Land Subsidence in the Singapore Coastal Area with Long Time Series of TerraSAR-X SAR Data
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methodology
3.1. Two-Layer Network PS-InSAR
3.2. Coastline Detection
4. Results and Accuracy Assessment
4.1. Historical Land Reclamation
4.2. Land Subsidence
4.3. Accuracy Assessment
5. Discussions
5.1. Subsidence Mechanisms
5.2. Inundation Scenarios
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Zhong, M.; Zhong, Y.L. Global mean sea level variations and the land water cycle at the inter-annual scale during the 2014-2016 El Niño episode. Chin. Sci. Bull. 2017, 62, 2116–2124. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A.; Matthews, A.P.; Spada, G. Trends and acceleration in global and regional sea levels since 1807. Glob. Planet. Chang. 2014, 113, 11–22. [Google Scholar] [CrossRef]
- Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 2015, 517, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateos, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P.; et al. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Wang, Y.; Balz, T. Beijing land subsidence revealed using PS-InSAR with long time series TerraSAR-X SAR data. Remote Sens. 2022, 14, 2529. [Google Scholar] [CrossRef]
- Malik, K.; Kumar, D.; Perissin, D. Assessment of subsidence in Delhi NCR due to groundwater depletion using TerraSAR-X and persistent scatterers interferometry. Imaging Sci. J. 2019, 67, 1–7. [Google Scholar] [CrossRef]
- Widada, S.; Zainuri, M.; Yulianto, G.; Satriadi, A.; Wijaya, Y.J. Estimation of land subsidence using sentinel image analysis and its relation to subsurface lithology based on resistivity data in the coastal area of Semarang City, Indonesia. J. Ecol. Eng. 2020, 21. [Google Scholar] [CrossRef]
- Azarakhsh, Z.; Azadbakht, M.; Matkan, A. Estimation, modeling, and prediction of land subsidence using Sentinel-1 time series in Tehran-Shahriar plain: A machine learning-based investigation. Remote Sens. Appl. Soc. Environ. 2022, 25, 100691. [Google Scholar] [CrossRef]
- Kooi, H. Land subsidence due to compaction in the coastal area of the Netherlands: The role of lateral fluid flow and constraints from well-log data. Glob. Planet. Chang. 2000, 27, 207–222. [Google Scholar] [CrossRef]
- Takagi, H.; Esteban, M.; Mikami, T.; Pratama, M.B.; Valenzuela, V.P.B.; Avelino, J.E. People’s perception of land subsidence, floods, and their connection: A note based on recent surveys in a sinking coastal community in Jakarta. Ocean Coast. Manag. 2021, 211, 105753. [Google Scholar] [CrossRef]
- Wu, P.C.; Wei, M.; D’Hondt, S. Subsidence in coastal cities throughout the world observed by InSAR. Geophys. Res. Lett. 2022, 49, e2022GL098477. [Google Scholar] [CrossRef]
- Buzzanga, B.; Bekaert, D.P.; Hamlington, B.D.; Sangha, S.S. Toward sustained monitoring of subsidence at the coast using InSAR and GPS: An application in Hampton Roads, Virginia. Geophys. Res. Lett. 2020, 47, e2020GL090013. [Google Scholar] [CrossRef]
- Hakim, W.L.; Achmad, A.R.; Lee, C.W. Land subsidence susceptibility mapping in jakarta using functional and meta-ensemble machine learning algorithm based on time-series InSAR data. Remote Sens. 2020, 12, 3627. [Google Scholar] [CrossRef]
- Malik, K.; Kumar, D.; Perissin, D.; Pradhan, B. Estimation of ground subsidence of New Delhi, India using PS-InSAR technique and Multi-sensor Radar data. Adv. Space Res. 2022, 69, 1863–1882. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, R.; Shama, A.; Li, S.; Xie, L.; Lv, J.; Fu, Y.; Wu, R.; Liu, G. Ground deformation pattern analysis and evolution prediction of Shanghai Pudong International Airport based on PSI long time series observations. Remote Sens. 2022, 14, 610. [Google Scholar] [CrossRef]
- Tang, W.; Zhan, W.; Jin, B.; Motagh, M.; Xu, Y. Spatial variability of relative sea-level rise in Tianjin, China: Insight from InSAR, GPS, and tide-gauge observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2621–2633. [Google Scholar] [CrossRef]
- Ng, W.S.; Mendelsohn, R. The impact of sea level rise on Singapore. Environ. Dev. Econ. 2005, 10, 201–215. [Google Scholar] [CrossRef]
- Catalao, J.; Raju, D.; Fernandes, R.M.S. Mapping vertical land movement in Singapore using InSAR GPS. ESA Spec. Publ. 2013, 722, 54. [Google Scholar]
- Wan, Q.; Liew, S.C.; Kwoh, L.K. Persistent scatterer InSAR for ground deformation mapping using ALOS PALSAR data: A case study in Singapore. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; 2014; pp. 441–444. [Google Scholar]
- Catalao, J.; Raju, D.; Nico, G. InSAR maps of land subsidence and sea level scenarios to quantify the flood inundation risk in coastal cities: The case of Singapore. Remote Sens. 2020, 12, 296. [Google Scholar] [CrossRef]
- Tkalich, P.; Vethamony, P.; Luu, Q.H.; Babu, M.T. Sea level trend and variability in the Singapore Strait. Ocean Sci. 2013, 9, 293–300. [Google Scholar] [CrossRef]
- Suresh, K. Singapore’s national climate change strategy. In Crucial Issues in Climate Change and the Kyoto Protocol: Asia and the World; World Scientific Publishing Company: Singapore, 2010; pp. 373–382. [Google Scholar]
- Tkalich, P.; Vethamony, P.; Babu, M.T.; Pokratath, P. Seasonal Sea Level Variability and Anomalies in the Singapore Strait. In Proceedings of the International Conference in Ocean Engineering, ICOE 2009 IIT Madras, Chennai, India, 1–5 February 2009. [Google Scholar]
- Chew, S.Y.; Wei, J. Major reclamation scheme for Marina city, Singapore. In Coastal Engineering 1980; ASCE: Online, 1980; pp. 2245–2260. [Google Scholar]
- Sharma, J.S.; Chu, J.; Zhao, J. Geological and geotechnical features of Singapore: An overview. Tunn. Undergr. Space Technol. 1999, 14, 419–431. [Google Scholar] [CrossRef]
- European Space Agency, Sinergise. Copernicus Global Digital Elevation Model; OpenTopography: San Diego, CA, USA, 2021. [Google Scholar] [CrossRef]
- Werninghaus, R.; Buckreuss, S. The TerraSAR-X mission and system design. IEEE Trans. Geosci. Remote Sens. 2009, 48, 606–614. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W. Harnessing the GPS data explosion for interdisciplinary science. Eos 2018, 99. [Google Scholar] [CrossRef]
- Arulrajah, A.; Bo, M.W. Characteristics of Singapore marine clay at Changi. Geotech. Geol. Eng. 2008, 26, 431–441. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Zhou, B. Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; Volume 2. [Google Scholar] [CrossRef]
Parameters | Description |
---|---|
Product Type | SLC |
Imagine Mode | Stripmap |
Operating Band | X |
Wavelength (cm) | 3.1 |
Polarization | HH |
Orbit direction | Ascending |
Spatial resolution (m) | 3 |
No. of images | 48 |
Time range | 18 February 2015–31 October 2019 |
Image Number | Satellite | Acquisition Date | Cloudiness (%) | Spatial Resolution |
---|---|---|---|---|
1 | Landsat 1 | 17 October 1973 | 5.00 | 60 m |
2 | Landsat 4 | 3 July 1989 | 6.00 | 60 m |
3 | Landsat 5 | 2 April 1999 | 28.00 | 30 m |
4 | Landsat 5 | 22 February 2008 | 29.00 | 30 m |
5 | Landsat 8 | 5 November 2020 | 22.21 | 30 m |
GPS Station | N (mm/y) | E (mm/y) | U (mm/y) | (mm/y) | (mm/y) | Difference (mm/y) |
---|---|---|---|---|---|---|
SNPT | −0.01 | −0.94 | −0.30 | −0.65 | 0.43 | −1.07 |
SNUS | 0.43 | 0.14 | −3.37 | −3.06 | 2.23 | −5.29 |
SRPT | −0.21 | 0.13 | −1.59 | −1.39 | −0.91 | −0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.; Wang, Y.; Li, M.; Sun, Y.; Zhang, X.; Wu, Y.; Li, Y.; Li, D. Land Subsidence in the Singapore Coastal Area with Long Time Series of TerraSAR-X SAR Data. Remote Sens. 2023, 15, 2415. https://doi.org/10.3390/rs15092415
Bai Z, Wang Y, Li M, Sun Y, Zhang X, Wu Y, Li Y, Li D. Land Subsidence in the Singapore Coastal Area with Long Time Series of TerraSAR-X SAR Data. Remote Sensing. 2023; 15(9):2415. https://doi.org/10.3390/rs15092415
Chicago/Turabian StyleBai, Zechao, Yanping Wang, Mengwei Li, Ying Sun, Xuedong Zhang, Yewei Wu, Yang Li, and Dan Li. 2023. "Land Subsidence in the Singapore Coastal Area with Long Time Series of TerraSAR-X SAR Data" Remote Sensing 15, no. 9: 2415. https://doi.org/10.3390/rs15092415
APA StyleBai, Z., Wang, Y., Li, M., Sun, Y., Zhang, X., Wu, Y., Li, Y., & Li, D. (2023). Land Subsidence in the Singapore Coastal Area with Long Time Series of TerraSAR-X SAR Data. Remote Sensing, 15(9), 2415. https://doi.org/10.3390/rs15092415