Transboundary Central African Protected Area Complexes Demonstrate Varied Effectiveness in Reducing Predicted Risk of Deforestation Attributed to Small-Scale Agriculture
Abstract
:1. Introduction
1.1. Research Questions
- (1)
- Are there significant differences in predicted threat to intact forests caused by deforestation-driver activities, such as small-scale agriculture expansion, between protected and unprotected transboundary forests in Central Africa (e.g., inside versus outside park boundaries)?H1:Predicted risk to intact forests resulting from small-scale agriculture will be lower inside protected area boundaries.
- (2)
- To what extent does a mix of protection categories and resource-use restrictions in a protected area complex influence the predicted threat to intact forests?H2:The magnitude of predicted risk to intact forests resulting from small-scale agriculture will vary depending on the type of protected area and/or resource-use restriction. Preliminary evidence will suggest that the spatial configuration of categories within a protected area complex influences risk magnitude.
- (3)
- As a pilot study, what does the initial evidence suggest for future directions of expanded analyses and research to shed further light on the effectiveness of transboundary-protected area complexes in Central Africa?H3:Evidence will support future research in spatial econometrics and spatial optimization for land use planning and protected areas management.
1.2. Literature Review
2. Materials and Methods
2.1. Study Area
2.2. Data
“Visual interpretation of all points was performed using [Collect Earth Online], using available high-resolution optical image mosaics from Planet. Samples were uploaded to Collect Earth Online for visual interpretation by a group of 60 experts from the project technical committee [that] developed guidelines and agreed definitions … the validation phase [extended] over a period of 5 months, [as] each point was validated by three independent users to avoid user bias.” (p. 5)
Driver | Characteristics | |
---|---|---|
1 | Small-scale agriculture | Small irregular fields, generally less than 5 ha |
2 | Industrial agriculture | Large regular fields of homogenous crops |
3 | Infrastructure | Roads or paths suitable for vehicular traffic |
4 | Settlements | Presence of houses, buildings, huts, or other built-up features |
5 | Artisanal forestry | Forest with small canopy gaps or perforations and felled trees |
6 | Industrial forestry | Large consistent cuts (>5 ha),felled trees and logging roads |
7 | Artisanal mine | Small muddy clearings, often along turbid waterways |
8 | Industrial mine | Extensive infrastructure, open pits, and exposed soils |
2.3. Procedures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Shapiro, A.; d’Annunzio, R.; Desclée, B.; Jungers, Q.; Kondjo, H.K.; Iyanga, J.M.; Gangyo, F.I.; Nana, T.; Obame, C.V.; Kipute, D.D. Small scale agriculture continues to drive deforestation and degradation in fragmented forests in the Congo Basin (2015–2020). Land Use Policy 2023, 134, 106922. [Google Scholar] [CrossRef]
- Justice, C.; Wilkie, D.; Zhang, Q.; Brunner, J.; Donoghue, C. Central African forests, carbon and climate change. Clim. Res. 2001, 17, 229–246. [Google Scholar] [CrossRef]
- Mitchard, E.T.A. The tropical forest carbon cycle and climate change. Nature 2018, 559, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Vieilledent, G.; Grinand, C.; Rakotomalala, F.A.; Ranaivosoa, R.; Rakotoarijaona, J.-R.; Allnutt, T.F.; Achard, F. Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biol. Conserv. 2018, 222, 189–197. [Google Scholar] [CrossRef]
- Branthomme, A.; Merle, C.; Kindgard, A.; Lourenço, A.; Ng, W.; D’Annunzio, R.; Shapiro, A. How Much Do Large-Scale and Small-Scale Farming Contribute to Global Deforestation? FAO: Rome, Italy, 2023. [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Tyukavina, A.; Hansen, M.C.; Potapov, P.; Parker, D.; Okpa, C.; Stehman, S.V.; Kommareddy, I.; Turubanova, S. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 2018, 4, eaat2993. [Google Scholar] [CrossRef]
- Linard, C.; Tatem, A.J.; Gilbert, M. Modelling spatial patterns of urban growth in Africa. Appl. Geogr. 2013, 44, 23–32. [Google Scholar] [CrossRef]
- Bele, M.Y.; Sonwa, D.J.; Tiani, A.-M. Adapting the Congo Basin forests management to climate change: Linkages among biodiversity, forest loss, and human well-being. For. Policy Econ. 2015, 50, 1–10. [Google Scholar] [CrossRef]
- Pendrill, F.; Gardner, T.A.; Meyfroidt, P.; Persson, U.M.; Adams, J.; Azevedo, T.; Bastos Lima, M.G.; Baumann, M.; Curtis, P.G.; De Sy, V.; et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 2022, 377, eabm9267. [Google Scholar] [CrossRef]
- Blom, A. An estimate of the costs of an effective system of protected areas in the Niger Delta? Congo Basin Forest Region. Biodivers. Conserv. 2004, 13, 2661–2678. [Google Scholar] [CrossRef]
- Mora, C.; Sale, P. Ongoing global biodiversity loss and the need to move beyond protected areas: A review of the technical and practical shortcomings of protected areas on land and sea. Mar. Ecol. Prog. Ser. 2011, 434, 251–266. [Google Scholar] [CrossRef]
- Hill, R.; Miller, C.; Newell, B.; Dunlop, M.; Gordon, I.J. Why biodiversity declines as protected areas increase: The effect of the power of governance regimes on sustainable landscapes. Sustain. Sci. 2015, 10, 357–369. [Google Scholar] [CrossRef]
- Cumming, G.S. The relevance and resilience of protected areas in the Anthropocene. Anthropocene 2016, 13, 46–56. [Google Scholar] [CrossRef]
- Tulloch, V.J.; Tulloch, A.I.; Visconti, P.; Halpern, B.S.; Watson, J.E.; Evans, M.C.; Auerbach, N.A.; Barnes, M.; Beger, M.; Chadès, I.; et al. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front. Ecol. Environ. 2015, 13, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Tranquilli, S.; Abedi-Lartey, M.; Abernethy, K.; Amsini, F.; Asamoah, A.; Balangtaa, C.; Blake, S.; Bouanga, E.; Breuer, T.; Brncic, T.M.; et al. Protected Areas in Tropical Africa: Assessing Threats and Conservation Activities. PLoS ONE 2014, 9, e114154. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Penabaz-Wiley, S.; Njeru, A.; Kinoshita, I. Models and Approaches for Integrating Protected Areas with Their Surroundings: A Review of the Literature. Sustainability 2015, 7, 8151–8177. [Google Scholar] [CrossRef]
- Green, J.M.H.; Larrosa, C.; Burgess, N.D.; Balmford, A.; Johnston, A.; Mbilinyi, B.P.; Platts, P.J.; Coad, L. Deforestation in an African biodiversity hotspot: Extent, variation and the effectiveness of protected areas. Biol. Conserv. 2013, 164, 62–72. [Google Scholar] [CrossRef]
- Brodie, J.F.; Mohd-Azlan, J.; Chen, C.; Wearn, O.R.; Deith, M.C.; Ball, J.G.; Slade, E.M.; Burslem, D.F.; Teoh, S.W.; Williams, P.J.; et al. Landscape-scale benefits of protected areas for tropical biodiversity. Nature 2023, 620, 807–812. [Google Scholar] [CrossRef]
- World Database on Protected Areas (WDPA). United Nations Environment World Conservation Monitoring Centre (UNEP-WCMC). 2022. Available online: https://www.unep-wcmc.org/resources-and-data/wdpa (accessed on 30 March 2022).
- Central African Forest Initiative (CAFI). Drivers of Forest Change in Congo Basin. Drivers of Deforestation and Forest Degradation Database. 2022. Available online: https://data.congo.dddafrica.info (accessed on 27 March 2022).
- Rodrigues, A.S.L.; Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 2020, 11, 5147. [Google Scholar] [CrossRef] [PubMed]
- Munanura, I.E.; Backman, K.F.; Sabuhoro, E.; Powell, R.B.; Hallo, J.C. The perceived forms and drivers of forest dependence at Volcanoes National Park, Rwanda. Environ. Sociol. 2018, 4, 343–357. [Google Scholar] [CrossRef]
- Dudley, N.; Parrish, J.D.; Redford, K.H.; Stolton, S. The revised IUCN protected area management categories: The debate and ways forward. Oryx 2010, 44, 485–490. [Google Scholar] [CrossRef]
- Nelson, A.; Chomitz, K.M. Effectiveness of Strict vs. Multiple Use Protected Areas in Reducing Tropical Forest Fires: A Global Analysis Using Matching Methods. PLoS ONE 2011, 6, e22722. [Google Scholar] [CrossRef]
- Stoudmann, N.; Waeber, P.O.; Savilaakso, S.; Wilmé, L.; Kendal, D.; Adams, M. Socioeconomic and environmental impacts of anthropogenic activities within multiple use protected areas: A systematic map protocol. Open Sci. Framew. 2021. [CrossRef]
- Buřivalová, Z.; Hart, S.J.; Radeloff, V.C.; Srinivasan, U. Early warning signs of forest loss in protected areas. Curr. Biol. 2021, 31, 4620–4626.e3. [Google Scholar] [CrossRef]
- Burgess, R.; Costa, F.; Olken, B.A. The power of the state: National borders and the deforestation of the Amazon. Unpubl. Pap. Lond. Sch. Econ. 2016. [Google Scholar] [CrossRef]
- Laurance, W.F.; Carolina Useche, D.; Rendeiro, J.; Kalka, M.; Bradshaw, C.J.A.; Sloan, S.P.; Laurance, S.G.; Campbell, M.; Abernethy, K.; Alvarez, P.; et al. Averting biodiversity collapse in tropical forest protected areas. Nature 2012, 489, 290–294. [Google Scholar] [CrossRef]
- Mason, N.; Ward, M.; Watson, J.E.M.; Venter, O.; Runting, R.K. Global opportunities and challenges for transboundary conservation. Nat. Ecol. Evol. 2020, 4, 694–701. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Peter, B.G.; Messina, J.P.; Lin, Z.; Snapp, S.S. Crop climate suitability mapping on the cloud: A geovisualization application for sustainable agriculture. Sci. Rep. 2020, 10, 15487. [Google Scholar] [CrossRef] [PubMed]
- Chicas, S.D.; Omine, K.; Saqui, P. CLASlite algorithms and social surveys to asses and identify deforestation and forest degradation in Toledo’s protected areas and forest ecosystems, Belize. Appl. Geogr. 2016, 75, 144–155. [Google Scholar] [CrossRef]
- Nyeko, M. GIS and Multi-Criteria Decision Analysis for Land Use Resource Planning. J. Geogr. Inf. Syst. 2012, 4, 341–348. [Google Scholar] [CrossRef]
- Yalew, S.G.; van Griensven, A.; van der Zaag, P. AgriSuit: A web-based GIS-MCDA framework for agricultural land suitability assessment. Comput. Electron. Agric. 2016, 128, 1–8. [Google Scholar] [CrossRef]
- Yan, Y.; Zhuang, Q.; Zan, C.; Ren, J.; Yang, L.; Wen, Y.; Zeng, S.; Zhang, Q.; Kong, L. Using the Google Earth Engine to rapidly monitor impacts of geohazards on ecological quality in highly susceptible areas. Ecol. Indic. 2021, 132, 108258. [Google Scholar] [CrossRef]
- Zolekar, R.B.; Bhagat, V.S. Multi-criteria land suitability analysis for agriculture in hilly zone: Remote sensing and GIS approach. Comput. Electron. Agric. 2015, 118, 300–321. [Google Scholar] [CrossRef]
- Bialowolski, P.; Rakotobe, D.; Marelli, A.; Roggeri, P.; Paolini, C. Use of the IMET tool in the evaluation of protected area management effectiveness in Central Africa. J. Environ. Manag. 2023, 326, 116680. [Google Scholar] [CrossRef]
- Bernhard, K.P.; Shapiro, A.C.; Hunt, C.A. Drivers of tropical deforestation: A global review of methodological approaches and analytical scales. Biodivers. Conserv. 2023. [Google Scholar] [CrossRef]
- Molinario, G.; Hansen, M.C.; Potapov, P.V.; Tyukavina, A.; Stehman, S.; Barker, B.; Humber, M. Quantification of land cover and land use within the rural complex of the Democratic Republic of Congo. Environ. Res. Lett. 2017, 12, 104001. [Google Scholar] [CrossRef]
- Molinario, G.; Hansen, M.; Potapov, P.; Tyukavina, A.; Stehman, S. Contextualizing Landscape-Scale Forest Cover Loss in the Democratic Republic of Congo (DRC) between 2000 and 2015. Land 2020, 9, 23. [Google Scholar] [CrossRef]
- Ferrer Velasco, R.; Köthke, M.; Lippe, M.; Günter, S. Scale and context dependency of deforestation drivers: Insights from spatial econometrics in the tropics. PLoS ONE 2020, 15, e0226830. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.C.; Bernhard, K.P.; Zenobi, S.; Müller, D.; Aguilar-Amuchastegui, N.; d’Annunzio, R. Proximate Causes of Forest Degradation in the Democratic Republic of the Congo Vary in Space and Time. Front. Conserv. Sci. 2021, 2, 690562. [Google Scholar] [CrossRef]
- Mayer, A.L. Family forest owners and landscape-scale interactions: A review. Landsc. Urban Plan. 2019, 188, 4–18. [Google Scholar] [CrossRef]
- De Sy, V.; Herold, M.; Achard, F.; Avitabile, V.; Baccini, A.; Carter, S.; Clevers, J.G.P.W.; Lindquist, E.; Pereira, M.; Verchot, L. Tropical deforestation drivers and associated carbon emission factors derived from remote sensing data. Environ. Res. Lett. 2019, 14, 094022. [Google Scholar] [CrossRef]
- Slagter, B.; Reiche, J.; Marcos, D.; Mullissa, A.; Lossou, E.; Peña-Claros, M.; Herold, M. Monitoring direct drivers of small-scale tropical forest disturbance in near real-time with Sentinel-1 and -2 data. Remote Sens. Environ. 2023, 295, 113655. [Google Scholar] [CrossRef]
- Angelsen, A.; Kaimowitz, D. Rethinking the Causes of Deforestation: Lessons from Economic Models. World Bank Res. Obs. 1999, 14, 73–98. [Google Scholar] [CrossRef]
- Meyfroidt, P. Approaches and terminology for causal analysis in land systems science. J. Land Use Sci. 2016, 11, 501–522. [Google Scholar] [CrossRef]
- Francis, R.A.; Millington, J.D.A.; Perry, G.L.W.; Minor, E.S. The Routledge Handbook of Landscape Ecology, 1st ed.; Routledge: London, UK, 2021. [Google Scholar] [CrossRef]
- Newman, E.A.; Kennedy, M.C.; Falk, D.A.; McKenzie, D. Scaling and Complexity in Landscape Ecology. Front. Ecol. Evol. 2019, 7, 293. [Google Scholar] [CrossRef]
- De Merode, E.; Smith, K.H.; Homewood, K.; Pettifor, R.; Rowcliffe, M.; Cowlishaw, G. The impact of armed conflict on protected-area efficacy in Central Africa. Biol. Lett. 2007, 3, 299–301. [Google Scholar] [CrossRef]
- Butsic, V.; Baumann, M.; Shortland, A.; Walker, S.; Kuemmerle, T. Conservation and conflict in the Democratic Republic of Congo: The impacts of warfare, mining, and protected areas on deforestation. Biol. Conserv. 2015, 191, 266–273. [Google Scholar] [CrossRef]
- Clerici, N.; Armenteras, D.; Kareiva, P.; Botero, R.; Ramírez-Delgado, J.P.; Forero-Medina, G.; Ochoa, J.; Pedraza, C.; Schneider, L.; Lora, C.; et al. Deforestation in Colombian protected areas increased during post-conflict periods. Sci. Rep. 2020, 10, 4971. [Google Scholar] [CrossRef] [PubMed]
- Schoon, M. Governance in Transboundary Conservation: How Institutional Structure and Path Dependence Matter. Conserv. Soc. 2013, 11, 420. [Google Scholar] [CrossRef]
- Indarto, J.; Mutaqin, D.J. An Overview of Theoretical and Empirical Studies on Deforestation. J. Int. Dev. Coop. 2016, 22, 107–120. [Google Scholar]
- Bhattarai, M.; Hammig, M. Institutions and the Environmental Kuznets Curve for Deforestation: A Crosscountry Analysis for Latin America, Africa and Asia. World Dev. 2001, 29, 995–1010. [Google Scholar] [CrossRef]
- Shah, P.; Baylis, K.; Busch, J.; Engelmann, J. What determines the effectiveness of national protected area networks? Environ. Res. Lett. 2021, 16, 074017. [Google Scholar] [CrossRef]
- Landholm, D.M.; Pradhan, P.; Kropp, J.P. Diverging forest land use dynamics induced by armed conflict across the tropics. Glob. Environ. Chang. 2019, 56, 86–94. [Google Scholar] [CrossRef]
- Ondoua Ondoua, G.; Beodo Moundjim, E.; Mambo Marindo, J.C.; Jiagho, R.; Usongo, L.; Williamson, L. An Assessment of Poaching and Wildlife Trafficking in the Garamba-Bili-Chinko Transboundary Landscape; TRAFFIC: Cambridge, UK, 2017. [Google Scholar]
- Raleigh, C.; Linke, A.; Hegre, H.; Karlsen, J. Introducing ACLED: An armed conflict location and event dataset: Special data feature. J. Peace Res. 2010, 47, 651–660. [Google Scholar] [CrossRef]
- Wade, C.M.; Austin, K.G.; Cajka, J.; Lapidus, D.; Everett, K.H.; Galperin, D.; Maynard, R.; Sobel, A. What Is Threatening Forests in Protected Areas? A Global Assessment of Deforestation in Protected Areas, 2001–2018. Forests 2020, 11, 539. [Google Scholar] [CrossRef]
- Bernhard, K.P.; Sabuhoro, E.; Dattilo, J. Colonial Influence on Local Relationships with Leisure and Environment in East Africa: Intersecting Two Literatures to Reflect on Domestic Ecotourism. Int. J. Sociol. Leis. 2022, 5, 445–464. [Google Scholar] [CrossRef]
- Raja, N.B. Colonialism shaped today’s biodiversity. Nat. Ecol. Evol. 2022, 6, 1597–1598. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.H. Environmental colonialism: ‘Saving’ Africa from Africans. Indep. Rev. 2003, 8, 65–86. [Google Scholar]
- Linnell, J.D.C.; Kaczensky, P.; Wotschikowsky, U.; Lescureux, N.; Boitani, L. Framing the relationship between people and nature in the context of European conservation. Conserv. Biol. 2015, 29, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, K.P.; Smith, T.E.L.; Sabuhoro, E.; Nyandwi, E.; Munanura, I.E. Effects of integrated conservation–development projects on unauthorized resource use in Volcanoes National Park, Rwanda: A mixed-methods spatio-temporal approach. Oryx 2021, 55, 613–624. [Google Scholar] [CrossRef]
- McElwee, P. You Say Illegal, I Say Legal: The Relationship Between ‘Illegal’ Logging and Land Tenure, Poverty, and Forest Use Rights in Vietnam. J. Sustain. For. 2004, 19, 97–135. [Google Scholar] [CrossRef]
- Dudley, N.; Groves, C.; Redford, K.H.; Stolton, S. Where now for protected areas? Setting the stage for the 2014 World Parks Congress. Oryx 2014, 48, 496–503. [Google Scholar] [CrossRef]
- Wolf, C.; Levi, T.; Ripple, W.J.; Zárrate-Charry, D.A.; Betts, M.G. A forest loss report card for the world’s protected areas. Nat. Ecol. Evol. 2021, 5, 520–529. [Google Scholar] [CrossRef]
- Pélissier, C.; de Marcken, P.; Cherel, E.; Mapilanga, J. The Protected Area System of the Democratic Republic of Congo: An Evaluation for Its Consolidation and Extension; ICCN and WWF: Berlin, Germany, 2018. [Google Scholar]
- Fay, J.M. Development of a Trinational System of Conservation: A Ten-Year Perspective. Yale Sch. For. Environ. Stud. Bull. Ser. 1998, 102, 253–258. [Google Scholar]
- Sayer, J.; Endamana, D.; Boedhihartono, A.K.; Ruiz-Perez, M.; Breuer, T. Learning from change in the Sangha Tri-National landscape. Int. For. Rev. 2016, 18, 130–139. [Google Scholar] [CrossRef]
- Kamath, V.; Brooks, H.; Naidoo, R.; Brennan, A.; Bertzky, B.; Burgess, N.D.; McDermott Long, O.; Arnell, A.; Bhola, N. Identifying opportunities for transboundary conservation in Africa. Front. Conserv. Sci. 2023, 4, 1237849. [Google Scholar] [CrossRef]
- Cumming, G.S.; Allen, C.R. Protected areas as social-ecological systems: Perspectives from resilience and social-ecological systems theory. Ecol. Appl. 2017, 27, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Petursson, J.G.; Vedeld, P.; Vatn, A. Going Transboundary? An Institutional Analysis of Transboundary Protected Area Management Challenges at Mt Elgon, East Africa. Ecol. Soc. 2013, 18, art28. [Google Scholar] [CrossRef]
- Amahowé, I.O.; Houessou, L.G.; Ashanti, S.; Tehou, A.C. Transboundary protected areas management: Experiences from W-Arly-Pendjari parks in West Africa. PARKS 2013, 19, 95–105. [Google Scholar] [CrossRef]
- Sayer, J.; Sunderland, T.; Ghazoul, J.; Pfund, J.-L.; Sheil, D.; Meijaard, E.; Venter, M.; Boedhihartono, A.K.; Day, M.; Garcia, C.; et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl. Acad. Sci. USA 2013, 110, 8349–8356. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.J.; Pressey, R.L. Measuring the difference made by conservation initiatives: Protected areas and their environmental and social impacts. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140270. [Google Scholar] [CrossRef]
- Schleicher, J.; Peres, C.A.; Amano, T.; Llactayo, W.; Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 2017, 7, 11318. [Google Scholar] [CrossRef]
- Sarathchandra, C.; Dossa, G.G.O.; Ranjitkar, N.B.; Chen, H.; Deli, Z.; Ranjitkar, S.; de Silva, K.H.W.L.; Wickramasinghe, S.; Xu, J.; Harrison, R.D. Effectiveness of protected areas in preventing rubber expansion and deforestation in Xishuangbanna, Southwest China. Land Degrad. Dev. 2018, 29, 2417–2427. [Google Scholar] [CrossRef]
- Rodríguez, N.; Armenteras, D.; Retana, J. Effectiveness of protected areas in the Colombian Andes: Deforestation, fire and land-use changes. Reg. Environ. Chang. 2013, 13, 423–435. [Google Scholar] [CrossRef]
- Vuohelainen, A.J.; Coad, L.; Marthews, T.R.; Malhi, Y.; Killeen, T.J. The Effectiveness of Contrasting Protected Areas in Preventing Deforestation in Madre de Dios, Peru. Environ. Manag. 2012, 50, 645–663. [Google Scholar] [CrossRef]
- Heino, M.; Kummu, M.; Makkonen, M.; Mulligan, M.; Verburg, P.H.; Jalava, M.; Räsänen, T.A. Forest Loss in Protected Areas and Intact Forest Landscapes: A Global Analysis. PLoS ONE 2015, 10, e0138918. [Google Scholar] [CrossRef]
- Renn, O. Three decades of risk research: Accomplishments and new challenges. J. Risk Res. 1998, 1, 49–71. [Google Scholar] [CrossRef]
- Ford, S.A.; Jepsen, M.R.; Kingston, N.; Lewis, E.; Brooks, T.M.; MacSharry, B.; Mertz, O. Deforestation leakage undermines conservation value of tropical and subtropical forest protected areas. Glob. Ecol. Biogeogr. 2020, 29, 2014–2024. [Google Scholar] [CrossRef]
- Liang, M.; González-Roglich, M.; Roehrdanz, P.; Tabor, K.; Zvoleff, A.; Leitold, V.; Silva, J.; Fatoyinbo, T.; Hansen, M.; Duncanson, L. Assessing protected area’s carbon stocks and ecological structure at regional-scale using GEDI lidar. Glob. Environ. Chang. 2023, 78, 102621. [Google Scholar] [CrossRef]
- Bakarr, M.I. Reimagining protected and conserved areas in Africa: Perspectives from the first Africa Protected Areas Congress. Conserv. Lett. 2023, 16, e12944. [Google Scholar] [CrossRef]
- Eklund, J.; Cabeza, M. Quality of governance and effectiveness of protected areas: Crucial concepts for conservation planning: Governance and protected area effectiveness. Ann. N. Y. Acad. Sci. 2017, 1399, 27–41. [Google Scholar] [CrossRef]
- Galvin, K.A.; Beeton, T.A.; Luizza, M.W. African community-based conservation: A systematic review of social and ecological outcomes. Ecol. Soc. 2018, 23, art39. [Google Scholar] [CrossRef]
- Maxime, N.-N.L.; Jiwen, G.; Alphonse, N. Assessment of Socioeconomic Factors and Stakeholders Involved in Dzanga Sangha Complex Protected Area, Central African Republic. J. Sustain. Dev. 2010, 3, p273. [Google Scholar] [CrossRef]
- Funk, S.M.; Nkono, J.; Lushimba, A.; Fa, J.E.; Williams, D. Determining baselines and trends of Eastern chimpanzees and forest elephants in a Central African protected area after civil strife. J. Nat. Conserv. 2022, 70, 126296. [Google Scholar] [CrossRef]
- Sasaki, N.; Putz, F.E. Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv. Lett. 2009, 2, 226–232. [Google Scholar] [CrossRef]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Kleinschroth, F.; Laporte, N.; Laurance, W.F.; Goetz, S.J.; Ghazoul, J. Road expansion and persistence in forests of the Congo Basin. Nat. Sustain. 2019, 2, 628–634. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Global Administrative Unit Layers (GAUL). 2022. Available online: https://data.apps.fao.org/map/catalog/static/search?keyword=HiH_boundaries (accessed on 30 March 2022).
- Grantham, H.S.; Duncan, A.; Evans, T.D.; Jones, K.R.; Beyer, H.L.; Schuster, R.; Walston, J.; Ray, J.C.; Robinson, J.G.; Callow, M.; et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 2020, 11, 5978. [Google Scholar] [CrossRef] [PubMed]
- World Governance Indicators (WGI). World Bank DataBank Washington, DC. 2022. Available online: http://databank.worldbank.org/data/embed/Gov-Indicators/id/f6345e09 (accessed on 30 March 2022).
- Buckley, S.M.; Agram, P.S.; Belz, J.E.; Crippen, R.E.; Gurrola, E.M.; Hensley, S.; Tung, W.W. National Aeronautics and Space Administration (NASA) Digital Elevation Model (NASADEM). 2020. Available online: https://lpdaac.usgs.gov/documents/592/NASADEM_User_Guide_V1.pdf (accessed on 15 April 2022).
- Weiss, D.J.; Nelson, A.; Gibson, H.S.; Temperley, W.; Peedell, S.; Lieber, A.; Hancher, M.; Poyart, E.; Belchior, S.; Fullman, N.; et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 2018, 553, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Ohtaki, T. Generating large-scale high-quality SAR mosaic datasets: Application to PALSAR data for global monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 637–656. [Google Scholar] [CrossRef]
- Hengl, T.; Miller, M.A.E.; Križan, J.; Shepherd, K.D.; Sila, A.; Kilibarda, M.; Antonijević, O.; Glušica, L.; Dobermann, A.; Haefele, S.M.; et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci. Rep. 2021, 11, 6130. [Google Scholar] [CrossRef] [PubMed]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.; Humber, M.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Breiman, L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat. Sci. 2001, 16, 199–231. [Google Scholar] [CrossRef]
- Härdle, W.; Müller, M.; Sperlich, S.; Werwatz, A. Nonparametric and Semiparametric Model; Springer: Berlin, Germany, 2004; Volume 1. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. K-means++ the advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- African Wildlife Foundation (AWF). Securing a Sustainable Future for People and Wildlife in Bili-Uele; African Wildlife Foundation (AWF): Nairobi, Kenya, 2022. [Google Scholar]
- Schonewald-Cox, C.M.; Bayless, J.W. The boundary model: A geographical analysis of design and conservation of nature reserves. Biol. Conserv. 1986, 38, 305–322. [Google Scholar] [CrossRef]
- Crespo Cuaresma, J.; Heger, M. Deforestation and economic development: Evidence from national borders. Land Use Policy 2019, 84, e347–e353. [Google Scholar] [CrossRef]
- Porter-Bolland, L.; Ellis, E.A.; Guariguata, M.R.; Ruiz-Mallén, I.; Negrete-Yankelevich, S.; Reyes-García, V. Community managed forests and forest protected areas: An assessment of their conservation effectiveness across the tropics. For. Ecol. Manag. 2012, 268, 6–17. [Google Scholar] [CrossRef]
Data Layer | Source | Years | Authors’ Note |
---|---|---|---|
Direct Drivers–Validated Drivers of Deforestation Point Layer | Shapiro et al., 2023 [2] | 2015–2020 | Derived dataset from FAO-CAFI with high-quality data for study area using recent time series |
Conflict Fatalities (points) | ACLED Conflict Database, 2022 [63] | 2015–2023 | Most recently available conflict data at time of analysis |
Deforestation and Degradation 2015–2020 Change | CAFI, 2022 [2,23] | 2015–2020 | Derived classification from FAO-CAFI with high-quality imagery for study area |
Land Cover 2015 | Landsat (U.S. Geological Survey) and Sentinel 1 (European Space Agency) | 2015 | Derived land cover classification from FAO-CAFI with high-quality imagery for study area |
Forest Fragmentation 2015 | CAFI, 2022 [2,23]; Soille & Vogt, 2009 [96] | 2015 | Derived classification from FAO-CAFI with high-quality imagery for study area |
Croplands 2019 | Landsat (U.S. Geological Survey) and Sentinel 1 (European Space Agency) | 2019 | Most recently available agricultural classification at time of analysis |
Protected Areas | WDPA, 2022 [22] | 2022 | Comprehensive, up-to-date dataset available for study area at time of analysis |
Roads | CAFI, 2022 [23]; Kleinschroth et al., 2019 [97] | 2019 | Comprehensive, up-to-date dataset available for study area at time of analysis |
Administrative Boundaries Central Africa | FAO Global Administrative Unit Layers [98] | 2022 | Up-to-date dataset available at time of analysis |
Forest Landscape Integrity Index | Grantham et al., 2020 [99] | 2019 | Comprehensive, up-to-date dataset available for study area at time of analysis |
World Governance Indicators—political stability, regulatory quality | World Bank, accessed 2022 [100] | 2015–2020 | Comprehensive, up-to-date dataset available at time of analysis |
DEM | NASA DEM, accessed 2022 [101] | 2022 | Most recently available at time of analysis |
Accessibility to Cities | Weiss et al., 2018 [102] | 2018 | Comprehensive global accessibility data used for comparative purposes alongside road layer |
ALOS-Palsar Mosaic | Japanese Space Agency, JAXA; Shimada & Ohtaki, 2010 [103] | 2015, 2022 | Mosaics used as base data as part of derivation of other layers |
Soil Fertility and Bulk Density | Hengl et al., 2021 [104] | 2021 | Most recently available at time of analysis |
Climate (monthly average, min, max temperature, and precipitation) | Hijmans, et al., 2005 [105] | 2000 | Climate surfaces as base data for derivation of other layers |
Burned Forest Area | Giglio et al., 2018 [106] | 2016–2022 | Derived using MODIS burned area product and the CAFI 2015 forest mask for Central Africa |
Tree Cover | CAFI, 2022 [23] | 2015 | Baseline tree cover for monitoring period [2] |
BUPAC | Mean Value a | Maximum Value | Pixel Count |
---|---|---|---|
Outside park | 124.6 | 6721 | 3104.8 |
Inside park | 155.8 | 7065 | 2914.1 |
t-value | 7.28 *** Overall mean risk values were significantly higher inside park | 1.91 * Maximum risk value was significantly higher inside park | −10.21 *** Non-zero pixel count was significantly lower for outside park, indicating possible areas of higher extremes |
STPAC | Mean value | Maximum value | Pixel count |
Outside park | 78.48 | 4023 | 13,112 |
Inside park | 68.02 | 4317 | 12,362 |
t-value | −3.52 *** Overall mean risk values were significantly lower inside park | 1.93 * Maximum risk value was significantly higher inside park, indicating pockets of higher risk despite overall lower risk inside park | −8.87 *** Non-zero pixel count was significantly lower for outside park, indicating possible areas of higher extremes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernhard, K.P.; Shapiro, A.C.; d’Annunzio, R.; Kabuanga, J.M. Transboundary Central African Protected Area Complexes Demonstrate Varied Effectiveness in Reducing Predicted Risk of Deforestation Attributed to Small-Scale Agriculture. Remote Sens. 2024, 16, 204. https://doi.org/10.3390/rs16010204
Bernhard KP, Shapiro AC, d’Annunzio R, Kabuanga JM. Transboundary Central African Protected Area Complexes Demonstrate Varied Effectiveness in Reducing Predicted Risk of Deforestation Attributed to Small-Scale Agriculture. Remote Sensing. 2024; 16(1):204. https://doi.org/10.3390/rs16010204
Chicago/Turabian StyleBernhard, Katie P., Aurélie C. Shapiro, Rémi d’Annunzio, and Joël Masimo Kabuanga. 2024. "Transboundary Central African Protected Area Complexes Demonstrate Varied Effectiveness in Reducing Predicted Risk of Deforestation Attributed to Small-Scale Agriculture" Remote Sensing 16, no. 1: 204. https://doi.org/10.3390/rs16010204
APA StyleBernhard, K. P., Shapiro, A. C., d’Annunzio, R., & Kabuanga, J. M. (2024). Transboundary Central African Protected Area Complexes Demonstrate Varied Effectiveness in Reducing Predicted Risk of Deforestation Attributed to Small-Scale Agriculture. Remote Sensing, 16(1), 204. https://doi.org/10.3390/rs16010204