The Responses of Vegetation NPP Dynamics to the Influences of Climate–Human Factors on Qinghai–Tibet Plateau from 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Methods
2.3.1. Correlation Analysis
- In the above formulas, represents the correlation coefficient of variables, with values ranging from −1 to 1; represents the partial correlation coefficient of and after fixing y2; represents the multiple correlation coefficient of and ; and is the partial correlation coefficient of and after fixing . The formulas for the T and F tests are as follows:
2.3.2. Trend Analysis
2.3.3. Miami Model
2.3.4. Climate Tendency Rate and Trend Coefficient
3. Results
3.1. Change Ratio of Vegetation NPP on QTP from 2000 to 2020
3.2. Correlations between Vegetation NPP and Climatic Factors from 2000 to 2020
3.3. Characterization of the Relative Roles of Climate–Human Factors in the Evolution of Vegetation NPP during Different Historical Periods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.Y.; Yang, Y.; Wang, Q.; Du, X.L.; Li, J.L.; Gang, C.C.; Zhou, W.; Wang, Z.Q. Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient. Sci. Total Environ. 2019, 652, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhong, J.; Lan, H.; Wang, Z.; Sha, Z. Association analysis between spatiotemporal variation of net primary productivity and its driving factors in inner Mongolia, China during 1994–2013. Ecol. Indic. 2019, 105, 355–364. [Google Scholar] [CrossRef]
- Li, M.L.; Yin, L.C.; Zhang, Y.; Su, X.K.; Liu, G.H.; Wang, X.F.; Ao, Y.; Wu, X. Spatio-temporal dynamics of fractional vegetation coverage based on MODIS-EVI and its driving factors in Southwest China. Acta Ecol. Sin. 2021, 41, 1138–1147. [Google Scholar]
- Yang, Y.H.; Pu, S.L. Variations in Grassland Vegetation Cover in Relation to Climatic Factors on the Tibetan Plateau. Chin. J. Plant Ecol. 2006, 30, 1–8. [Google Scholar]
- Yuan, Z.; Wang, Y.Q.; Xu, J.J. Effects of climatic factors on the net primary productivity in the source region of Yangtze River, China. Sci. Rep. 2021, 11, 1376. [Google Scholar] [CrossRef]
- Shao, J.H.; Li, J.; Yan, X.G.; Ma, T.Y.; Zhang, R. Analysis of spatiotemporal variation characteristics and driving forces of NPP in Shanxi Province from 2000 to 2020 Based on Geodetector. Environ. Sci. 2023, 44, 312–322. [Google Scholar]
- Jia, J.H.; Liu, H.Y.; Lin, Z.S. Multi-time scale changes of vegetation NPP in six provinces of northwest China and their responses to climate change. Acta Ecol. Sin. 2019, 39, 5058–5069. [Google Scholar]
- Liu, L.; Guan, J.Y.; Mu, C.; Han, W.Q.; Qiao, X.L.; Zheng, J.H. Spatio-temporal characteristics of vegetation net primary productivity in the Ili River Basin from 2008 to 2018. Acta Ecol. Sin. 2022, 42, 4861–4871. [Google Scholar]
- He, Q.; Yang, X.Q.; Dai, X.A. Variation Characteristics and Influence Factors of Net Primary Productivity of Vegetation in the Three-River Headwaters Region from 2010 to 2015. J. Yangtze River Sci. Res. Inst. 2020, 37, 59–66. [Google Scholar]
- Zhang, Z.Y.; Zhong, R.S.; Li, X.Y.; Sun, H. Change of NPP and Its Response to Drought in Northwest China. Res. Environ. Sci. 2019, 32, 431–439. [Google Scholar]
- Wang, T.; Zhao, Y.Z.; Wang, H.; Cao, Y.N.; Peng, J.; Cao, Y.N. Spatial and temporal changes of vegetation index and their response to temperature and precipitation in the Tibetan Plateau based on GIMMS NDVI. J. Glaciol. Geocryol. 2020, 42, 641–652. [Google Scholar]
- Shi, X.L.; Yang, Z.Y.; Wang, Q.S.; Gao, J.; Hu, Y. Spatial and temporal variation of net primary productivity and its relationship with climate factors in the Chinese Loess. Plateau. Chin. J. Agrometeorol. 2016, 37, 445–453. [Google Scholar]
- Mu, S.J.; Li, J.L.; Zhou, W.; Yang, H.F.; Zhang, C.B.; Ju, W.M. Spatial-temporal distribution of net primary productivity and its relationship with climate factors in Inner Mongolia from 2001 to 2010. Acta Ecol. Sin. 2013, 33, 3752–3764. [Google Scholar]
- Ma, B.X.; Jing, J.L.; Xu, Y. Study on the spatial and temporal variation of vegetation NPP and its relationship with climate change in Yunnan-Guizhou-Guangxi karst area from 2000 to 2019. Ecol. Environ. Sci. 2021, 30, 2285–2293. [Google Scholar]
- Sun, Z.J.; Xie, S.Y. Spatio temporal variation in net primary productivity and factor detection in Yunan Province based on Geodetector. Chin. J. Ecol. 2021, 40, 3836–3848. [Google Scholar]
- Wen, Y.; Liu, X.; Bai, Y.; Sun, Y.; Yang, J.; Lin, K.; Pei, F.; Yan, Y. Determining the impacts of climate change and urban expansion on terrestrial net primary production in China. J. Environ. Manag. 2019, 240, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Yang, F.; Fan, Y.W.; Zang, W.Q. The dominant driving factors of rocky desertification and their variations in typical mountainous karst areas of Southwest China in the context of global change. Catena 2023, 220, 106674. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, M.S.; Zhang, J.; Li, H.W.; Wang, J.Y.; Zhang, X.; Ju, P.J.; Jiang, H.B.; Chen, H.; Zhu, Q.A. Responses of the NDVI of alpine grasslands on the Qinghai-Tibetan Plateau to climate change and human activities over the last 30 years. Acta Ecol. Sin. 2020, 40, 6269–6281. [Google Scholar]
- Lu, Q.; Wu, S.H.; Zhao, D.S. Variations in Alpine Grassl Cover and Its Correlation with Climate Variabl es on the Qinghai-Tibet Plateau in 1982-2013. Sci. Geogr. Sin. 2017, 37, 292–300. [Google Scholar]
- Pu, S.L.; Fang, J.Y. Seasonal Changes in Vegetation Activity in Response to Climate Changes in China between 1982 and 1999. Acta Geogr. Sin. 2003, 58, 119–125. [Google Scholar]
- Wang, J.; He, H.J.; Dong, J.F.; Huo, B. Spatio-temporal distribution of vegetation net primary productivity in the Yellow River Basin in 2000–2019 and its natural driving factors. J. Desert Res. 2021, 41, 213–222. [Google Scholar]
- Liu, Z.Y.; Zhang, J.; Chen, L. The Latest Change in the Qinghai-Tibetan Plateau Vegetation Index and Its Relationship with Climate Factors. Clim. Environ. Res. 2017, 22, 289–300. [Google Scholar]
- Li, L.H.; Zhang, Y.L.; Wu, J.S.; Li, S.C.; Zhang, B.H.; Zu, J.X.; Zhang, H.M.; Ding, M.J.; Paudel, B. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Sci. Total. Environ. 2019, 678, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Lu, M.; Fan, Y.W.; Wu, H.W.; Yang, Y.; Wang, C.L. A novel remote sensing monitoring index of salinization based on three dimensional feature space model and its application in the Yellow River Delta. Geomat. Nat. Haz. Risk. 2023, 14, 95–156. [Google Scholar] [CrossRef]
- Xiong, Q.L.; Xiao, Y.; Halmy, M.W.A.; Dakhil, M.A.; Liang, P.H.; Liu, C.G.; Zhang, L.; Pandey, B.; Pan, K.W.; El Kafraway, S.B.; et al. Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet Plateau of China during 2000–2015. J. Arid. Land. 2019, 11, 637–651. [Google Scholar] [CrossRef]
- Wei, Y.Q.; Lu, H.Y.; Wang, J.N.; Sun, J.; Wang, X.F. Responses of vegetation zones, in the Qinghai-Tibetan Plateau, to climate change and anthropogenic influences over the last 35 years. Pratacultural Sci. 2019, 36, 1163–1176. [Google Scholar]
- Yu, G.R.; Yang, M. Ecological economics foundation research on ecological values, ecological asset management, and value realization: Scientific concepts, basic theories, and realization paths. Chin. J. Appl. Ecol. 2022, 33, 1153–1165. [Google Scholar]
- Zhang, L.N. Dynamic changes of land use and ecosystem services value in Altai Mountains. Chin. J. Soil Sci. 2022, 53, 1286–1294. [Google Scholar]
- Liu, Y.F.; Guo, B.; Lu, M.; Zang, W.Q.; Yu, T.; Chen, D.H. Quantitative distinction of the relative actions of climate change and human activities on vegetation evolution in the Yellow River Basin of China during 1981–2019. J. Arid. Land. 2023, 15, 91–108. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X.F. Contribution of climatic change and human activities to changes in net primary productivity in the Loess Plateau. Arid Zone Res. 2022, 39, 584–593. [Google Scholar]
- Jing, H.C.; Liu, Y.H.; He, P.; Zhang, J.Q.; Dong, J.Y.; Wang, Y. Spatial heterogeneity of econsystem services and it’s influencing factors in typical areas of the Qinghai-Tibet Plateau: A case study of Nagqu City. Acta Ecol. Sin. 2022, 42, 2657–2673. [Google Scholar]
- Wang, Q.; Zeng, J.; Leng, S.; Fan, B.; Tang, J.; Jiang, C.; Huang, Y.; Zhang, Q.; Qu, Y.; Wang, W.; et al. The effects of air temperature and precipitation on the net primary productivity in China during the early 21st century. Front. Earth Sci. 2018, 12, 818–833. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Lang, M.F.; Liu, M.Y.; Xie, B.N.; Chang, Q.R. Vegetation carbon sequestration in the Loess Plateau under the synergistic effects of land cover change and elevations. Acta Ecol. Sin. 2022, 42, 3897–3908. [Google Scholar]
- Yu, Y.; Guo, B.; Wang, C.L.; Zang, W.Q.; Huang, X.Z.; Wu, Z.W.; Xu, M.; Zhou, K.D.; Li, J.L.; Yang, Y. Carbon storage simulation and analysis in Beijing Tianjin Hebei region based on CA plus model under dual carbon background. Geomat. Nat. Haz. Risk. 2023, 14, 2173661. [Google Scholar] [CrossRef]
- Du, R.H.; Wu, J.J.; Feng, T.; Yang, J.H.; Han, X.Y.; Chen, M.; Zhao, B.Y.; Lin, J.Y. Reversal of soil moisture constraint on vegetation growth in North China. Sci. Total Environ. 2023, 865, 161246. [Google Scholar] [CrossRef]
- Shi, L.P.; Meng, D.C.; An, P.C. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. Forest. Meteopol. 2011, 151, 1599–1608. [Google Scholar]
- Lan, X.; Sun, H.; Xu, Y. Spatial and temporal pattern of vegetation NPP variations in Guizhou and its response to climate change. Anhui Agric. Sci. Bull. 2020, 26, 162–166. [Google Scholar]
- Xu, X.K.; Chen, H.; LEVY, J.K. Spatio-temporal changes and causes of vegetation cover characteristics in the Qinghai-Tibet Plateau under the background of climate warming. Chin. Sci. Bull. 2008, 53, 456–462. [Google Scholar]
- An, S.; Chen, X.; Zhang, X.; Lang, W.; Ren, S.; Xu, L. Precipitation and Minimum Temperature are Primary Climatic Controls of Alpine Grassland Autumn Phenology on the Qinghai-Tibet Plateau. Remote. Sens. 2020, 12, 431. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Y.X.; Zhao, S.; Fu, B.J. Chinese urban residents’ willingness to pay for ecosystem service of the Tibetan Plateau: A case study of 27 cities in China. J. Nat. Resour. 2020, 35, 563–575. [Google Scholar]
- Bao, G.; Chen, J.Q.; Chopping, M.; Bao, Y.H.; Bayarsaikhan, S.; Dorjsuren, A.; Tuya, A.; Jirigala, B.; Qin, Z.H. Dynamics of net primary productivity on the MongolianPlateau: Joint regulations of phenology and drought. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 85–97. [Google Scholar]
- Chen, S.T.; Guo, B.; Yang, F.; Han, B.M.; Fan, Y.W.; Yang, X.; He, T.L.; Liu, Y.; Yang, W.N. Spatial and temporal patterns of NPP and its response to climate change in the Qinghai-Tibet Plateau from 2000 to 2015. J. Nat. Resour. 2020, 35, 2511–2527. [Google Scholar] [CrossRef]
- Zhuo, G.; Chen, S.R.; Zhou, B. Spatio-temporal variation of vegetation coverage over the Tibetan Plateau and its responses to climatic factors. Acta Ecol. Sin. 2018, 38, 3208–3218. [Google Scholar]
- Yang, D.; Yi, G.H.; Zhang, Y.B.; Li, J.J.; Qin, Y.B.; Wen, B.; Liu, Z.Y. Spatiotemporal variation and driving factors of growing season NDVI in the Tibetan Plateau, China. Chin. J. Appl. Ecol. 2021, 32, 1361–1372. [Google Scholar]
- Guo, B.; Yang, F.; Fan, J.F.; Lu, Y.F. The Changes of Spatiotemporal Pattern of Rocky Desertification and Its Dominant Driving Factors in Typical Karst Mountainous Areas under the Background of Global Change. Remote Sens. 2022, 14, 2351. [Google Scholar] [CrossRef]
- Lin, X.; Cai, X.; Wang, J.; Mei, Z.; Dai, L. Study of spatial and temporal variation of the net primary productivity of vegetation in Guizhou Province from the year of 2000 to 2010. Environ. Prot. Sci. 2015, 41, 136. [Google Scholar]
NPP Changes | Scenario | Kc | Kh | Relative Effect of Climate | Relative Role of Human Activity |
---|---|---|---|---|---|
NPP increases (vegetation restoration) | 1 | >0 | >0 | 100 | 0 |
2 | <0 | <0 | 0 | 100 | |
3 | >0 | <0 | Combined action | Combined action | |
NPP decreases (vegetation degradation) | 4 | >0 | >0 | 100 | 0 |
5 | <0 | <0 | 0 | 100 | |
6 | <0 | <0 | Combined action | Combined action |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Guo, B.; Lu, M. The Responses of Vegetation NPP Dynamics to the Influences of Climate–Human Factors on Qinghai–Tibet Plateau from 2000 to 2020. Remote Sens. 2023, 15, 2419. https://doi.org/10.3390/rs15092419
Yuan X, Guo B, Lu M. The Responses of Vegetation NPP Dynamics to the Influences of Climate–Human Factors on Qinghai–Tibet Plateau from 2000 to 2020. Remote Sensing. 2023; 15(9):2419. https://doi.org/10.3390/rs15092419
Chicago/Turabian StyleYuan, Xingming, Bing Guo, and Miao Lu. 2023. "The Responses of Vegetation NPP Dynamics to the Influences of Climate–Human Factors on Qinghai–Tibet Plateau from 2000 to 2020" Remote Sensing 15, no. 9: 2419. https://doi.org/10.3390/rs15092419
APA StyleYuan, X., Guo, B., & Lu, M. (2023). The Responses of Vegetation NPP Dynamics to the Influences of Climate–Human Factors on Qinghai–Tibet Plateau from 2000 to 2020. Remote Sensing, 15(9), 2419. https://doi.org/10.3390/rs15092419