Inversion and Validation of FY-4A Official Land Surface Temperature Product
Abstract
:1. Introduction
2. Data and Preprocessing
2.1. AGRI Data
2.2. Atmospheric Profiles and WVC Data
2.3. Validation Data
3. Methods
3.1. Processing Framework
3.2. Algorithms Simulation
3.2.1. Candidate Algorithms
3.2.2. Simulation Deploys
3.3. Official Algorithm Establish
3.3.1. WVC Categories
3.3.2. Calculation of LSE
3.3.3. Sensitivity Analyses
- LSE Uncertainty
- WVC Uncertainty
3.4. Validation and Analysis
4. Results and Analysis
4.1. Selection of Preferred Algorithm
4.2. Sensitivity Analysis
4.2.1. Emissivity Sensitivity Analysis
4.2.2. WVC Sensitivity Analysis
4.3. Retrieval Results
4.4. Validation
4.4.1. Validation with the In-Situ Data
4.4.2. Comparison with the MODIS LST
- Bias spatial distribution.
- Bias Long-Time Change in Single Site.
5. Discussion
5.1. Representativeness of the In-Situ Observation
5.2. Cloud Contamination
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, C.; Li, H. Assimilating Satellite Land Surface States Data from Fengyun-4A. Sci. Rep. 2019, 9, 19567. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.X.; Yang, H.; Zhang, P.; Tang, S.H.; Lu, Q.F. Retrieval of Land Surface Temperature and Dynamic Monitoring of a High Temperature Weather Process Based on FY-3A/VIRR Data. J. Appl. Meteorol. 2012, 23, 214–222. [Google Scholar]
- Liang, S.L. Comprehensive Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 264–283. ISBN 9780128032213. [Google Scholar] [CrossRef]
- Yu, Y.; Tarpley, D.; Privette, M.D.; Goldberg, M.K.; Raja, R.V.; Vinnikov, K.; Xu, H. Developing algorithm for operational GOES-R land surface, temperature product. IEEE Trans. Geosci. Remote Sens. 2009, 47, 936–951. [Google Scholar]
- Zhang, P.; Zhu, L.; Tang, S.; Gao, L.; Chen, L.; Zheng, W.; Han, X.; Chen, J.; Shao, J. General Comparison of FY-4A/AGRI with other GEO/LEO instruments and its potential and challenges in non-meteorological applications. Front. Earth Sci. 2019, 6, 224. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, L.; Xian, D.; Xu, Z.; Guan, M. Update on Fengyun meteorological satellite program and development. Chin. J. Space Sci. 2020, 40, 884–897. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, F.; Fang, X.; Tang, S.; Zhang, X.; Xu, Y.; Han, W.; Nie, S.; Shen, Y.; Zhou, Y. Application and Development of FY-4 Meteorological Satellite. Aerosp. Shanghai 2017, 4, 8–19. [Google Scholar]
- Min, M.; Wu, C.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorol. Res. 2017, 31, 708–719. [Google Scholar] [CrossRef]
- Xian, D.; Zhang, P.; Gao, L.; Sun, R.J.; Zhang, H.Z.; Jia, X. Fengyun meteorological satellite products for earth system science applications. Adv. Atmos. Sci. 2021, 38, 1267–1284. [Google Scholar] [CrossRef]
- Wang, L.J.; Guo, N.; Wang, W.; Zuo, H. Optimization of the Local Split-Window Algorithm for FY-4A Land Surface Temperature Retrieval. Remote Sens. 2019, 11, 2016–2030. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z.L. Towards a local split window method over land surfaces. Int. J. Remote Sens. 1990, 11, 369–393. [Google Scholar] [CrossRef]
- Wan, Z.M.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- Gillespie, A.R.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Zhou, S.; Cheng, J. An Improved Temperature and Emissivity Separation Algorithm for the Advanced Himawari Imager. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7105–7124. [Google Scholar] [CrossRef]
- Li, Z.; Duan, S.; Tang, B.; Wu, H.; Ren, H.; Yan, G.; Tang, R.; Leng, P. Review of methods for land surface temperature derived from thermal infrared remotely sensed data. J. Remote Sens. 2016, 20, 899–920. [Google Scholar]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.L. Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 2004, 25, 261–274. [Google Scholar] [CrossRef]
- Dong, L.X.; Tang, S.H.; Cosh, M.H.; Zhao, P.; Lu, P.T.; Zhou, K.S.; Han, S.; Min, M.; Xu, N.; Chen, L.; et al. Studying Soil Moisture and Temperature on The Tibetan Plateau: Initial Results of An Integrated, Multiscale Observatory. IEEE Geosci. Remote Sens. Mag. 2020, 8, 18–36. [Google Scholar] [CrossRef]
- Meng, X.; Cheng, J.; Zhao, S.; Liu, S.; Yao, Y. Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm. Remote Sens. 2019, 11, 155. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. Land-surface temperature measurement from space: Physical principles and inverse modeling. IEEE Trans. Geosci. Remote Sens. 1989, 27, 268–278. [Google Scholar]
- National Research Council. Review of NOAA’s Plan for the Scientific Stewardship Program; Nat. Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Yu, Y.; Privette, J.P.; Pinheiro, A.C. Evaluation of split-window land surface temperature algorithms for generating climate data records. IEEE Trans. Geosci. Remote Sens. 2008, 46, 179–192. [Google Scholar] [CrossRef]
- Prata, A.J.; Platt, C.M.R. Land surface temperature measurements from the AVHRR. In Proceedings of the 5th AVHRR Data Users’ Meeting, Tromso, Norway, 25–28 June 1991; pp. 438–443, EUM P09. [Google Scholar]
- Ulivieri, C.; Castronouvo, M.M.; Francioni, R.; Cardillo, A. A SW algorithm for estimating land surface temperature from satellites. Adv. Space Res. 1992, 14, 59–65. [Google Scholar] [CrossRef]
- Vidal, A. Atmospheric and emissivity correction of land surface tempera-ture measured from satellite using ground measurements or satellite data. Int. J. Remote Sens. 1991, 12, 2449–2460. [Google Scholar] [CrossRef]
- Price, J.C. Land surface temperature measurements from the split window channels of the NOAA-7/AVHRR. J. Geophys. Res. 1984, 89, 7231–7237. [Google Scholar] [CrossRef]
- Ulivieri, C.; Cannizzaro, G. Land surface temperature retrievals from satellite measurements. Acta Astronaut. 1985, 12, 985–997. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, C.; Sobrino, J.A.; Valor, E. On the atmospheric dependence of the split-window equation for land surface temperature. Int. J. Remote Sens. 1994, 15, 1915–1932. [Google Scholar] [CrossRef]
- Walton, C.C.; Pichel, W.G.; Sapper, J.F.; May, D.A. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. 1998, 103, 27999–28012. [Google Scholar] [CrossRef]
- McClain, E.P.; Pichel, W.G.; Walton, C.C. Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res. 1985, 90, 11587–11601. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.; Feng, Y.Z. Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Dong, L.X.; Hu, J.Y.; Tang, S.H.; Min, M. Field Validation of GLASS Land-Surface Broadband Emissivity Database Using Pseudo-Invariant Sand Dune Sites in Northern China. Int. J. Digit. Earth 2013, 20, 1123–1126. [Google Scholar] [CrossRef]
- Rubio, E.; Caselles, V.; Badenas, C. Emissivity measurements of several soils and vegetation types in the 8-14 um wave band: Analysis of two field methods. Remote Sens. Environ. 1997, 59, 14–37. [Google Scholar] [CrossRef]
- Zeng, X.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S.; Qi, J. Derivation and evolution of global 1-KM fractional vegetation cover data for land modeling. J. Appl. Meteorol. 2000, 39, 826–839. [Google Scholar] [CrossRef]
Wave-Length (µm) | Sensitivity (300 K) | Spatial Resolution (m) | Temporal Resolution | Main Application |
---|---|---|---|---|
8.0–9.0 | NEΔT ≤0.2 K | 4000 | 15 min, Hourly | Cloud, Water vapor |
10.3–11.3 (B4) | NEΔT ≤0.2 K | 4000 | 15 min, Hourly | Land/water/cloud temperature |
11.5–12.5 (B5) | NEΔT ≤0.2 K | 4000 | 15 min, Hourly |
Site Name | Code | Latitude | Longitude | Land Cover Type | Data Period | |
---|---|---|---|---|---|---|
NaQu | NQ | 92.1212 | 31.817 | Alpine meadow | 2015–2019 | |
HeBi | Pixel1 | H26 | 114.482 | 35.669 | Cropland | 2020 May to December |
K12 | 114.464 | 35.676 | 2020 January to December | |||
K14 | 114.487 | 35.674 | 2020 July to December | |||
Pixel2 | K34 | 114.484 | 35.655 | 2020 April to December | ||
K44 | 114.481 | 35.648 | 2020 May to December | |||
K54 | 114.481 | 35.638 | 2020 May to December | |||
XiLingHaoTe | XLHT | 116.117 | 43.950 | City | MODIS 2020 | |
GuaiZiHu | GZH | 102.367 | 41.367 | Desert | MODIS 2020–2021 |
Sites/Date | 2 February 2021 | 19 March 2021 | 20 April 2021 | 22 May 2021 | 7 June 2021 | 26 August 2021 | 11 November 2021 | |
HB | Pixel1 | 0.7907 | 1.4084 | 1.4555 | 1.5980 | 1.5819 | 0.6915 | 0.9542 |
Pixel2 | 1.2384 | 1.8966 | 2.2271 | 2.5338 | 1.9944 | 1.1132 | 0.9447 | |
Sites/Date | 20210213 | 20210301 | 20210415 | 20210504 | / | 20210805 | 20211112 | |
NQ | 3.0933 | 3.3734 | 4.1099 | 2.6176 | / | 3.6166 | 4.4586 |
NO | Candidate Algorithms | Reference of These Algorithm |
---|---|---|
1 | Wan and Dozier 1996 [12] | |
2 | Prata and Platt 1991 [21] | |
3 | Coll et al. 1994 [26] | |
4 | Vidal 1991 [23] | |
5 | Price 1984 [24] | |
6 | Ulivieri and Cannizzaro 1985 [25] | |
7 | Ulivieri et al. 1992 [22] |
WVC Subclass | Algorithms | Daytime | Nighttime | |||
---|---|---|---|---|---|---|
Dry | Moist | Dry | Moist | |||
Daytime | dry | Uliveri (1985) | 0.720 | 1.443 | / | |
Wan and Dozier(1996) | 0.529 | 1.349 | ||||
Vidal (1991) | 0.543 | 1.418 | ||||
moist | Uliveri (1985) | 1.923 | 1.8019 | |||
Wan and Dozier(1996) | 1.834 | 1.7634 | ||||
Vidal (1991) | 1.844 | 1.7744 | ||||
Nighttime | dry | Uliveri (1985) | / | 1.1365 | 1.558 | |
Wan and Dozier(1996) | 1.0055 | 1.457 | ||||
Vidal (1991) | 1.0141 | 1.372 | ||||
moist | Uliveri (1985) | 1.227 | 1.1738 | |||
Wan and Dozier(1996) | 1.201 | 1.1157 | ||||
Vidal (1991) | 1.211 | 1.1301 |
Type | C | A1 | A2 | A3 | D |
---|---|---|---|---|---|
Daytime dry | 45.258 | 0.985 | 1.332 | −41.750 | 0.035 |
Daytime moist | 52.651 | 0.931 | 2.408 | −35.962 | −0.219 |
Nighttime dry | 44.598 | 0.990 | 1.065 | −41.897 | 0.246 |
Nighttime moist | 61.992 | 0.892 | 2.722 | −33.987 | −0.285 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Tang, S.; Wang, F.; Cosh, M.; Li, X.; Min, M. Inversion and Validation of FY-4A Official Land Surface Temperature Product. Remote Sens. 2023, 15, 2437. https://doi.org/10.3390/rs15092437
Dong L, Tang S, Wang F, Cosh M, Li X, Min M. Inversion and Validation of FY-4A Official Land Surface Temperature Product. Remote Sensing. 2023; 15(9):2437. https://doi.org/10.3390/rs15092437
Chicago/Turabian StyleDong, Lixin, Shihao Tang, Fuzhou Wang, Michael Cosh, Xianxiang Li, and Min Min. 2023. "Inversion and Validation of FY-4A Official Land Surface Temperature Product" Remote Sensing 15, no. 9: 2437. https://doi.org/10.3390/rs15092437