Maritime Infrared Target Detection Using a Dual-Mode Background Model
Abstract
:1. Introduction
1.1. Related Work
1.2. Motivation and Highlights of This Paper
- A dual-mode background modeling approach which can accurately detect foregrounds in various sea scenes is proposed. For the steadily changing scene, background sub-block filtering based on the pixel property combined with a posterior criterion is adopted. For the violently fluctuating scene, background sub-block filtering based on the regional property combined with a posterior criterion is adopted.
- The global contrast of the image is adopted to judge whether it belongs to a steadily changing scene or a highly fluctuating scene.
- The local correlation feature between the test frame and the updated background is proposed to suppress the local sea clutter.
2. Method
2.1. Initialization of the Sea Background Model
2.2. The Preliminary Background Model
2.3. Adjustment of the Learning Rate of the Background Model
2.4. The Precise Background Model
2.5. Local Correlation Feature between the Test Frame and the Background
2.6. Foreground Detection
3. Experimental Results
3.1. Results and Analysis
3.2. Comparison of the Results
4. Experimental Analysis
4.1. Qualitative Comparison and Discussion
4.2. Quantitative Comparison
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Benli, E.; Motai, Y.; Dong, L.; Xu, W. Robust Detection of Infrared Maritime Targets for Autonomous Navigation. IEEE Trans. Intell. Veh. 2020, 5, 635–648. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, L.; Zhang, T.; Xu, W. A Robust Detection Algorithm for Infrared Maritime Small and Dim Targets. Sensors 2020, 20, 1237. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Xiong, W.; Chen, X.; Lu, Y. Experimental Study of Maritime Moving Target Detection Using Hitchhiking Bistatic Radar. Remote Sens. 2022, 14, 3611. [Google Scholar] [CrossRef]
- Ren, L.; Ran, X.; Peng, J.; Shi, C. Saliency Detection for Small Maritime Target Using Singular Value Decomposition of Amplitude Spectrum. IETE Tech. Rev. 2017, 34, 631–641. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Li, R.; Xi, X.; Gui, D.; Yin, J. A Fast Maritime Target Identification Algorithm for Offshore Ship Detection. Appl. Sci. 2022, 12, 4938. [Google Scholar] [CrossRef]
- Wu, H.; Xian, J.; Mei, X.; Zhang, Y.; Wang, J.; Cao, J.; Mohapatra, P. Efficient target detection in maritime search and rescue wireless sensor network using data fusion. Comput. Commun. 2019, 136, 53–62. [Google Scholar] [CrossRef]
- Wang, B.; Dong, L.; Zhao, M.; Wu, H.; Ji, Y.; Xu, W. An infrared maritime target detection algorithm applicable to heavy sea fog. Infrared Phys. Technol. 2015, 71, 56–62. [Google Scholar] [CrossRef]
- Zhao, E.; Dong, L.; Dai, H. Infrared Maritime Small Target Detection Based on Multidirectional Uniformity and Sparse-Weight Similarity. Remote Sens. 2022, 14, 5492. [Google Scholar] [CrossRef]
- Yang, P.; Dong, L.; Xu, H.; Dai, H.; Xu, W. Robust Infrared Maritime Target Detection via Anti-Jitter Spatial–Temporal Trajectory Consistency. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, F.; Chen, X.; Bai, X.; Sun, C. Iterative infrared ship target segmentation based on multiple features. Pattern Recogn. 2014, 47, 2839–2852. [Google Scholar] [CrossRef]
- Yang, P.; Dong, L.; Xu, W. Infrared Small Maritime Target Detection Based on Integrated Target Saliency Measure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2369–2386. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, L.; Zheng, H.; Xu, W. Infrared maritime small target detection based on edge and local intensity features. Infrared Phys. Technol. 2021, 119, 103940. [Google Scholar] [CrossRef]
- Hong, Z.; Lei, Z.; Ding, Y.; Hao, C. Infrared small target detection based on local intensity and gradient properties. Infrared Phys. Technol. 2018, 89, 88–96. [Google Scholar]
- Benezeth, Y.; Jodoin, P.; Emile, B.; Laurent, H.; Rosenberger, C. Comparative study of background subtraction algorithms. J. Electron. Imaging 2010, 19, 033003. [Google Scholar]
- Stauffer, C.; Grimson, W. Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 747–757. [Google Scholar] [CrossRef]
- Chen, Z.; Ellis, T. A self-adaptive Gaussian mixture model. Comput.Vis. Image Understand. 2014, 122, 35–46. [Google Scholar] [CrossRef]
- Li, D.; Xu, L.; Goodman, E. Illumination-robust foreground detection in a video surveillance system. IEEE Trans. Circ. Syst. Video Technol. 2013, 23, 1637–1650. [Google Scholar] [CrossRef]
- Mukherjee, D.; Wu, Q.; Nguyen, T. Multiresolution based Gaussian mixture model for background suppression. IEEE Trans.Image Process. 2013, 22, 5022–5035. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Lu, H. Learning sharable models for robust background subtraction. In Proceedings of the IEEE International Conference on Multi-Media and Expo (ICME), Turin, Italy, 29 June–3 July 2015; pp. 1–6. [Google Scholar]
- Haines, T.; Xiang, T. Background subtraction with Dirichlet process mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 670–683. [Google Scholar] [CrossRef]
- Garg, K.; Ramakrishnan, N.; Prakash, A.; Srikanthan, T. Rapid and Robust Background Modeling Technique for Low-Cost Road Traffic Surveillance Systems. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2204–2215. [Google Scholar] [CrossRef]
- Moudgollya, R.; Sunaniya, A.; Midya, A.; Chakraborty, J. A multi features based background modeling approach for moving object detection. Optik 2022, 260, 168980. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Xie, W.; Pei, J. Background Modeling in the Fourier Domain for Maritime Infrared Target Detection. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2634–2649. [Google Scholar] [CrossRef]
- Zhou, A.; Xie, W.; Pei, J. Background Modeling Combined With Multiple Features in the Fourier Domain for Maritime Infrared Target Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Yang, M.; Huang, C.; Liu, W.; Lin, S.; Chuang, K. Binary Descriptor Based Nonparametric Background Modeling for Foreground Extraction by Using Detection Theory. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 595–608. [Google Scholar] [CrossRef]
- Barnich, O.; Droogenbroeck, M. ViBe: A universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 2011, 20, 1709–1724. [Google Scholar] [CrossRef] [PubMed]
- St-Charles, P.; Bilodeau, G. Improving background subtraction using local binary similarity patterns. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO, USA, 24–26 March 2014; pp. 509–515. [Google Scholar]
- Martin, H.; Philipp, T.; Gerhard, R. Background segmentation with feedback: The pixel-based adaptive segmenter. In Proceedings of the IEEE Computer Software and Applications Conference on Computer Vision and Pattern Recognition Workshops (COMPSAC), Providence, RI, USA, 16–21 June 2012; pp. 38–43. [Google Scholar]
- St-Charles, P.; Bilodeau, G.; Bergevin, R. SuBSENSE: A universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 2015, 24, 359–373. [Google Scholar] [CrossRef]
- Huynh-The, T.; Hua, C.; Tu, N.; Kim, D. Locally statistical dual-mode background subtraction approach. IEEE Access. 2019, 7, 9769–9782. [Google Scholar] [CrossRef]
- Zhong, Z.; Wen, J.; Zhang, B.; Xu, Y. A general moving detection method using dual-target nonparametric background model. Knowl.-Based Syst. 2019, 164, 85–95. [Google Scholar] [CrossRef]
- Braham, M.; Droogenbroeck, M. Deep background subtraction with scene-specific convolutional neural networks. In Proceedings of the International Conference on Systems Signals and Image Processing (IWSSIP), Bratislava, Slovakia, 23–25 May 2016; pp. 113–116. [Google Scholar]
- Yang, L.; Li, J.; Luo, Y.; Zhao, Y.; Cheng, H.; Li, J. Deep Background Modeling Using Fully Convolutional Network. IEEE Trans. Intell. Transp. Syst. 2018, 19, 254–262. [Google Scholar] [CrossRef]
- Thangarajah, A.; Jonathan, Q.; Zhang, W. Video Foreground Extraction Using Multi-View Receptive Field and Encoder-Decoder DCNN for Traffic and Surveillance Applications. IEEE Trans. Veh. Technol. 2019, 68, 9478–9493. [Google Scholar]
- Wang, Y.; Zhu, L.; Yu, Z. Foreground Detection for Infrared Videos with Multiscale 3-D Fully Convolutional Network. IEEE Geosci. Remote Sens. Lett. 2019, 16, 712–716. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, X.; Sun, C.; Zhou, F.; Li, Y. Infrared ship target segmentation through integration of multiple feature maps. Image Vis. Comput. 2016, 48, 14–25. [Google Scholar] [CrossRef]
Methods | AME | ARAE | AFM |
---|---|---|---|
SuBSENSE | 0.0186 | 0.4310 | 0.5121 |
LSDS | 0.0121 | 0.4837 | 0.5422 |
RRBM | 0.0203 | 0.4739 | 0.4579 |
LOBSTER | 0.0378 | 0.4700 | 0.4073 |
PBAS | 0.0125 | 0.5781 | 0.4407 |
FASGM | 0.0059 | 0.1067 | 0.7544 |
BMMFF | 0.0065 | 0.1293 | 0.7216 |
Proposed | 0.0049 | 0.0979 | 0.8281 |
Methods | VME | VRAE | VFM |
---|---|---|---|
SuBSENSE | 4.6642 × 10−4 | 0.0964 | 0.0686 |
LSDS | 7.8767 × 10−5 | 0.0589 | 0.0721 |
RRBM | 4.3311 × 10−4 | 0.0670 | 0.0492 |
LOBSTER | 0.0027 | 0.1162 | 0.1043 |
PBAS | 9.0512 × 10−5 | 0.1145 | 0.0856 |
FASGM | 1.7060 × 10−5 | 0.0106 | 0.0145 |
BMMFF | 2.3645 × 10−5 | 0.0144 | 0.0158 |
Proposed | 1.6279 × 10−5 | 0.0101 | 0.0135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, A.; Xie, W.; Pei, J. Maritime Infrared Target Detection Using a Dual-Mode Background Model. Remote Sens. 2023, 15, 2354. https://doi.org/10.3390/rs15092354
Zhou A, Xie W, Pei J. Maritime Infrared Target Detection Using a Dual-Mode Background Model. Remote Sensing. 2023; 15(9):2354. https://doi.org/10.3390/rs15092354
Chicago/Turabian StyleZhou, Anran, Weixin Xie, and Jihong Pei. 2023. "Maritime Infrared Target Detection Using a Dual-Mode Background Model" Remote Sensing 15, no. 9: 2354. https://doi.org/10.3390/rs15092354
APA StyleZhou, A., Xie, W., & Pei, J. (2023). Maritime Infrared Target Detection Using a Dual-Mode Background Model. Remote Sensing, 15(9), 2354. https://doi.org/10.3390/rs15092354