Simulation of Cooling Island Effect in Blue-Green Space Based on Multi-Scale Coupling Model
Abstract
:1. Introduction
2. Study Area
3. Data and Method
3.1. Classification Data Based on Local Climate Zones
3.2. Relevant Data of National Meteorological Observation Stations
3.3. WRF Driving Field Reanalysis Data
3.4. World Urban Database and Access Portal Tools
3.5. Overview of WRF/UCM Coupling Model
3.5.1. Synoptic Background
3.5.2. Mode Configuration
3.6. Intensity Analysis of Urban Cooling Island Effect
4. Results and Analysis
4.1. WRF/UCM Mode Verification and Assessment
4.2. ENVI-Met Model Evaluation and Validation
4.3. Base Model
4.4. Simulation Analysis of Cooling Island Effect in Urban Green Space
4.5. Simulation Analysis of Cooling Island Effect in Urban Water
4.6. Analysis of Cooling Island Effect of Urban Blue–Green Spatial Coupling Model
5. Discussion
5.1. Advantages of Meso-Micro Scale Coupled Models in Urban Thermal Environments
5.2. The Influence of Blue–Green Spatial Layout Pattern on Microclimate
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stott, P.A.; Stone, D.A.; Allen, M.R. Human contribution to the European heatwave of 2003. Nature 2004, 432, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Holt, A.R.; Mears, M.; Maltby, L.; Warren, P. Understanding spatial patterns in the production of multiple urban ecosystem services. Ecosyst. Serv. 2015, 16, 33–46. [Google Scholar] [CrossRef]
- Jandaghian, Z.; Akbari, H. The Effect of Increasing Surface Albedo on Urban Climate and Air Quality: A Detailed Study for Sacramento, Houston, and Chicago. Climate 2018, 6, 19. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; et al. The 2020 report of the Lancet Countdown on health and climate change: Responding to converging crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef]
- Schinas, O.; Ross, H.H.; Rossol, T.D. Financing green ships through export credit schemes Transp. Res. Part D Transp. Environ. 2018, 65, 300–311. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–62. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, C.; Suen, H.P.; Ai, S.; Bai, Y.; Bao, J.; Chen, B.; Cheng, L.; Cui, X.; Dai, H.; et al. The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health 2020, 6, e64–e81. [Google Scholar] [CrossRef]
- Martins, T.A.; Adolphe, L.; Bonhomme, M.; Bonneaud, F.; Faraut, S.; Ginestet, S.; Michel, C.; Guyard, W. Impact of Urban Cool Island measures on outdoor climate and pedestrian comfort: Simulations for a new district of Toulouse, France. Sustain. Cities Soc. 2016, 26, 9–26. [Google Scholar] [CrossRef]
- Yu, Z.W.; Guo, Q.H.; Sun, R.H. Impact of urban cooling effect based on landscape scale: A review. Chin. J. Appl. Ecol. 2015, 26, 636–642. [Google Scholar]
- Park, M.; Hagishima, A.; Tanimoto, J.; Narita, K.-I. Effect of urban vegetation on outdoor thermal environment: Field measurement at a scale model site. Build. Environ. 2012, 56, 38–46. [Google Scholar] [CrossRef]
- Santamouris, M.; Ban-Weiss, G.; Osmond, P.; Paolini, R.; Synnefa, A.; Cartalis, C.; Muscio, A.; Zinzi, M.; Morakinyo, T.E.; Ng, E.; et al. Progress in Urban Greenery Mitigation Science—Assesment Methodologies Advanced Technologies and Impact on Cities. J. Civ. Eng. Manag. 2018, 24, 638–671. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Strong contribution of rapid urbanization and urban agglomeration development to regional thermal environment dynamics and evolution. For. Ecol. Manag. 2019, 446, 214–225. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W.; Hou, G.; Gong, C.; Jiang, M.; Lyu, X. Cooling effects of different wetlands in semi-arid rural region of northeast China. Theor. Appl. Climatol. 2020, 141, 31–41. [Google Scholar]
- Gunawardena, K.; Wells, M.; Kershaw, T. Utilizing green and blue-space to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Carvalho, D.; Martins, H.; Marta-Almeida, M.; Rocha, A.; Borrego, C. Urban resilience to future urban heat waves under a climate change scenario: A case study for Porto urban area (Portugal). Urban Clim. 2017, 19, 1–27. [Google Scholar] [CrossRef]
- Zupancic, T.; Westmacott, C.; Bulthuis, M. The Impact of Green Space on Heat and Air Pollution in Urban Communities: A Meta-Narrative Systematic Review; David Suzuki Foundation Vancouver: Vancouver, BC, Canada, 2015. [Google Scholar]
- Shih, W. Greenspace patterns and the mitigation of land surface temperature in Taipei metropolis. Habitat Int. 2017, 60, 69–80. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Fan, H.; Yu, Z.; Yang, G.; Liu, T.Y.; Hung, C.H.; Vejre, H. How to cool hot-humid (Asian) cities with urban trees? An optimal landscape size perspective. Agric. For. Meteorol. 2018, 265, 338–348. [Google Scholar] [CrossRef]
- Ren, Y.; Deng, L.-Y.; Zuo, S.-D.; Song, X.-D.; Liao, Y.-L.; Xu, C.-D.; Chen, Q.; Hua, L.-Z.; Li, Z.-W. Quantifying the influences of various ecological factors on land surface temperature of urban forests. Environ. Pollut. 2016, 216, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Guo, X.; Jørgensen, G.; Vejre, H. How can urban green spaces be planned for climate adaptation in subtropical cities? Ecol. Indic. 2017, 82, 152–162. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2012, 103, 682–703. [Google Scholar] [CrossRef]
- Zhou, X.L.; Wang, Y.C. Spatial-temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc. Urban Plan. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, T.; Hu, Y.; Gao, C.; Liu, M.; Fu, S.; Wang, S. Urban green space planning based on computational fluid dynamics model and landscape ecology principle: A case study of Liaoyang City, Northeast China. Chin. Geogr. Sci. 2011, 21, 465–475. [Google Scholar] [CrossRef]
- Papangelis, G.; Tombrou, M.; Dandou, A.; Kontos, T. An urban “green planning” approach utilizing the Weather Research and Forecasting (WRF) modeling system: Acase study of Athens, Greece. Landsc. Urban Plan. 2012, 105, 174–183. [Google Scholar] [CrossRef]
- Kubota, T.; Lee, H.S.; Trihamdani, A.R.; Phuong, T.T.T.; Tanaka, T.; Matsuo, K. Impacts of land use changes from the Hanoi Master Plan 2030 on urban heat islands: Part 1. Cooling effects of proposed green strategies. Sustain. Cities Soc. 2017, 32, 295–317. [Google Scholar] [CrossRef]
- Zölch, T.; Maderspacher, J.; Wamsler, C.; Pauleit, S. Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban For. Urban Green. 2016, 20, 305–316. [Google Scholar] [CrossRef]
- Manob, D.; Arijit, D.; Sahil, M. Quantifying the cooling effect of urban green space: A case from urban parks in a tropical mega metropolitan area (India). Sustain. Cities Soc. 2022, 87, 104062. [Google Scholar]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Lin, B.S.; Lin, C.T. Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban For. Urban Green. 2016, 20, 348–357. [Google Scholar] [CrossRef]
- Du, H.; Cai, Y.; Zhou, F.; Jiang, H.; Jiang, W.; Xu, Y. Urban blue-green space planning based on thermal environment simulation: A case study of Shanghai, China. Ecol. Indic. 2019, 106, 105501. [Google Scholar] [CrossRef]
- McRae, I.; Freedman, F.; Rivera, A.; Li, X.; Dou, J.; Cruz, I.; Ren, C.; Dronova, I.; Fraker, H.; Bornstein, R. Integration of the WUDAPT, WRF, and ENVI-met models to simulate extreme daytime temperature mitigation strategies in San Jose, California. Build. Environ. 2020, 184, 107180. [Google Scholar] [CrossRef]
- Umberto, B.; Zahra, J.; Jonathan, G. Effects of greenery enhancements for the resilience to heat waves: A comparison of analysis performed through mesoscale (WRF) and microscale (Envi-met) modeling. Sci. Total Environ. 2020, 747, 141300. [Google Scholar]
- Khan, A.; Chatterjee, S.; Weng, Y. Urban Heat Island Modeling for Tropical Climates; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, H. A Study of Urban Heat Island Intensity Based on “Local Climate Zones”. J. Geo-Inf. Sci. 2017, 19, 713–722. [Google Scholar]
- Bechtel, B.; Alexander, P.J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping local climate zones for a worldwide database of form and function of cities. ISPRS Int. J. Geo-Inf. 2015, 4, 99–219. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.J.; Beck, C.; Böhner, J.; Brousse, O.; Ching, J.; Demuzere, M.; Fonte, C.; Gál, T.; Hidalgo, J.; et al. Generating WUDAPT Level 0 data—Current status of production and evaluation. Urban Clim. 2019, 27, 24–45. [Google Scholar] [CrossRef]
- Kusaka, H.; Kimura, F. Thermal effects of urban canyon structure on the nocturnal heat is- land: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteorol. 2004, 43, 1899–1910. [Google Scholar] [CrossRef]
- Kusaka, H.; Kimura, F. Coupling a single-layer urban canopy model with a simple atmo-spheric model: Impact on urban heat island simulation for an idealized case. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 67–80. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.; Quan, X.-W.; Feng, J. Urban warming in the 2013 summer heat wave in eastern China. Clim. Dyn. 2016, 48, 3015–3033. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the “local climate zone” scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- O’Malley, C.; Piroozfar, P.; Farr, E.R.P.; Pomponi, F. Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustain. Cities Soc. 2015, 19, 222–235. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Ozkeresteci, I.; Crewe, K.; Brazel, A.J.; Bruse, M. Use and evaluation of the ENVI-met model for environmental design and planning: An Experiment on Linear Parks. In Proceedings of the 21st International Cartographic Conference (ICC), Durban, South Africa, 10–16 August 2003. [Google Scholar]
- Paas, B.; Schneider, C. A comparison of model performance between ENVI-met and Austal2000 for particulate matter. Atmos. Environ. 2016, 145, 392–404. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Wang, X.; Zhou, X.; Zhang, H.; Sodoudi, S. Quantifying urban heat island intensity and its physical mechanism using WRF/UCM. Sci. Total. Environ. 2018, 650, 3110–3119. [Google Scholar] [CrossRef]
- Liu, X.; Tian, G.; Feng, J.; Wang, J.; Kong, L. Assessing summertime urban warming and the cooling efficacy of adaptation strategy in the Chengdu-Chongqing metropolitan region of China. Sci. Total Environ. 2018, 610–611, 1092–1102. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Y.; Dong, J.; Liu, Q.; Liu, Y. Quantifying spatial morphology and connectivity of urban heat islands in a megacity: A radius approach. Sci. Total Environ. 2020, 714, 136792. [Google Scholar] [CrossRef]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Ma, S.; Pitman, A.; Yang, J.; Carouge, C.; Evans, J.; Hart, M.; Green, D. Evaluating the Effectiveness of Mitigation Options on Heat Stress for Sydney, Australia. J. Appl. Meteorol. Clim. 2018, 57, 209–220. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Solecki, W.; Slosberg, R. Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. In Proceedings of the Sixth Symposium on the Urban Environment, Atlanta, GA, USA, 30 January–2 February 2006. [Google Scholar]
- Berardi, U.; Wang, Y. The Effect of a Denser City over the Urban Microclimate: The Case of Toronto. Sustainability 2016, 8, 822. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; Berardi, U.; Ghaffarianhoseini, A. Thermal performance characteristics of unshaded courtyards in hot and humid climates. Build. Environ. 2015, 87, 154–168. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total. Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Sailor, D.J. Simulated urban climate response to modifications in surface albedo and vegetative cover. J. Appl. Meteorol. 1994, 34, 1694–1704. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate: Designing the Spaces Between Buildings; Earthscan: New York, NY, USA, 2011. [Google Scholar]
- Simon, H.; Kropp, T.; Sohni, F.; Bruse, M. Downscaling Climate Models: Running Nested Simulations in the Microclimate Model ENVI-Met; Passive and Low Energy Architecture: Hong Kong, China, 2018. [Google Scholar]
- Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- Taleghani, M.; Sailor, D.J.; Tenpierik, M.; Dobbelsteen, A.V.D. Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Build. Environ. 2014, 73, 138–150. [Google Scholar] [CrossRef]
Configuration | d01 | d02 | d03 |
---|---|---|---|
Version | ARW-WRF V4.0.3 | ||
Initial and boundary conditions | NCEP FNL | ||
Run time | 2018.8.4.02 h~2018.8.6.02 h | ||
Time period of analysis | 2018.8.5 | ||
Grid distance (km) | 10 | 2 | 0.4 |
Grid number | 441 × 342 | 717 × 546 | 1176 × 885 |
Number of vertical layers | 33 layers | ||
Microphysics | WSM 6-class grauple | ||
Short-wave radiation | Rrtm scheme | ||
Long-wave radiation | Dudhia scheme | ||
Surface layer model | Noah-LSM + Single-Layer UCM | ||
Planetary boundary layer | Mellor-Yamada-Janjic (ETA) TKE scheme | ||
Cumulus | Kain–Fritsch scheme | None | None |
LUCC data | LCZ (Only Study Area) |
Model Parameterization | |
---|---|
Simulation range | 100 × 100 × 80 (dx = 5 m, dy = 5 m, dz = 5 m) |
Simulation time | 2018.08.05 00:00~2018.08.06 00:00 |
Duration of the simulation | 24 h |
Wind speed on average | 3.7 m/s |
Wind direction on average | 210° |
Air temperature range | 27.58~46.85 °C |
Relative humility range | 65~80% |
Defined\Predicted | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | A | B | C | D | E | G | All | User’s Accuracy (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCZ 2 | Compact Mid-Rise | 4 | 3 | 13 | 9 | 0 | 1 | 1 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 10.5 |
LCZ 3 | Compact Low-Rise | 0 | 176 | 16 | 39 | 0 | 30 | 162 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 426 | 41.3 |
LCZ 4 | Open High-Rise | 1 | 0 | 342 | 108 | 0 | 4 | 27 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 487 | 70.2 |
LCZ 5 | Open Mid-Rise | 6 | 32 | 175 | 471 | 0 | 16 | 158 | 14 | 0 | 0 | 0 | 8 | 1 | 0 | 881 | 53.5 |
LCZ 6 | Open Low-Rise | 0 | 13 | 4 | 14 | 0 | 13 | 132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 176 | 0 |
LCZ 8 | Large Low-Rise | 0 | 7 | 13 | 18 | 2 | 660 | 199 | 5 | 0 | 0 | 0 | 16 | 0 | 0 | 920 | 71.7 |
LCZ 9 | Sparsely Built | 0 | 21 | 12 | 79 | 3 | 116 | 3732 | 6 | 8 | 5 | 0 | 310 | 1 | 1 | 4294 | 86.9 |
LCZ10 | Heavy Industry | 0 | 0 | 4 | 2 | 0 | 6 | 4 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 18 | 5.6 |
LCZ A | Dense Trees | 0 | 0 | 0 | 1 | 0 | 0 | 76 | 0 | 1001 | 10 | 0 | 10 | 0 | 0 | 1098 | 91.2 |
LCZ B | Scattered Trees | 0 | 0 | 0 | 0 | 0 | 1 | 123 | 0 | 37 | 70 | 0 | 71 | 0 | 0 | 302 | 23.2 |
LCZ C | Bush, Scrub | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 3 | 0 | 0 | 6 | 0 | 0 | 25 | 0 |
LCZ D | Low Plants | 0 | 0 | 0 | 0 | 0 | 2 | 391 | 0 | 9 | 4 | 0 | 7787 | 0 | 8 | 8201 | 95 |
LCZ E | Bare Rock or Paved | 1 | 2 | 4 | 1 | 0 | 11 | 5 | 1 | 0 | 0 | 0 | 6 | 1 | 0 | 32 | 3.1 |
LCZ G | Water | 0 | 0 | 1 | 0 | 0 | 2 | 7 | 0 | 0 | 0 | 0 | 40 | 0 | 2266 | 2316 | 97.8 |
All | 12 | 254 | 584 | 742 | 5 | 862 | 5033 | 41 | 1058 | 89 | 0 | 8255 | 4 | 2275 | 19,214 | ||
Producer’s Accuracy (%) | 33.3 | 69.3 | 58.6 | 63.5 | 0 | 76.6 | 74.2 | 2.4 | 94.6 | 78.7 | 94.3 | 25 | 99.6 | ||||
Overall Accuracy: 85.9% | |||||||||||||||||
Kappa: 0.81 |
Parameter | Mean | Standard Deviation | Bias | RMSE | ||
---|---|---|---|---|---|---|
Observed | Simulated | Observed | Simulated | |||
T2m (°C) | 33.57 | 34.61 | 1.21 | 1.35 | −0.96 | 1.31 |
T2max (°C) | 39.21 | 38.85 | 1.26 | 0.93 | 1.02 | 1.24 |
T2min (°C) | 27.68 | 29.23 | 1.59 | 1.46 | 0.91 | 1.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Xie, Z.; Wu, L.; Pan, Y.; Ding, N.; Liang, Q.; Qin, F. Simulation of Cooling Island Effect in Blue-Green Space Based on Multi-Scale Coupling Model. Remote Sens. 2023, 15, 2093. https://doi.org/10.3390/rs15082093
Pan Z, Xie Z, Wu L, Pan Y, Ding N, Liang Q, Qin F. Simulation of Cooling Island Effect in Blue-Green Space Based on Multi-Scale Coupling Model. Remote Sensing. 2023; 15(8):2093. https://doi.org/10.3390/rs15082093
Chicago/Turabian StylePan, Ziwu, Zunyi Xie, Liyang Wu, Yu Pan, Na Ding, Qiushuang Liang, and Fen Qin. 2023. "Simulation of Cooling Island Effect in Blue-Green Space Based on Multi-Scale Coupling Model" Remote Sensing 15, no. 8: 2093. https://doi.org/10.3390/rs15082093
APA StylePan, Z., Xie, Z., Wu, L., Pan, Y., Ding, N., Liang, Q., & Qin, F. (2023). Simulation of Cooling Island Effect in Blue-Green Space Based on Multi-Scale Coupling Model. Remote Sensing, 15(8), 2093. https://doi.org/10.3390/rs15082093