Holocene Activity of the Wudaoliang–Changshagongma Fault of the Eastern Tibetan Plateau
Abstract
:1. Introduction
2. Tectonic Setting
3. Data and Methodology
4. Results
4.1. Fault Activity and Slip Rate
4.2. Paleoseismological Investigation
- (1)
- TC1 site
- (2)
- TC2 and TC3 site
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, J.W.; Bai, M.K.; Li, C.; Liu, C.F.; Li, H.B.; Liu, D.L.; Marie-Luce, C.; Wu, K.Z.; Wang, P.; Lu, H.J.; et al. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) MS7.4 earthquake. Acta Geol. Sin. 2021, 95, 1655–1670. [Google Scholar]
- Gai, H.L.; Yao, H.S.; Yang, L.P.; Kang, T.B.; Ying, X.; Cheng, T.; Li, X. Characteristics and causes of coseismic surface rupture triggered by the“5. 22”MS7. 4 Earthquake in Maduo, Qinghai, and their significance. J. Geomech. 2021, 27, 899–912. [Google Scholar]
- Tapponnier, P.; Peltzer, G.; Le Dain, A.Y.; Cobbold, P. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology 1982, 10, 611. [Google Scholar] [CrossRef]
- Zhang, P.-Z.; Shen, Z.; Wang, M.; Gan, W.; Burgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J.; et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809. [Google Scholar] [CrossRef]
- Burchfiel, B.; Royden, L.; Van Der Hilst, R.; Hager, B.; Chen, Z.; King, R.; Li, C.; Lu, J.; Yao, H.; Kirby, E. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China. GSA Today 2008, 18, 4. [Google Scholar] [CrossRef]
- Xu, X.; Keller, G.R.; Gao, R.; Guo, X.; Zhu, X. Uplift of the Longmen Shan area in the eastern Tibetan Plateau: An integrated geophysical and geodynamic analysis. Int. Geol. Rev. 2015, 58, 14–31. [Google Scholar] [CrossRef]
- Wen, X.Z. The 2008 Wenchuan, 2013 Lushan and 2017 Jiuzhaigou Earthquakes, Sichuan, in the last more than one Thousand Years of Rupture History of the Eastern Margin of the Bayan Har Block. Acta Seismol. Sin. 2018, 40, 255–267. [Google Scholar]
- Liang, M.J.; Zhou, R.J.; Yan, L.; ZHAO, G.H.; Guo, H.M. The Relationships Between Neotectonic Activity of The Middle Segment of Dari Fault and Its Geomorphological Response, Qinghai Province, China. Seismol. Geol. 2014, 36, 28–38. [Google Scholar]
- Liang, M.J.; Yang, Y.; Du, F.; Gong, Y.; Sun, W.; Zhao, M.; He, Q. Late Quaternary Activity of The Central Segment of The Dari Fault and Restudy of The Surface Rupture Zone of the 1947 M73/4 Dari Earthquake, Qinghai Province. Seismol. Geol. 2020, 42, 703–714. [Google Scholar]
- Xiong, R.W.; Reng, J.W.; Zhang, J.L.; Yang, P.X.; Li, Z.M.; Hu, C.Z.; Cheng, C.Y. Late Quaternary Active Characteristics of the Gande Segment in the Maduo-Gande Fault Zone. Earthquake 2010, 30, 65–73. [Google Scholar]
- Li, C.X.; Yan, D.Y.; Yang, H.; Xu, X.W. The Tectonic Activity Characteristics of Awancang Fault in the Late Quaternary, the Sub-strand of the Eastern Kunlun fault. Seismol. Geol. 2016, 38, 44–64. [Google Scholar]
- Zhang, Y.M.; Li, M.F.; Meng, Y.Q. Research on Fault Activities and Their Seismogeological Implication in Bayan Har Mountain Area. Res. Act. Fault 1996, 5, 154–171. [Google Scholar]
- Deng, Q.D.; Ran, Y.K.; Yang, X.P. Distribution Map of Active Faults in China (1:4,000,000); Seismological Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Xu, X.W.; Han, Z.J.; Yang, X.P.; Zhang, S.M.; Yu, G.H.; Zhou, B.G.; Li, F.; Ma, B.Q.; Chen, G.H.; Ran, Y.K. Seismotectonic Map in China and Its Adjacent Regions; Seismological Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Wu, Z.H.; Zhou, C.J. Distribution Map of Active Faults in China and Its Adjacent Sea Area (1:5,000,000); Geological Publishing House: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Liu, J.; Cheng, T.; Zhang, P.Z.; Zheng, W.J. Illuminating the active Haiyuan Fault, China by airborne light detection and ranging. Chin. Sci. Bull. 2013, 58, 41–45. [Google Scholar]
- Zielke, O.; Arrowsmith, J.R.; Ludwig, L.G.; Akçiz, S.O. Slip in the 1857 and Earlier Large Earthquakes Along the Carrizo Plain, San Andreas Fault. Science 2010, 327, 1119–1122. [Google Scholar] [CrossRef]
- Klinger, Y.; Etchebes, M.; Tapponnier, P.; Narteau, C. Characteristic slip for five great earthquakes along the Fuyun fault in China. Nat. Geosci. 2011, 4, 389–392. [Google Scholar] [CrossRef]
- Zielke, O.; Klinger, Y.; Arrowsmith, J.R. Fault slip and earthquake recurrence along strike-slip faulits-contributions of high-resolution geomorphic data. Tectophysics 2015, 638, 43–62. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, Z.; Chen, T.; Yan, S.; Yin, J.; Zhang, P.; Zheng, W.; Zhang, H.; Li, C. Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes. Geol. Soc. Am. Bull. 2015, 128, 3–18. [Google Scholar] [CrossRef]
- Liu, J.R.; Ren, Z.K.; Zhang, H.P.; Li, C.Y.; Zhang, Z.Q.; Zheng, W.J.; Li, X.M.; Liu, C.C. Late Quaternary slip rate of the Laohushan fault within the Haiyuan fault zone and its tectonic implications. Chin. J. Geophys. 2018, 61, 1281–1297. [Google Scholar]
- Hudnut, K.W.; Borsa, A.; Glennie, C.; Minster, J.B. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California, Earthquake (Mw 7.1) from airborne laser swath mapping. Bull. Seismol. Soc. Am. 2002, 92, 1570–1576. [Google Scholar] [CrossRef]
- Oskin, M.E.; Arrowsmith, J.R.; Corona, A.H.; Elliott, A.J.; Fletcher, J.M.; Fielding, E.J.; Gold, P.O.; Garcia, J.J.; Hudnut, K.W.; Liu, J.; et al. Near-field deformation from the EI Mayor-Cucapah earthquake revealed by differential LIDAR. Science 2012, 335, 702–705. [Google Scholar] [CrossRef]
- Zielke, O.; Arrowsmith, J.R. LaDiCaoz and LiDAR imager-MATLAB GUIs for LiDAR data handling and lateral displacement measurement. Geosphere 2012, 8, 206–221. [Google Scholar] [CrossRef]
- Bemis, S.P.; Micklethwaite, S.; Turner, D.C.; James, M.R.D.; Akciz, S.E.; Thiele, S.T.; Bangash, H.A. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 2014, 69, 163–178. [Google Scholar] [CrossRef]
- Angster, S.; Wesnousky, S.; Huang, W.; Kent, G.; Nakata, T.; Goto, H. Application of UAV Photography to Refining the Slip Rate on the Pyramid Lake Fault Zone, Nevada. Bull. Seism. Soc. Am. 2016, 106, 785–798. [Google Scholar] [CrossRef]
- Enkelmann, E.; Weislogel, A.; Ratschbacher, L.; Eide, E.; Renno, A.; Wooden, J. How was the Triassic Songpan-Ganzi basin filled? A provenance study. Tectonics 2007, 26, 4007. [Google Scholar] [CrossRef]
- Zhang, K.X.; Wang, G.C.; Cheng, F.N.; Xu, Y.D.; Luo, M.S.; Guan, X.H.; Zhao, L.S. Coupling bet ween the Uplift of Qinghai-Tibet Plateau and Distribution of Basins of Paleogene -Neogene. Earth Sci. 2007, 32, 583–597. [Google Scholar]
- Chen, S.J.; Li, R.S.; Ji, W.H.; Zhao, Z.M.; Li, G.D.; Liu, R.L.; Dai, C.G.; Zhu, Y.T. Lithostratigraphy Character and Tectonic-Evolvement of Permian-Trias in the Bayankala Tectonic Belt. Earth Sci. 2011, 36, 393–408. [Google Scholar]
- Ding, L.; Yang, D.; Cai, F.L.; Pullen, A.; Kapp, P.; Gehrels, G.E.; Zhang, L.Y.; Zhang, Q.H.; Lai, Q.Z.; Yue, Y.H.; et al. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics 2013, 32, 34–48. [Google Scholar] [CrossRef]
- Roger, F.; Jolivet, M.; Malavieille, J. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present: A synthesis. J. Asian Earth Sci. 2010, 39, 254–269. [Google Scholar] [CrossRef]
- Song, B.W.; Zhang, K.X.; Xu, Y.D.; Hou, Y.F.; Ji, J.L.; Luo, M.S. Paleogene Tectonic-Stratigraphic Realms and Sedimentary Sequence in China. Earth Sci. 2020, 45, 4352–4369. [Google Scholar]
- Shen, Z.-K.; Lü, J.; Wang, M.; Burgmann, R. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res. Solid Earth 2005, 110, B11409. [Google Scholar] [CrossRef]
- Xu, X.W.; Weng, X.Z.; Cheng, G.H.; Yu, G.H. Discovery of the Longriba Fault Zone in Eastern Bayan Har Block, China and Its Tectonic Implication. Sci. China Ser. D Earth Sci. 2008, 38, 529–542. [Google Scholar] [CrossRef]
- Ren, J.; Xu, X.; Yeats, R.S.; Zhang, S. Latest Quaternary paleoseismology and slip rates of the Longriba fault zone, eastern Tibet: Implications for fault behavior and strain partitioning. Tectonics 2013, 32, 216–238. [Google Scholar] [CrossRef]
- Chen, C.Y.; Ren, W.G.; Meng, G.J.; Yang, P.X.; Hu, C.Z.; Su, X.N.; Su, J.F. Division, deformation and tectonic implication of active blocksin the eastern segment of Bayan Harblock. Chin. J. Geophys. 2013, 56, 4125–4141. [Google Scholar]
- Johnson, K.; Nissen, E.; Saripalli, S.; Arrowsmith, J.R.; Mcgarey, P.; Scharer, K.; Williams, P.; Blisniuk, K. Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere 2014, 10, 969–986. [Google Scholar] [CrossRef]
- Bi, H.Y.; Zheng, W.J.; Zeng, J.Y.; Yu, J.X.; Ren, Z.K. Application of SfM photogrammetry method to the quantitative study of active tectonics. Seismol. Geol. 2017, 39, 656–674. [Google Scholar]
- Sun, W.; He, H.L.; Wei, Z.Y.; Gao, W.; Sun, H.Y.; Zou, J.J. Interpretation and analysis of the fine fault geometry based on high-resolution DEM data derived from UAV photogrammetric technique: A case study of Tangjiapo site on the Haiyuan fault. Seismol. Geol. 2019, 41, 1350–1365. [Google Scholar]
- Liang, M.; Wu, W.; Yang, Y.; Du, F.; Zhou, W.; Zuo, H.; Liao, C.; Liu, S.; Zhang, H. Late Quaternary fault activity and deformation mechanism in the eastern Tibet Plateau (Dari fault, Bayan Har Block). Quat. Int. 2022, 656, 26–36. [Google Scholar] [CrossRef]
- Zhan, Y.; Liang, M.J.; Sun, X.Y.; Huang, F.P.; Zhao, L.Q.; Gong, Y.; Han, J.; Li, C.X.; Zhang, P.Z.; Zhang, H.P. Deep structure and seisogenic pattern of the 2021.5.22 Madoi (Qinghai) Ms7.4 earthquake. Chin. J. Geophys. 2021, 64, 2232–2252. [Google Scholar]
- Wang, M.; Shen, Z.-K. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
Sample Number | Longitude (°) | Latitude (°) | Lab. Number | Sample Material | 13C/12C (o/oo) | Measured Radiocarbon Age (a BP) | Conventional Radiocarbon Age (cal BP) |
---|---|---|---|---|---|---|---|
WC2022-1 | 98.14678 | 33.44694 | 642816 | Organic sediment | −23.6 | 6670 ± 30 | 7615–7486 |
WC2022C-1 | 98.39852 | 33.29580 | 642820 | Organic sediment | −23.0 | 2980 ± 30 | 3265–3106 |
WCTC-C14-01 | 98.30482 | 33.36158 | 607291 | Organic sediment | −20.4 | 12,430 ± 40 | 15,052–14,782 |
WCTC-C14-04 | 98.30482 | 33.36158 | 612632 | Organic sediment | −23.2 | 4370 ± 30 | 5052–4862 |
WCTC-C14-06 | 98.30482 | 33.36158 | 607292 | Organic sediment | −23.4 | 3830 ± 30 | 4409–4225 |
WCTC-C14-08 | 98.30482 | 33.36158 | 612633 | Organic sediment | −22.6 | 830 ± 30 | 800–688 |
WCTC-C14-12 | 98.30482 | 33.36158 | 607293 | Organic sediment | −24.9 | 670 ± 30 | 673–628 |
WCTC-02 | 98.31697 | 33.35455 | 607294 | Organic sediment | −23.6 | 37,480 ± 340 | 42,378–41,631 |
WCTC-05 | 98.31697 | 33.35455 | 612634 | Organic sediment | −23.9 | 28,900 ± 140 | 33,935–32,975 |
WCTC-06 | 98.31697 | 33.35455 | 642812 | Organic sediment | −23.1 | 38,820 ± 480 | 43,007–42,203 |
WCTC-11 | 98.31676 | 33.35509 | 642814 | Organic sediment | −22.9 | 16,830 ± 50 | 20,517–20,258 |
WCTC-12 | 98.31676 | 33.35509 | 642815 | Organic sediment | −22.9 | 17,250 ± 50 | 20,979–20,663 |
WCTC-14 | 98.31676 | 33.35509 | 607295 | Organic sediment | −24.0 | 2520 ± 30 | 2598–2496 |
Unit No. | Description |
---|---|
U1 | A yellow–brown gravel layer, and the gravel has an angular shape. The unit represents a diluvial deposit facies. |
U2 | A variegated sandy gravel layer (U2-1), partly deposited as lens-shaped sand layers (U2-2). The unit also represents a diluvial deposit facies. |
U3 | A khaki gravel layer, which is exposed only on the northeast side of the trench and pinches out toward the southwest. |
U4 | Divided into two subunits (Figure 9): unit U4-1 is a brick red, lens-shaped sand layer, and unit U4-2 is composed of sandy soil layers with some small gravels. The unit is a sag pond deposit facies. |
U5 | A dark-brown soil layer with many organic materials. |
Unit No. | Description |
---|---|
U1 | Deposited gravel that came from shallow metamorphic slate. |
U2 | A dark-gray sand layer with small amounts of gravel. |
U3 | A brick-red, lens-shaped sand layer. |
U4 | A yellow sandy gravel layer. |
U5 | A yellow sandy gravel layer with some interlayered gray sandy gravel. |
U6 | Gray sandy gravel layers and gravel layers deposited rhythmically. |
U7 | A variegated deposition of mixed sand and gravel, exposed only in trench TC2. |
U8 | A yellow–brown sandy soil layer. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, M.; Dong, Y.; Liao, C.; Qin, Y.; Zhang, H.; Wu, W.; Zuo, H.; Zhou, W.; Xiong, C.; Yang, L.; et al. Holocene Activity of the Wudaoliang–Changshagongma Fault of the Eastern Tibetan Plateau. Remote Sens. 2023, 15, 2458. https://doi.org/10.3390/rs15092458
Liang M, Dong Y, Liao C, Qin Y, Zhang H, Wu W, Zuo H, Zhou W, Xiong C, Yang L, et al. Holocene Activity of the Wudaoliang–Changshagongma Fault of the Eastern Tibetan Plateau. Remote Sensing. 2023; 15(9):2458. https://doi.org/10.3390/rs15092458
Chicago/Turabian StyleLiang, Mingjian, Yun Dong, Cheng Liao, Yulong Qin, Huiping Zhang, Weiwei Wu, Hong Zuo, Wenying Zhou, Changli Xiong, Li Yang, and et al. 2023. "Holocene Activity of the Wudaoliang–Changshagongma Fault of the Eastern Tibetan Plateau" Remote Sensing 15, no. 9: 2458. https://doi.org/10.3390/rs15092458
APA StyleLiang, M., Dong, Y., Liao, C., Qin, Y., Zhang, H., Wu, W., Zuo, H., Zhou, W., Xiong, C., Yang, L., Gong, Y., & Li, T. (2023). Holocene Activity of the Wudaoliang–Changshagongma Fault of the Eastern Tibetan Plateau. Remote Sensing, 15(9), 2458. https://doi.org/10.3390/rs15092458