Assessment of ICESat-2’s Horizontal Accuracy Using an Iterative Matching Method Based on High-Accuracy Terrains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. ICESat-2 Data
3. Method
3.1. Signal Photon Extraction
3.2. Rough Matching
3.3. Precise Matching
4. Results
4.1. Terrain Matching
4.2. Assessment of ICESat-2 Data Accuracy
5. Discussion
5.1. Assessment of ICESat-2 Geolocation Errors
5.2. Slope
5.3. SNR
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief Communication: Contending Estimates of 2003–2008 Glacier Mass Balance over the Pamir–Karakoram–Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.; et al. ICESat′s Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef]
- Smith, B.; Fricker, H.A.; Gardner, A.S.; Medley, B.; Nilsson, J.; Paolo, F.S.; Holschuh, N.; Adusumilli, S.; Brunt, K.; Csatho, B.; et al. Pervasive Ice Sheet Mass Loss Reflects Competing Ocean and Atmosphere Processes. Science 2020, 368, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.; Wang, C.; Xi, X.; Luo, S.; Li, G.; Cheng, F. A Continuous Wavelet Transform Based Method for Ground Elevation Estimation Over Mountainous Vegetated Areas Using Satellite Laser Altimetry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2945–2956. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, X.; Nie, S.; Xi, X.; Li, D.; Zheng, W.; Chen, S. Ground Elevation Accuracy Verification of ICESat-2 Data: A Case Study in Alaska, USA. Opt. Express 2019, 27, 38168. [Google Scholar] [CrossRef] [PubMed]
- Luthcke, S.B. Reduction of ICESat Systematic Geolocation Errors and the Impact on Ice Sheet Elevation Change Detection. Geophys. Res. Lett. 2005, 32, L21S05. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W.; et al. The Ice, Cloud, and Land Elevation Satellite—2 Mission: A Global Geolocated Photon Product Derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef]
- Slobbe, D.; Lindenbergh, R.; Ditmar, P. Estimation of Volume Change Rates of Greenland′s Ice Sheet from ICESat Data Using Overlapping Footprints. Remote Sens. Environ. 2008, 112, 4204–4213. [Google Scholar] [CrossRef]
- Siegfried, M.R.; Hawley, R.L.; Burkhart, J.F. High-Resolution Ground-Based GPS Measurements Show Intercampaign Bias in ICESat Elevation Data Near Summit, Greenland. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3393–3400. [Google Scholar] [CrossRef]
- Rowlands, D.D.; Carabajal, C.; Luthcke, S.B.; Harding, D.J.; Sauber, M.; Bufton, J.L. Satellite Laser Altimetry: On-Orbit Calibration Techniques for Precise Geolocation. Rev. Laser Eng. 2000, 28, 796–803. [Google Scholar] [CrossRef]
- Harding, D.J. ICESat Waveform Measurements of Within-Footprint Topographic Relief and Vegetation Vertical Structure. Geophys. Res. Lett. 2005, 32, L21S10. [Google Scholar] [CrossRef]
- Malambo, L.; Popescu, S.C. Assessing the Agreement of ICESat-2 Terrain and Canopy Height with Airborne Lidar over US Ecozones. Remote Sens. Environ. 2021, 266, 112711. [Google Scholar] [CrossRef]
- Tang, X.; Xie, J.; Gao, X.; Mo, F.; Feng, W.; Liu, R. The In-Orbit Calibration Method Based on Terrain Matching With Pyramid-Search for the Spaceborne Laser Altimeter. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1053–1062. [Google Scholar] [CrossRef]
- Brunt, K.M.; Neumann, T.A.; Smith, B.E. Assessment of ICESat-2 Ice Sheet Surface Heights, Based on Comparisons Over the Interior of the Antarctic Ice Sheet. Geophys. Res. Lett. 2019, 46, 13072–13078. [Google Scholar] [CrossRef]
- Nan, Y.; Feng, Z.; Liu, E.; Li, B. Iterative Pointing Angle Calibration Method for the Spaceborne Photon-Counting Laser Altimeter Based on Small-Range Terrain Matching. Remote Sens. 2019, 11, 2158. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.; Ma, Y.; Liu, X.; Yang, J.; Yu, D. A New Terrain Matching Method for Estimating Laser photoning and Ranging Systematic Biases for Spaceborne Photon-Counting Laser Altimeters. ISPRS J. Photogramm. Remote Sens. 2022, 188, 220–236. [Google Scholar] [CrossRef]
- Schenk, T.; Csatho, B.; Neumann, T. Assessment of ICESat-2′s Horizontal Accuracy Using Precisely Surveyed Terrains in McMurdo Dry Valleys, Antarctica. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Yao, J.; Tang, X.; Li, G.; Ai, B.; Yang, X.; Xie, D. Cloud Detection of Laser Altimetry Satellite ICESat-2 and the Related Method. Laser Optoelectron. Prog. 2020, 57, 131408. [Google Scholar] [CrossRef]
- Fountain, A.G.; Nylen, T.H.; Monaghan, A.; Basagic, H.J.; Bromwich, D. Snow in the McMurdo Dry Valleys, Antarctica. Int. J. Climatol. A J. R. Meteorol. Soc. 2010, 30, 633–642. [Google Scholar] [CrossRef]
- Fountain, A.G.; Levy, J.S.; Gooseff, M.N.; Van Horn, D. The McMurdo Dry Valleys: A Landscape on the Threshold of Change. Geomorphology 2014, 225, 25–35. [Google Scholar] [CrossRef]
- Fountain, A.G.; Fernandez-Diaz, J.C.; Obryk, M.; Levy, J.; Gooseff, M.; Van Horn, D.J.; Morin, P.; Shrestha, R. High-resolution elevation mapping of the McMurdo Dry Valleys, Antarctica, and surrounding regions. Earth Syst. Sci. Data 2017, 9, 435–443. [Google Scholar] [CrossRef]
- Abdalati, W.; Zwally, H.J.; Bindschadler, R.; Csatho, B.; Farrell, S.L.; Fricker, H.A.; Harding, D.; Kwok, R.; Lefsky, M.; Markus, T.; et al. The ICESat-2 Laser Altimetry Mission. Proc. IEEE 2010, 98, 735–751. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Neumann, T.; Brenner, A.; Hancock, D.; Robbins, J.; Saba, J.; Harbeck, K.; Gibbons, A. Ice, Cloud, and Land Elevation Satellite–2 (ICESat-2) Project: Method Theoretical Basis Document (ATBD) for Global Geolocated Photons (ATL03); National Aeronautics and Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 2019. [Google Scholar]
- Ye, D.; Xie, H.; Tong, X.; Zhang, Z.; Li, M. The Comparison of Denoising Methods for Photon Counting Laser Altimeter Data. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8478–8480. [Google Scholar]
- Magruder, L.A.; Wharton, M.E.; Stout, K.D.; Neuenschwander, A.L. The Noise Filtering Techniques for Photon-Counting Ladar Data. In Proceedings of the Laser Radar Technology and Applications XVII, Baltimore, MD, USA, 23–27 April 2012; p. 83790Q. [Google Scholar]
- Yang, G.; Shu, R.; LI, M. An Adaptive Directional Filter for Photon Counting Lidar Point Cloud Data. J. Infrared Millim. Waves 2017, 36, 107–113. [Google Scholar]
- Zhu, X.; Nie, S.; Wang, C.; Xi, X.; Wang, J.; Li, D.; Zhou, H. A Noise Removal Method Based on OPTICS for Photon-Counting LiDAR Data. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1471–1475. [Google Scholar] [CrossRef]
- Zhu, X.; Nie, S.; Wang, C.; Xi, X.; Hu, Z. A Ground Elevation and Vegetation Height Retrieval Method Using Micro-Pulse Photon-Counting Lidar Data. Remote Sens. 2018, 10, 1962. [Google Scholar] [CrossRef]
- Zhang, G.; Lian, W.; Li, S.; Cui, H.; Jing, M.; Chen, Z. A Self-Adaptive Noise removal method Based on Genetic Method for Photon-Counting Lidar Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Q.; Xing, S.; Li, P.; Zhang, X.; Wang, D.; Dai, M. A Noise-Removal Method Without Input Parameters Based on Quadtree Isolation for Photon-Counting LiDAR. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Liu, A.; Cheng, X.; Chen, Z. Performance Evaluation of GEDI and ICESat-2 Laser Altimeter Data for Terrain and Canopy Height Retrievals. Remote Sens. Environ. 2021, 264, 112571. [Google Scholar] [CrossRef]
- Hastie, T.; Friedman, J.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2001; ISBN 978-1-4899-0519-2. [Google Scholar]
- Louppe, G. Understanding Random forests: From Theory to Practice. arXiv 2015, arXiv:1407.7502. [Google Scholar]
- Urbazaev, M.; Hess, L.L.; Hancock, S.; Sato, L.Y.; Ometto, J.P.; Thiel, C.; Dubois, C.; Heckel, K.; Urban, M.; Adam, M.; et al. Assessment of Terrain Elevation Estimates from ICESat-2 and GEDI Spaceborne LiDAR Missions across Different Land Cover and Forest Types. Sci. Remote Sens. 2022, 6, 100067. [Google Scholar] [CrossRef]
- Maronna, R.A.; Martin, R.D.; Yohai, V.J.; Salibián-Barrera, M. Robust Statistics: Theory and Methods (with R); John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
Site | Range | Acquisition Time | Access | Resolution (m) | Elevation (m) | Coordinate System |
---|---|---|---|---|---|---|
MDV | ∼77.5°S, ∼162.5°E | 2014–2015 | Airborne lidar | 1 | −52–2070 | WGS84 |
ZZ | 34°0′N–35°05′N, 112°30′E–114°0′E | 2018 | Airborne lidar | 1 | 74–1494 | CGCS2000 |
RGT | Date | Cycle | Spacecraft Orientation | Granule |
---|---|---|---|---|
0390 | 21 January 2020 | 06 | Forward | ATL03_20200121071113_03900612_005_01 |
0390 | 21 April 2020 | 07 | Forward | ATL03_20200421025102_03900712_005_01 |
0390 | 20 July 2020 | 08 | Backward | ATL03_20200720223049_03900812_005_01 |
0390 | 18 January 2021 | 10 | Forward | ATL03_20210118135026_03901012_005_01 |
0390 | 19 April 2021 | 11 | Forward | ATL03_20210419093021_03901112_005_01 |
0390 | 19 July 2021 | 12 | Forward | ATL03_20210719051013_03901212_005_01 |
0390 | 18 October 2021 | 13 | Backward | ATL03_20211018005010_03901312_005_01 |
0390 | 17 April 2022 | 15 | Backward | ATL03_20220417160941_03901512_005_02 |
0390 | 17 July 2022 | 16 | Forward | ATL03_20220717114952_03901612_005_01 |
0560 | 1 February 2020 | 06 | Forward | ATL03_20200201091359_05600602_005_01 |
0560 | 2 May 2020 | 07 | Forward | ATL03_20200502045345_05600702_005_01 |
0560 | 1 August 2020 | 08 | Backward | ATL03_20200801003333_05600802_005_01 |
0560 | 30 October 2020 | 09 | Backward | ATL03_20201030201321_05600902_005_01 |
0560 | 29 January 2021 | 10 | Forward | ATL03_20210129155316_05601002_005_01 |
0560 | 30 April 2021 | 11 | Forward | ATL03_20210430113305_05601102_005_01 |
0560 | 30 July 2021 | 12 | Forward | ATL03_20210730071259_05601202_005_01 |
0560 | 29 October 2021 | 13 | Backward | ATL03_20211029025257_05601302_005_01 |
0560 | 28 July 2022 | 16 | Forward | ATL03_20220728135237_05601602_005_01 |
RGT | Beam | MAE (m) | STD (m) | RMSE (m) | |||||
---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | ||
0390 (MDV) | gt1l | 1.431 | 0.964 | 1.442 | 1.215 | 1.769 | 1.272 | 99.986 | 99.993 |
gt1r | 1.409 | 0.927 | 1.456 | 1.211 | 1.762 | 1.243 | 99.985 | 99.993 | |
gt2l | 0.798 | 0.752 | 1.009 | 0.960 | 1.019 | 0.971 | 99.989 | 99.991 | |
gt2r | 1.366 | 0.9556 | 1.496 | 1.267 | 1.697 | 1.282 | 99.975 | 99.985 | |
gt3l | 0.608 | 0.530 | 0.756 | 0.684 | 0.781 | 0.685 | 99.990 | 99.992 | |
gt3r | 0.9683 | 0.677 | 1.173 | 0.897 | 1.240 | 0.906 | 99.975 | 99.986 | |
0560 (ZZ) | gt1l | 2.954 | 1.981 | 3.053 | 2.608 | 3.590 | 2.642 | 98.302 | 99.346 |
gt1r | 3.252 | 2.271 | 3.3489 | 2.953 | 3.980 | 3.020 | 98.480 | 99.321 | |
gt2l | 3.128 | 1.990 | 3.179 | 2.609 | 3.787 | 2.642 | 98.786 | 99.574 | |
gt2r | 3.532 | 2.498 | 3.785 | 3.200 | 4.313 | 3.273 | 97.996 | 98.865 | |
gt3l | 2.978 | 2.163 | 3.270 | 2.789 | 3.650 | 2.812 | 98.500 | 99.150 | |
gt3r | 3.097 | 2.273 | 3.351 | 2.910 | 3.782 | 2.944 | 98.429 | 99.201 |
Data | RGT | Beam | Latitude Range | Tang’s Method [13] | Schenk’s Method [17] | Proposed Method | |||
---|---|---|---|---|---|---|---|---|---|
Cross-Track (m) | Along-Track (m) | Cross-Track (m) | Along-Track (m) | Cross-Track (m) | Along-Track (m) | ||||
19 July 2021 | 0390 | gt1r | −77.718, −77.698 | 1.96 | −5.88 | 1.77 | −5.01 | 1.64 | −4.90 |
19 July 2021 | 0390 | gt3r | −77.696, −77.676 | 0 | −3.92 | 0.12 | −2.84 | 0.12 | −3.93 |
19 April 2021 | 0390 | gt1r | −77.718, −77.698 | −1.96 | 1.96 | −2.01 | 1.88 | −2.36 | 1.72 |
18 October 2021 | 0390 | gt3l | −77.682, −77.662 | −1.96 | 5.88 | −1.88 | 5.34 | −1.71 | 6.87 |
17 April 2022 | 0390 | gt2r | −77.702, −77.682 | −3.92 | −3.92 | −3.64 | −3.94 | −3.78 | −3.94 |
30 April 2021 | 0560 | gt1r | 34.457, 34.477 | −1.01 | −1.01 | −1.10 | −1.02 | −1.08 | −1.04 |
30 April 2021 | 0560 | gt1l | 34.485, 34.505 | 0 | 0 | 0.01 | 0.04 | −0.13 | 0.17 |
30 July 2021 | 0560 | gt2l | 34.581, 34.601 | −4.06 | −1.01 | −3.38 | 1.21 | −5.40 | 0.50 |
30 July 2021 | 0560 | gt3r | 34.630, 34.650 | 2.03 | 0 | 2.21 | 0.17 | 2.57 | −0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Xing, S.; Zhang, G.; Zhang, X.; Li, P. Assessment of ICESat-2’s Horizontal Accuracy Using an Iterative Matching Method Based on High-Accuracy Terrains. Remote Sens. 2023, 15, 2236. https://doi.org/10.3390/rs15092236
Gao M, Xing S, Zhang G, Zhang X, Li P. Assessment of ICESat-2’s Horizontal Accuracy Using an Iterative Matching Method Based on High-Accuracy Terrains. Remote Sensing. 2023; 15(9):2236. https://doi.org/10.3390/rs15092236
Chicago/Turabian StyleGao, Ming, Shuai Xing, Guoping Zhang, Xinlei Zhang, and Pengcheng Li. 2023. "Assessment of ICESat-2’s Horizontal Accuracy Using an Iterative Matching Method Based on High-Accuracy Terrains" Remote Sensing 15, no. 9: 2236. https://doi.org/10.3390/rs15092236
APA StyleGao, M., Xing, S., Zhang, G., Zhang, X., & Li, P. (2023). Assessment of ICESat-2’s Horizontal Accuracy Using an Iterative Matching Method Based on High-Accuracy Terrains. Remote Sensing, 15(9), 2236. https://doi.org/10.3390/rs15092236