rapid Simulation of Urban Rainstorm Flood Base on WCA2D and SWMM Model. Adv. Water Sci. 2020, 01, 29–38. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, N.; Habiyakare, T.; Yan, Y.; Zhang, H. Prospects of Eco-Hydrological Model for Sponge City Construction. Ecosyst. Health Sustain. 2021, 7, 1994885. [Google Scholar] [CrossRef]
- Shi, N.; Zhu, Y.; Yang, C.; Xu, S. Research on City Flyover Model of Water Logging. Ind. Control Comput. 2015, 28, 27–28. [Google Scholar]
- Wang, H.; Zhang, Y.; Tang, Y.; Duan, Z.; Wang, Y. Urban Flooding Disaster Simulation Method for Concave-down Overpass Bridges by Developing SWMM. J. Beijing Univ. Technol. 2016, 42, 1422–1427. [Google Scholar]
- Lyu, H.-M.; Shen, S.-L.; Yang, J.; Yin, Z.-Y. Inundation Analysis of Metro Systems with the Storm Water Management Model Incorporated into a Geographical Information System: A Case Study in Shanghai. Hydrol. Earth Syst. Sci. 2019, 23, 4293–4307. [Google Scholar] [CrossRef]
- Huang, M.-M.; Jin, S.-G. A Methodology for Simple 2-D Inundation Analysis in Urban Area Using SWMM and GIS. Nat. Hazards 2019, 97, 29. [Google Scholar] [CrossRef]
- Sun, Z.; Feng, S.; Yang, Z.; Wu, H. Primary Analysis of the Precipitation Characteristics for Beijing during the Period from 1950 to 2005. J. Irrig. Drain 2007, 26, 12–16. [Google Scholar]
- Feng, C.-H. Eco-Hydrological Effects of Urban Landscape Spatial Pattern Change and Simulation. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2022. [Google Scholar]
- Zhang, N.; Yu, G. Simulation and Analysis of Water Balance for Vegetation Ecosystems on Landscape Scale. Clim. Environ. Res. 2006, 11, 425–440. [Google Scholar]
- Zhang, N.; Liu, C. Simulated Water Fluxes during the Growing Season in Semiarid Grassland Ecosystems under Severe Drought Conditions. J. Hydrol. 2014, 512, 69–86. [Google Scholar] [CrossRef]
- Gironás, J.; Roesner, L.A.; Davis, J. Storm Water Management Model Applications Manual; U.S. Environmental Protection Agency: Washington, DC, USA, 2009; EPA/600/R-09/077. [Google Scholar]
- Karim, F.; Armin, M.A.; Ahmedt-Aristizabal, D.; Tychsen-Smith, L.; Petersson, L. A Review of Hydrodynamic and Machine Learning Approaches for Flood Inundation Modeling. Water 2023, 15, 566. [Google Scholar] [CrossRef]
- Jean, M.-È.; Duchesne, S.; Pelletier, G.; Pleau, M. Selection of Rainfall Information as Input Data for the Design of Combined Sewer Overflow Solutions. J. Hydrol. 2018, 565, 559–569. [Google Scholar] [CrossRef]
- Beijing Urban Planning and Design Research Institute. Standard of Load Calculation for Municipal Infrastructure Planning 2017.
- Arnell, V.; Harremoës, P.; Jensen, M.; Johansen, N.B.; Niemczynowicz, J. Review of Rainfall Data Application for Design and Analysis. J. Water Sci. Technol. 1984, 16, 1–45. [Google Scholar] [CrossRef]
- Chen, W.; Huang, G.; Zhang, H.; Wang, W. Urban Inundation Response to Rainstorm Patterns with a Coupled Hydrodynamic Model: A Case Study in Haidian Island, China. J. Hydrol. 2018, 564, 1022–1035. [Google Scholar] [CrossRef]
- He, D.; Hong, W. The Improvement of the Formula of Rainfall Interception by Vegetation. Syst. Sci. Compr. Stud. Agric. 1999, 15, 200–202. [Google Scholar]
- Zhang, J.; Lei, T.; Zhang, G.; Cai, C.; Huang, Y.; Yang, X. A New Experimental Method for Observing Initial Soil Infiltration under Ring Infiltrometer. Nongye Jixie Xuebao Trans. Chin. Soc. Agric. Mach. 2014, 45, 140–146. [Google Scholar]
- Yi, C.; Liu, K.; Zhou, T. Research on a Formula of Rainfall Interception by Vegetion. J. Soil Eros. Water Conserv. 1996, 2, 47–49. [Google Scholar]
- Zhu, G. Retrieval of Leaf Area Index and Foliage Clumping Index from Remotely Sensed Data. Ph.D. Thesis, Nanjing University, Nanjing, China, 2011. [Google Scholar]
- Su, H.; Bai, F.; Li, G. Seasonal Dynamics in Leaf Area Index in Three Typical Temperate Montane Forests of China: A Comparison of Multi-Observation Methods. Chin. J. Plant Ecol. 2012, 36, 231–242. [Google Scholar] [CrossRef]
- Huang, G. Studies on Species Composition and Landscape Aesthetics Evaluation of Urban Forest in Beijing. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2012. [Google Scholar]
- Zhou, W.; Liu, G.; Pan, J. Distribution of Available Soil Water Capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Wang, J. Field Water Capacity Measurement and Results Analysis of Langfang National Drought Reporting Station. Groundwater 2016, 38, 25–26. [Google Scholar]
- Dai, Z.; Sui, J.; Xu, R.; Li, X. Study on Soil Water Infiltration in Different Urban Green Space in Beijing. Chin. Landsc. Archit. 2019, 36, 105–108. [Google Scholar]
- Daly, E.; Porporato, A.; Rodriguez-Iturbe, I. Coupled Dynamics of Photosynthesis, Transpiration, and Soil Water Balance Part I: Upscaling from Hourly to Daily Level. J Hydrometeorol. 2009, 5, 559–566. [Google Scholar]
- Zhang, N.; Luo, Y.; Chen, X.; Li, Q.; Jing, Y.; Wang, X.; Feng, C. Understanding the Effects of Composition and Configuration of Land Covers on Surface Runoff in a Highly Urbanized Area. Ecol. Eng. 2018, 125, 11–25. [Google Scholar] [CrossRef]
- Fu, S.; Wang, H.; Wang, X. The Runoff Curve Number of SCS-CN Method in Beijing. Geogr. Res. 2013, 32, 797–807. [Google Scholar]
- Neitsch, S.L.; Williams, J.R.; Arnold, J.G.; Kiniry, J.R. Hydrology in Soil and Water Assessment Tool Theoretical Documentation; Texas Water Resources Institute: College Station, TX, USA, 2009. [Google Scholar]
- Meng, W.; Li, R.; Duan, Z. Digital Elevation Model Fusion by Landform Characteristics. J. Earth Inf. Sci. 2018, 20, 895–905. [Google Scholar]
- Markham, K.; Frazier, A.E.; Singh, K.K.; Madden, M. A Review of Methods for Scaling Remotely Sensed Data for Spatial Pattern Analysis. Landsc. Ecol. 2023, 38, 619–635. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, W. The Application of Remotely Sensed Data to the Estimation of the Leaf Area Index. Remote Sens. Land Resour. 2003, 3, 58–62. [Google Scholar]
- McGarigal, K.; Cushman, S.A.; Ene, E.; FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. University of Massachusetts, Amherst. 2005. Available online: https://www.fragstats.org (accessed on 2 May 2024).
- Ramachandra, T.; Mujumdar, P.P. Urban Floods: Case Study of Bangalore. Disaster Dev. 2009, 3, 1–98. [Google Scholar]
- Li, P.; Li, H. Rainstorm Model-Based Approach for Traffic Loss Evaluation under Condition of Urban Inundation. Water Resour. Power 2017, 35, 62–65. [Google Scholar]
- Zhao, X. Study on Site Optimization Design about Waterlogging Area in Beijing Inner City under the Perspective of Sponge City. Master’s Thesis, Beijing University of Technology, Beijing, China, 2016. [Google Scholar]
- Todini, E. On the Convergence Properties of the Different Pipe Network Algorithms. In Proceedings of the Water Distribution Systems Analysis Symposium 2006; pp. 1–16.
- Luo, P.; Luo, M.; Li, F.; Qi, X.; Huo, A.; Wang, Z.; He, B.; Takara, K.; Nover, D.; Wang, Y. Urban Flood Numerical Simulation: Research, Methods and Future Perspectives. Environ. Model. Softw. 2022, 156, 105478. [Google Scholar] [CrossRef]
- Martínez, C.; Vojinovic, Z.; Price, R.; Sanchez, A. Modelling Infiltration Process, Overland Flow and Sewer System Interactions for Urban Flood Mitigation. Water 2021, 13, 2028. [Google Scholar] [CrossRef]
- Jian, C.; Hill, A.A.; Urbano, L.D. A GIS-Based Model for Urban Flood Inundation. J. Hydrol. 2009, 373, 184–192. [Google Scholar]
- Costabile, P.; Costanzo, C.; Kalogiros, J.; Bellos, V. Toward Street-Level Nowcasting of Flash Floods Impacts Based on HPC Hydrodynamic Modeling at the Watershed Scale and High-Resolution Weather Radar Data. Water Resour. Res. 2023, 59, e2023WR034599. [Google Scholar] [CrossRef]
- Montalvo, C.; Reyes-Silva, J.D.; Sañudo, E.; Cea, L.; Puertas, J. Urban Pluvial Flood Modelling in the Absence of Sewer Drainage Network Data: A Physics-Based Approach. J. Hydrol. 2024, 634, 131043. [Google Scholar] [CrossRef]
- Palla, A.; Colli, M.; Candela, A.; Aronica, G.T.; Lanza, L.G. Pluvial Flooding in Urban Areas: The Role of Surface Drainage Efficiency. J. Flood Risk Manag. 2018, 11, S663–S676. [Google Scholar] [CrossRef]
- Krupka, M. A Rapid Inundation Flood Cell Model for Flood Risk Analysis. Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK, 2009. [Google Scholar]
- Rahman, M.A.; Moser, A.; Anderson, M.; Zhang, C.; Rötzer, T.; Pauleit, S. Comparing the Infiltration Potentials of Soils beneath the Canopies of Two Contrasting Urban Tree Species. Urban For. Urban Green. 2019, 38, 22–32. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking Ecosystem Services and Circuit Theory to Identify Ecological Security Patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef]
- Hakimdavar, R.; Culligan, P.J.; Finazzi, M.; Barontini, S.; Ranzi, R. Scale Dynamics of Extensive Green Roofs: Quantifying the Effect of Drainage Area and Rainfall Characteristics on Observed and Modeled Green Roof Hydrologic Performance. Ecol. Eng. 2014, 73, 494–508. [Google Scholar] [CrossRef]
- Chang, T.-J.; Wang, C.-H.; Chen, A.S.; Djordjević, S. The Effect of Inclusion of Inlets in Dual Drainage Modelling. J. Hydrol. 2018, 559, 541–555. [Google Scholar] [CrossRef]
- Liang, C.; Guan, M. Effects of Urban Drainage Inlet Layout on Surface Flood Dynamics and Discharge. J. Hydrol. 2024, 632, 130890. [Google Scholar] [CrossRef]
- Jang, J.-H.; Chang, T.-H.; Chen, W.-B. Effect of Inlet Modelling on Surface Drainage in Coupled Urban Flood Simulation. J. Hydrol. 2018, 562, 168–180. [Google Scholar] [CrossRef]
- Cosco, C.; Gómez, M.; Russo, B.; Tellez-Alvarez, J.; Macchione, F.; Costabile, P.; Costanzo, C. Discharge Coefficients for Specific Grated Inlets. Influence of the Froude Number. Urban Water J. 2020, 17, 656–668. [Google Scholar] [CrossRef]
- Kobold, M.; Sušelj, K. Precipitation Forecasts and Their Uncertainty as Input into Hydrological Models. Hydrol. Earth Syst. Sci. 2005, 9, 322–332. [Google Scholar] [CrossRef]
- Chiang, Y.; Hsu, K.; Chang, F.-J.; Hong, Y.; Sorooshian, S. Merging Multiple Precipitation Sources for Flash Flood Forecasting. J. Hydrol. 2007, 340, 183–196. [Google Scholar] [CrossRef]
- Fatone, F.; Szeląg, B.; Kiczko, A.; Majerek, D.; Majewska, M.; Drewnowski, J.; Łagód, G. Advanced Sensitivity Analysis of the Impact of the Temporal Distribution and Intensity of Rainfall on Hydrograph Parameters in Urban Catchments. Hydrol. Earth Syst. Sci. 2021, 25, 5493–5516. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Zhang, T.; Kang, Y. Effect of DEM Data Sources and Resolutions on Watershed Flood Simulations. J. Hydroelectr. Eng. 2023, 42, 26–40. [Google Scholar]
- Pappenberger, F.; Bartholmes, J.; Thielen, J.; Cloke, H.L.; Buizza, R.; de Roo, A. New Dimensions in Early Flood Warning across the Globe Using Grand-Ensemble Weather Predictions. Geophys. Res. Lett. 2008, 35, L10404. [Google Scholar] [CrossRef]
- Calvello, M.; Finno, R.J. Selecting Parameters to Optimize in Model Calibration by Inverse Analysis. Comput. Geotech. 2004, 31, 410–424. [Google Scholar] [CrossRef]
- Lin, L.; Wu, Z.; Liang, Q. Urban Flood Susceptibility Analysis Using a GIS-Based Multi-Criteria Analysis Framework. Nat. Hazards 2019, 97, 455–475. [Google Scholar] [CrossRef]
- Chang, D.; Li, S.; Lai, Z. Effects of Extreme Precipitation Intensity and Duration on the Runoff and Nutrient Yields. J. Hydrol. 2023, 626, 130281. [Google Scholar] [CrossRef]
- Flores-Rojas, J.L.; Moya-Alvarez, A.S.; Valdivia-Prado, J.M.; Piñas-Laura, M.; Kumar, S.; Abi Karam, H.; Villalobos-Puma, E.; Martínez-Castro, D.; Silva, Y. On the Dynamic Mechanisms of Intense Rainfall Events in the Central Andes of Peru, Mantaro Valley. Atmos. Res. 2021, 248, 105188. [Google Scholar] [CrossRef]
- Liu, L.; Sun, J.; Lin, B. A Large-Scale Waterlogging Investigation in a Megacity. Nat. Hazards 2022, 114, 1505–1524. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, Y.; Fu, Y.; Li, L. Spatiotemporal Variance Assessment of Urban Rainstorm Waterlogging Affected by Impervious Surface Expansion: A Case Study of Guangzhou, China. Sustainability 2018, 10, 3761. [Google Scholar] [CrossRef]
- Diaz-Nieto, J.; Lerner, D.; Saul, A.; Blanksby, J. GIS Water-Balance Approach to Support Surface Water Flood-Risk Management. J. Hydrol. Eng. 2012, 17, 55–67. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Engel, B.A.; Chen, J.; Sun, H. Green Infrastructure Practices Simulation of the Impacts of Land Use on Surface Runoff: Case Study in Ecorse River Watershed, Michigan. J. Environ. Manag. 2019, 233, 603–611. [Google Scholar] [CrossRef]
Subcatchment | Area (ha) | Percent Pervious Cover (PPC) (%) | Average Elevation(m) | Average Slope (°) | Area Proportion of Land-Cover Type a | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 21 | 23 | 3 | 41 | 42 | |||||
sub1 | 7.65 | 21.87 | 54.83 | 23.69 | 0.19 | 0.00 | 0.22 | 0.00 | 0.35 | 0.24 |
sub2 | 10.75 | 22.26 | 50.39 | 8.27 | 0.40 | 0.05 | 0.17 | 0.05 | 0.22 | 0.10 |
sub3 | 11.60 | 10.87 | 55.23 | 23.17 | 0.07 | 0.02 | 0.09 | 0.00 | 0.52 | 0.30 |
sub4 | 7.30 | 38.21 | 55.65 | 19.35 | 0.07 | 0.05 | 0.33 | 0.00 | 0.23 | 0.32 |
sub5 | 4.92 | 11.88 | 47.61 | 2.98 | 0.82 | 0.07 | 0.05 | 0.00 | 0.06 | 0.00 |
sub6 | 1.10 | 18.44 | 47.56 | 1.28 | 0.80 | 0.00 | 0.18 | 0.00 | 0.01 | 0.00 |
Date (Year/Month/Day) | Rainfall Period | Rainfall Duration (h) | Total Rainfall Volume (mm) | Average Rainfall Intensity (mm/h) | Peak Rainfall and Time (mm/h) | Antecedent Dry Days (d) |
---|---|---|---|---|---|---|
1 August 2007 | From 20:00 on 1 August to 0:00 on 2 August | 4 | 148.11 | 37.03 | 162.16 (20:24) | 11 |
6 August 2007 | From 14:30 to 16:00 | 1.5 | 99.40 | 66.27 | 220.99 (15:24) | 1 |
21 July 2012 | From 9:00 on 21 July to 5:00 on 22 July | 20 | 215.00 | 10.75 | 333.49 (19:20) | 10 |
20 July 2016 | From 7:00 on 19 July to 9:00 on 21 July | 50 | 106.00 | 2.12 | 367.36 (12:20) | 4 |
Subcatchment | Mean Pipe Diameter (m) | Total Pipeline Length (m) | Altitude Difference (m) | Drainage Capacity |
---|---|---|---|---|
sub1 | 0.66 | 930.02 | 7.97 | 0.59 |
sub2 | 0.75 | 741.24 | 4.57 | 0.41 |
sub3 | 0.38 | 243.37 | 4.08 | 0.26 |
sub4 | 0.38 | 236.38 | 4.04 | 0.27 |
sub5 | 0.70 | 550.84 | 3.83 | 0.35 |
sub6 | 0.40 | 191.58 | 4.24 | 0.38 |
Date (Year/Month/Day) | No. | Time (Site a) | Flood Depth from Measurements or Other Simulations (m) (Data Source) | Modeled Flood Depth (m) | Absolute Error b (m) | Relative Error c (%) | |
---|---|---|---|---|---|---|---|
1 August 2007 | 1 | 22:38 (B) | 2.0 | (Beijing News) | 1.98 | −0.02 | −1.0 |
6 August 2007 | 1 | 15:10 (A) | 0.2 | (Beijing Flood Control Office) | 0.18 | −0.02 | −10.0 |
2 | 15:20 (A) | 0.5 | 0.48 | −0.02 | −4.0 | ||
3 | 15:40 (B) | 1.7 | 1.51 | −0.19 | −11.2 | ||
4 | 15:40 (C) | 0.2 | 0.20 | 0 | 0 | ||
5 | 17:10 (C) | 0 | 0.06 | 0.06 | / | ||
6 | 18:10 (A) | 0.7 | 0.65 | −0.05 | −7.1 | ||
7 | 18:30 (A) | 0.5 | 0.59 | 0.09 | 18.0 | ||
21 July 2012 | 1 | 19:30 (A) | 0.7–0.8 | (Beijing News) | 0.84 | 0.04–0.14 | 5–20 |
2 | 20:53 (A) | 0.81 | (Li, 2017) [48] | 0.84 | 0.03 | 3.7 | |
3 | 22:39 (B) | 1.50 | (Zhao, 2016) [49] | 1.49 | −0.01 | −0.7 | |
20 July 2016 | / | / | 0 | (Beijing News, Baidu maps) | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Zhang, H.; Zhang, N.; Feng, C. Development of an Integrated Urban Flood Model and Its Application in a Concave-Down Overpass Area. Remote Sens. 2024, 16, 1650. https://doi.org/10.3390/rs16101650
Yan Y, Zhang H, Zhang N, Feng C. Development of an Integrated Urban Flood Model and Its Application in a Concave-Down Overpass Area. Remote Sensing. 2024; 16(10):1650. https://doi.org/10.3390/rs16101650
Chicago/Turabian StyleYan, Yuna, Han Zhang, Na Zhang, and Chuhan Feng. 2024. "Development of an Integrated Urban Flood Model and Its Application in a Concave-Down Overpass Area" Remote Sensing 16, no. 10: 1650. https://doi.org/10.3390/rs16101650
APA StyleYan, Y., Zhang, H., Zhang, N., & Feng, C. (2024). Development of an Integrated Urban Flood Model and Its Application in a Concave-Down Overpass Area. Remote Sensing, 16(10), 1650. https://doi.org/10.3390/rs16101650