A Review of Deep-Learning Methods for Change Detection in Multispectral Remote Sensing Images
Abstract
:1. Introduction
1.1. Detection of Relevant Changes in Remote Sensing Images
1.2. Multispectral Imagery
1.3. Change-Detection Methods
1.3.1. Algebra-Based Methods
1.3.2. Statistics-Based Methods
1.3.3. Transformation-Based Methods
1.3.4. Deep-Learning-Based Methods
1.3.5. About This Work
2. Data Sets
3. Supervised Deep-Learning Models for Multispectral Change Detection
3.1. UNet in Change Detection
3.2. Single-Stream Networks—UNets
3.3. Double-Stream Networks
3.3.1. UNets
3.3.2. UNets with Attention
3.3.3. UNets with Enhanced Boundary Detection
3.3.4. Non-UNet Double-Stream Models
3.3.5. Transformers
4. Semi-Supervised and Unsupervised Deep-Learning Models for Multispectral Change Detection
4.1. Unsupervised
4.2. Semi-Supervised
5. Performance
6. Challenges and Outlook
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RS | Remote sensing |
CD | Change detection |
CVA | Change vector analysis |
RGB | Red, green, blue |
SAR | Synthetic aperture radar |
PCA | Principal component analysis |
MAD | Mulitvariate alteration detection |
LSTM | Long short-term memory |
CNN | Convolutional neural network |
RNN | Recurrent neural network |
GAN | Generative adversarial network |
TP | True positive |
TN | True negative |
FP | False positive |
FN | False negative |
OA | Overall accuracy |
Appendix A
References
- Abdollahi, A.; Pradhan, B.; Shukla, N.; Chakraborty, S.; Alamri, A. Deep Learning Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review. Remote Sens. 2020, 12, 1444. [Google Scholar] [CrossRef]
- Hu, T.; Su, Y.; Xue, B.; Liu, J.; Zhao, X.; Fang, J.; Guo, Q. Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data. Remote Sens. 2016, 8, 565. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huete, A.; Jiang, A.; Yin, G.; Ding, Y.; Peng, D.; Hall, C.C.; Brown, L.; Shi, Y.; et al. Retrieval of Crop Biophysical Parameters from Sentinel-2 Remote Sensing Imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 187–195. [Google Scholar] [CrossRef]
- Xu, W.; Vinã, A.; Kong, L.; Pimm, S.L.; Zhang, J.; Yang, W.; Xiao, Y.; Zhang, L.; Chen, X.; Liu, J.; et al. Reassessing the Conservation Status of the Giant Panda Using Remote Sensing. Nat. Ecol. Evol. 2017, 1, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, S.; LaRue, M.; Lecomte, N.; Atkinson, S.; Garshelis, D.; Porter, C.; Atwood, T. Polar Bears from Space: Assessing Satellite Imagery as a Tool to Track Arctic Wildlife. PLoS ONE 2014, 9, e101513. [Google Scholar] [CrossRef] [PubMed]
- Isikdogan, F.; Bovik, A.C.; Passalacqua, P. Surface Water Mapping by Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4909–4918. [Google Scholar] [CrossRef]
- Zhang, E.; Liu, L.; Huang, L.; Ng, K.S. An Automated, Generalized, Deep-Learning-Based Method for Delineating the Calving Fronts of Greenland Glaciers from Multi-Sensor Remote Sensing Imagery. Remote Sens. Environ. 2021, 254, 112265. [Google Scholar] [CrossRef]
- Browning, D.M.; Steele, C.M. Vegetation Index Differencing for Broad-Scale Assessment of Productivity Under Prolonged Drought and Sequential High Rainfall Conditions. Remote Sens. 2013, 5, 327–341. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Kerle, N.; Pasolli, E.; Arsanjani, J.J. Post-Disaster Building Database Updating Using Automated Deep Learning: An Integration of Pre-Disaster OpenStreetMap and Multi-Temporal Satellite Data. Remote Sens. 2019, 11, 2427. [Google Scholar] [CrossRef]
- Malakhov, D.; Dyke, G.; King, C. Remote Sensing Applied to Paleontology: Exploration of Upper Cretaceous Sediments in Kazakhstan for Potential Fossil Sites. Palaeontol. Electron. 2009, 12, 1935–3952. [Google Scholar]
- Emerson, C.; Bommersbach, B.; Nachman, B.; Anemone, R. An Object-Oriented Approach to Extracting Productive Fossil Localities from Remotely Sensed Imagery. Remote Sens. 2015, 7, 16555–16570. [Google Scholar] [CrossRef]
- Silván-Cárdenas, J.L.; Caccavari-Garza, A.; Quinto-Sánchez, M.E.; Madrigal-Gómez, J.M.; Coronado-Juárez, E.; Quiroz-Suarez, D. Assessing Optical Remote Sensing for Grave Detection. Forensic Sci. Int. 2021, 329, 111064. [Google Scholar] [CrossRef] [PubMed]
- Wellmann, T.; Lausch, A.; Andersson, E.; Knapp, S.; Cortinovis, C.; Jache, J.; Scheuer, S.; Kremer, P.; Mascarenhas, A.; Kraemer, R.; et al. Remote Sensing in Urban Planning: Contributions towards Ecologically Sound Policies? Landsc. Urban Plan. 2020, 204, 103921. [Google Scholar] [CrossRef]
- Singh, A. Digital Change Detection Techniques Using Remotely-Sensed Data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef]
- Su, H.; Wu, Z.; Zhang, H.; Du, Q. Hyperspectral Anomaly Detection: A survey. IEEE Geosci. Remote Sens. Mag. 2022, 10, 64–90. [Google Scholar] [CrossRef]
- Liu, S.; Marinelli, D.; Bruzzone, L.; Bovolo, F. A Review of Change Detection in Multitemporal Hyperspectral Images: Current Techniques, Applications, and Challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 140–158. [Google Scholar] [CrossRef]
- Elmaizi, A.; Sarhrouni, E.; Hammouch, A.; Chafik, N. Hyperspectral Images Classification and Dimensionality Reduction using spectral interaction and SVM classifier. arXiv 2022, arXiv:2210.15546. [Google Scholar]
- Shen, S.S.; Bassett, E.M. Information-Theory-Based Band Selection and Utility Evaluation for Reflective Spectral Systems. SPIE 2002, 4725, 18–29. [Google Scholar] [CrossRef]
- Kåsen, I.; Rødningsby, A.; Haavardsholm, T.V.; Skauli, T. Band Selection for Hyperspectral Target Detection Based on a Multinormal Mixture Anomaly Detection Algorithm. SPIE 2008, 6966, 53–58. [Google Scholar] [CrossRef]
- Wang, S.; Quan, D.; Liang, X.; Ning, M.; Guo, Y.; Jiao, L. A deep learning framework for remote sensing image registration. ISPRS J. Photogramm. Remote Sens. 2018, 145, 148–164. [Google Scholar] [CrossRef]
- Lei, J.; Gu, Y.; Xie, W.; Li, Y.; Du, Q. Boundary Extraction Constrained Siamese Network for Remote Sensing Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5621613. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change Detection Techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Vu, P.X.; Duc, N.T.; Yem, V.V. Application of Statistical Models for Change Detection in SAR Imagery. In Proceedings of the 2015 International Conference on Computing, Management and Telecommunications, ComManTel 2015, Da Nang, Vietnam, 28–30 December 2015; pp. 239–244. [Google Scholar] [CrossRef]
- Zhao, J.; Chang, Y.; Yang, J.; Niu, Y.; Lu, Z.; Li, P. A Novel Change Detection Method Based on Statistical Distribution Characteristics Using Multi-Temporal PolSAR Data. Sensors 2020, 20, 1508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wei, S.; Ji, S.; Lu, M. Detecting Large-Scale Urban Land Cover Changes from Very High Resolution Remote Sensing Images Using CNN-Based Classification. ISPRS Int. J. Geo-Inf. 2019, 8, 189. [Google Scholar] [CrossRef]
- Bhandari, A.; Kumar, A.; Singh, G. Feature Extraction using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City. Procedia Technol. 2012, 6, 612–621. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change detection based on artificial intelligence: State-of-the-art and challenges. Remote Sens. 2020, 12, 1688. [Google Scholar] [CrossRef]
- Khelifi, L.; Mignotte, M. Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis. IEEE Access 2020, 8, 126385–126400. [Google Scholar] [CrossRef]
- Shafique, A.; Cao, G.; Khan, Z.; Asad, M.; Aslam, M. Deep Learning-Based Change Detection in Remote Sensing Images: A Review. Remote Sens. 2022, 14, 871. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, M.; Zhong, Y.; Xie, H.; Hao, Z.; Lin, J.; Ma, X.; Hu, X. A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 1552. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change Detection from Remotely Sensed Images: From Pixel-Based to Object-Based Approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Zhong, Y.; Ma, A.; Ong, Y.s.; Zhu, Z.; Zhang, L. Computational Intelligence in Optical Remote Sensing Image Processing. Appl. Soft Comput. 2018, 64, 75–93. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools, and Challenges for the Community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar] [CrossRef]
- Benedek, C.; Sziranyi, T. Change Detection in Optical Aerial Images by a Multilayer Conditional Mixed Markov Model. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3416–3430. [Google Scholar] [CrossRef]
- Bourdis, N.; Marraud, D.; Sahbi, H. Constrained optical flow for aerial image change detection. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 4176–4179. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A.; Gousseau, Y. Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2115–2118. [Google Scholar]
- Lebedev, M.A.; Vizilter, Y.V.; Vygolov, O.V.; Knyaz, V.A.; Rubis, A.Y. Change Detection in Remote Sensing Images Using Conditional Adversarial Networks. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII, 565–571. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [Google Scholar] [CrossRef]
- Caye Daudt, R.; Le Saux, B.; Boulch, A.; Gousseau, Y. Multitask Learning for Large-Scale Semantic Change Detection. Comput. Vis. Image Underst. 2019, 187, 102783. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A Deeply Supervised Image Fusion Network for Change Detection in High Resolution Bi-Temporal Remote Sensing Images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, L.; Zhang, L. A Scene Change Detection Framework for Multi-Temporal Very High Resolution Remote Sensing Images. Signal Process. 2016, 124, 184–197. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, L.; Du, B. Kernel Slow Feature Analysis for Scene Change Detection. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2367–2384. [Google Scholar] [CrossRef]
- Peng, D.; Bruzzone, L.; Zhang, Y.; Guan, H.; DIng, H.; Huang, X. SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection in High Resolution Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5891–5906. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, M.; Li, S.; Liu, X.; Wang, F.; Zhang, L. A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5604816. [Google Scholar] [CrossRef]
- Yang, K.; Xia, G.S.; Liu, Z.; Du, B.; Yang, W.; Pelillo, M.; Zhang, L. Semantic Change Detection with Asymmetric Siamese Networks. arXiv 2020, arXiv:2010.05687. [Google Scholar] [CrossRef]
- Coletta, V.; Marsocci, V.; Ravanelli, R. 3DCD: A New Dataset for 2D and 3D Change Detection Using Deep Learning Techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII, 1349–1354. [Google Scholar] [CrossRef]
- Tian, S.; Zhong, Y.; Zheng, Z.; Ma, A.; Tan, X.; Zhang, L. Large-Scale Deep Learning Based Binary and Semantic Change Detection in Ultra High Resolution Remote Sensing Imagery: From Benchmark Datasets to Urban Application. ISPRS J. Photogramm. Remote Sens. 2022, 193, 164–186. [Google Scholar] [CrossRef]
- Yuan, P.; Zhao, Q.; Zhao, X.; Wang, X.; Long, X.; Zheng, Y. A Transformer-Based Siamese Network and an Open Optical Dataset for Semantic Change Detection of Remote Sensing Images. Int. J. Digit. Earth 2022, 15, 1506–1525. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, R.; Du, X.; Du, Y. TransUNetCD: A Hybrid Transformer Network for Change Detection in Optical Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5622519. [Google Scholar] [CrossRef]
- Wang, G.; Li, B.; Zhang, T.; Zhang, S. A Network Combining a Transformer and a Convolutional Neural Network for Remote Sensing Image Change Detection. Remote Sens. 2022, 14, 2228. [Google Scholar] [CrossRef]
- Bandara, W.G.C.; Patel, V.M. A Transformer-Based Siamese Network for Change Detection. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Virtual, 17–22 July 2022; pp. 207–210. [Google Scholar] [CrossRef]
- Yang, B.; Huang, Y.; Su, X.; Guo, H. MAEANet: Multiscale Attention and Edge-Aware Siamese Network for Building Change Detection in High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 4895. [Google Scholar] [CrossRef]
- Yan, T.; Wan, Z.; Zhang, P. Fully Transformer Network for Change Detection of Remote Sensing Images. arXiv 2022, arXiv:2210.00757. [Google Scholar]
- Li, W.; Xue, L.; Wang, X.; Li, G. MCTNet: A Multi-Scale CNN-Transformer Network for Change Detection in Optical Remote Sensing Images. arXiv 2022, arXiv:2210.07601. [Google Scholar] [CrossRef]
- Mao, Z.; Tong, X.; Luo, Z.; Zhang, H. MFATNet: Multi-Scale Feature Aggregation via Transformer for Remote Sensing Image Change Detection. Remote Sens. 2022, 14, 5379. [Google Scholar] [CrossRef]
- Chen, P.; Li, C.; Zhang, B.; Chen, Z.; Yang, X.; Lu, K.; Zhuang, L. A Region-Based Feature Fusion Network for VHR Image Change Detection. Remote Sens. 2022, 14, 5577. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, X.; Sun, Y.; Feng, W.; Gan, Q.; Ruan, Y. AFSNet: Attention-guided full-scale feature aggregation network for high-resolution remote sensing image change detection. Gisci. Remote Sens. 2022, 59, 1882–1900. [Google Scholar] [CrossRef]
- Ling, J.; Hu, L.; Cheng, L.; Chen, M.; Yang, X. IRA-MRSNet: A Network Model for Change Detection in High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 5598. [Google Scholar] [CrossRef]
- Mou, L.; Zhu, X.X. A Recurrent Convolutional Neural Network for Land Cover Change Detection in Multispectral Images. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 4363–4366. [Google Scholar] [CrossRef]
- Caye Daudt, R.; Le Saux, B.; Boulch, A. Fully convolutional siamese networks for change detection. In Proceedings of the International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, X. The Spectral-Spatial Joint Learning for Change Detection in Multispectral Imagery. Remote Sens. 2019, 11, 240. [Google Scholar] [CrossRef]
- Fang, B.; Pan, L.; Kou, R. Dual Learning-Based Siamese Framework for Change Detection Using Bi-Temporal VHR Optical Remote Sensing Images. Remote Sens. 2019, 11, 1292. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, Y.; Guan, H. End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet++. Remote Sens. 2019, 11, 1382. [Google Scholar] [CrossRef]
- Chen, H.; Member, S.; Wu, C.; Du, B.; Member, S.; Zhang, L. Change Detection in Multi-temporal VHR Images Based on Deep Siamese Multi-scale Convolutional Networks. arXiv 2019, arXiv:1906.11479. [Google Scholar] [CrossRef]
- Papadomanolaki, M.; Verma, S.; Vakalopoulou, M.; Gupta, S.; Karantzalos, K. Detecting Urban Changes with Recurrent Neural Networks from Multitemporal Sentinel-2 Data. arXiv 2019, arXiv:1910.07778. [Google Scholar]
- Chen, H.; Wu, C.; Du, B.; Zhang, L.; Wang, L. Change Detection in Multisource VHR Images via Deep Siamese Convolutional Multiple-Layers Recurrent Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2848–2864. [Google Scholar] [CrossRef]
- Qian, J.; Xia, M.; Zhang, Y.; Liu, J.; Xu, Y. TCDNet: Trilateral Change Detection Network for Google Earth Image. Remote Sens. 2020, 12, 2669. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, Z.; Peng, J.; Chen, L.; Huang, H.; Zhu, J.; Liu, Y.; Li, H. DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1194–1206. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, X.; Ge, X.; Chen, J. Using Adversarial Network for Multiple Change Detection in Bitemporal Remote Sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8003605. [Google Scholar] [CrossRef]
- Fang, S.; Li, K.; Shao, J.; Li, Z. SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8007805. [Google Scholar] [CrossRef]
- Zheng, Z.; Wan, Y.; Zhang, Y.; Xiang, S.; Peng, D.; Zhang, B. CLNet: Cross-Layer Convolutional Neural Network for Change Detection in Optical Remote Sensing Imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 247–267. [Google Scholar] [CrossRef]
- Liu, M.; Shi, Q.; Marinoni, A.; He, D.; Liu, X.; Zhang, L. Super-Resolution-Based Change Detection Network with Stacked Attention Module for Images with Different Resolutions. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4403718. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, M.; Yang, G.; Zhang, L. ESCNet: An End-to-End Superpixel-Enhanced Change Detection Network for Very-High-Resolution Remote Sensing Images. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, K.; Zhou, G.; Sun, X. Change Capsule Network for Optical Remote Sensing Image Change Detection. Remote Sens. 2021, 13, 2646. [Google Scholar] [CrossRef]
- Chen, H.; Qi, Z.; Shi, Z. Remote Sensing Image Change Detection with Transformers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5607514. [Google Scholar] [CrossRef]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P. Looking for Change? Roll the Dice and Demand Attention. Remote Sens. 2021, 13, 3707. [Google Scholar] [CrossRef]
- Ye, Y.; Zhou, L.; Zhu, B.; Yang, C.; Sun, M.; Fan, J.; Fu, Z. Feature Decomposition-Optimization-Reorganization Network for Building Change Detection in Remote Sensing Images. Remote Sens. 2022, 14, 722. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, W.; Pun, M.O. Multilevel Deformable Attention-Aggregated Networks for Change Detection in Bitemporal Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5621518. [Google Scholar] [CrossRef]
- Chen, T.; Lu, Z.; Yang, Y.; Zhang, Y.; Du, B.; Plaza, A. A Siamese Network Based U-Net for Change Detection in High Resolution Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2357–2369. [Google Scholar] [CrossRef]
- Li, Z.; Yan, C.; Sun, Y.; Xin, Q. A Densely Attentive Refinement Network for Change Detection Based on Very-High-Resolution Bitemporal Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4409818. [Google Scholar] [CrossRef]
- Basavaraju, K.S.; Sravya, N.; Lal, S.; Nalini, J.; Reddy, C.S.; Dell’Acqua, F. UCDNet: A Deep Learning Model for Urban Change Detection From Bi-Temporal Multispectral Sentinel-2 Satellite Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5408110. [Google Scholar] [CrossRef]
- Zheng, H.; Gong, M.; Liu, T.; Jiang, F.; Zhan, T.; Lu, D.; Zhang, M. HFA-Net: High frequency attention siamese network for building change detection in VHR remote sensing images. Pattern Recognit. 2022, 129, 108717. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, G.; Han, J. ISNet: Towards Improving Separability for Remote Sensing Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5623811. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI); Springer: Berlin/Heidelberg, Germany, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation. IEEE Trans. Med. Imaging 2019, 39, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Abdani, S.R.; Zulkifley, M.A.; Mamat, M. U-Net with Spatial Pyramid Pooling Module for Segmenting Oil Palm Plantations. In Proceedings of the 2020 IEEE second International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Kota Kinabalu, Malaysia, 26–27 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sobel, I.; Feldman, G. An Isotropic 3x3 Image Gradient Operator. Pattern Classification and Scene Analysis; Wiley: New York, NY, USA, 1973; pp. 271–272. [Google Scholar]
- Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers: State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Virtual, 16–20 November 2020; pp. 38–45. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Cheng, S.; Li, Y. SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5224713. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 9992–10002. [Google Scholar] [CrossRef]
- Hou, B.; Wang, Y.; Liu, Q. Change Detection Based on Deep Features and Low Rank. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2418–2422. [Google Scholar] [CrossRef]
- Gong, M.; Yang, Y.; Zhan, T.; Niu, X.; Li, S. A Generative Discriminatory Classified Network for Change Detection in Multispectral Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 321–333. [Google Scholar] [CrossRef]
- Saha, S.; Bovolo, F.; Bruzzone, L. Unsupervised deep change vector analysis for multiple-change detection in VHR Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3677–3693. [Google Scholar] [CrossRef]
- Holgado Alvarez, J.L.; Ravanbakhsh, M.; Demir, B. S2-cGAN: Self-Supervised Adversarial Representation Learning for Binary Change Detection in Multispectral Images. In Proceedings of the IEEE 2020 International Geoscience and Remote Sensing Symposium (IGARSS 2020), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2515–2518. [Google Scholar] [CrossRef]
- Wu, C.; Chen, H.; Du, B.; Zhang, L. Unsupervised Change Detection in Multitemporal VHR Images Based on Deep Kernel PCA Convolutional Mapping Network. IEEE Trans. Cybern. 2021, 52, 12084–12098. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, W. A Feature Difference Convolutional Neural Network-Based Change Detection Method. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7232–7246. [Google Scholar] [CrossRef]
- Leenstra, M.; Marcos, D.; Bovolo, F.; Tuia, D. Self-supervised pre-training enhances change detection in Sentinel-2 imagery. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2021; Volume 12667, pp. 578–590. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Shi, Z. Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5603216. [Google Scholar] [CrossRef]
- Saha, S.; Mou, L.; Zhu, X.X.; Bovolo, F.; Bruzzone, L. Semisupervised Change Detection Using Graph Convolutional Network. IEEE Geosci. Remote Sens. Lett. 2021, 18, 607–611. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2281. [Google Scholar] [CrossRef] [PubMed]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Burchfield, D.R.; Petersen, S.L.; Kitchen, S.G.; Jensen, R.R. sUAS-Based Remote Sensing in Mountainous Areas: Benefits, Challenges, and Best Practices. Pap. Appl. Geogr. 2020, 6, 72–83. [Google Scholar] [CrossRef]
- Orusa, T.; Cammareri, D.; Borgogno Mondino, E. A Scalable Earth Observation Service to Map Land Cover in Geomorphological Complex Areas beyond the Dynamic World: An Application in Aosta Valley (NW Italy). Appl. Sci. 2022, 13, 390. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Wang, J.; Tian, W.; Liu, Q.; Ma, G.; Kan, X.; Chu, Y. Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning. Remote Sens. 2021, 13, 584. [Google Scholar] [CrossRef]
- Southworth, J.; Muir, C. Specialty Grand Challenge: Remote Sensing Time Series Analysis. Front. Remote Sens. 2021, 2, 770431. [Google Scholar] [CrossRef]
Data Set | Number of Image Pairs | Image Size | Number of Pixels | Resolution (m) | Number of Bands | Year |
---|---|---|---|---|---|---|
SZTAKI [37] | 13 | 952 × 640 | 8 × 106 | 1.5 | 3 | 2008 |
AICD [38] | 1000 | 800 × 600 | 4.8 × 108 | 0.5 | 3 | 2011 |
OSCD [39] | 24 | 600 × 600 | 8.6 × 106 | 10, 20, 60 | 13 | 2018 |
CDD [40] | 16,000 | 256 × 256 | 1 × 109 | 0.03–1 | 3 | 2018 |
WHU Building CD [41] | 1 | 32,507 × 15,345 | 5 × 108 | 0.075 | 3 | 2018 |
HRSCD [42] | 291 | 10,000 × 10,000 | 3 × 1010 | 0.5 | 3 | 2019 |
LEVIR-CD [43] | 637 | 1024 × 1024 | 6.7 × 108 | 0.5 | 3 | 2020 |
DSIFN [44] | 394 | 512 × 512 | 1 × 108 | 2 | 3 | 2020 |
MtS-WH [45,46] | 1 | 7200 × 6000 | 4.3 × 107 | 1 | 4 | 2020 |
Google Data Set [47] | 1067 | 256 × 256 | 7 × 107 | 0.55 | 3 | 2020 |
SYSU-CD [48] | 20,000 | 256 × 256 | 1.3 × 109 | 0.5 | 3 | 2021 |
SECOND [49] | 4662 | 512 × 512 | 1 × 109 | 3 | 2021 | |
3DCD [50] | 472 | 400 × 400 | 7.6 × 107 | 0.5 | 3 | 2022 |
Hi-UCD [51] | 40,800 | 512 × 512 | 1 × 1010 | 0.1 | 3 | 2022 |
Landsat-SCD [52] | 8468 | 416 × 416 | 1.5 × 109 | 30 | 3 | 2022 |
Dataset | Origin | Type of changes | ||||
SZTAKI | Aerial, Hungary | Buildings, building sites, groundwork, ploughed land, | ||||
large groups of trees | ||||||
AICD | Synthetic | Buildings | ||||
OSCD | Sentinel-2, World | Buildings and roads | ||||
CDD | Aerial (Google Earth) | Buildings, roads, vehicles, not seasonal changes | ||||
WHU Building CD | Aerial, Christchurch, New Zealand | Buildings | ||||
HRSCD | Aerial, France | Semantic, artificial surfaces, agricultural areas, forests, wetlands, water | ||||
LEVIR-CD | Aerial (Google Earth), Texas | Buildings | ||||
DSIFN | Aerial, China | Buildings, roads | ||||
MtS-WH | IKONOS, Wuhan | Scene classification, parking, water, sparse/dense houses, | ||||
residential, idle, vegetation, industrial | ||||||
Google Data Set | Aerial (Google Earth) | Buildings | ||||
SYSU-CD | Aerial, Hong Kong | Buildings, groundwork, change of vegetation, roads, sea constructions | ||||
SECOND | Aerial, China | Semantic, non-vegetated ground surface, trees, low vegetation, | ||||
water, buildings, playgrounds | ||||||
3DCD | Aerial, Valladolid, Spain | Based on changes to elevation—mostly focused on buildings. | ||||
Hi-UCD | Aerial, Tallinn, Estonia | Semantic, 9 types of land cover, 48 types of semantic change. | ||||
Water, grass, building, greenhouse, road, bridge, bare land, | ||||||
woodland, other | ||||||
Landsat-SCD | Landsat series, China | Semantic, time series with 10 land cover change types |
Network Name | Network Structure | Data Set | Note | Year | |
---|---|---|---|---|---|
TransUNetCD [53] | Transformer + UNet CD | Double-Stream UNet + Transformer | WHU, CDD, LEVIR, DSIFN | UNet + transformer | 2022 |
UVACD [54] | Double-Stream CNN + Transformer | LEVIR, WHU | transformer | 2022 | |
ChangeFormer [55] | Change Transformer | Double-Stream Transformer | LEVIR, DSIFN | transformer, 4 feature difference modules, simple decoder | 2022 |
Pyramid-SCDFormer [52] | Pyramid, semantic CD Transformer | Double-Stream Transformer | WHU, LEVIR | transformer encoders, MLP decoder, conv units with different kernels | 2022 |
MAEANet [56] | Multi-scale Attention and Edge-Aware Net | Double-Stream UNet, Attention | WHU, LEVIR | spatial & contour attention, UNet for feature extraction + feature fusion | 2022 |
FTN [57] | Fully Transformer Net | Double-Stream Transformer, Attention | WHU, LEVIR, SYSU, Google | Swin transformers, attention, multiple loss functions | 2022 |
MCTNet [58] | Multi-Scale CNN Transformer Net | Double-Stream UNet/Transformer hybrid | LEVIR, CDD | hybrid ConvTrans blocks | 2022 |
MFATNet [59] | Multi-Scale Feature Aggregation via Transformer | Double-Stream Transformer, Attention | WHU, LEVIR, DSIFN | feature extracion by ResNet, input to transformer, channel attention | 2022 |
RFNet [60] | Region-Based Feature Fusion Net | Double-Stream CNN | WHO, SECOND | CNN, multi-level feature fusion, region similarity module | 2022 |
AFSNet [61] | Attention-Guided Siamese Full-Scale Feature Aggregation Net | Double-Stream UNet-like, Attention | LEVIR, CDD | full-scale skip connections, spatial and channel attention | 2022 |
IRA-MRSNet [62] | Multi-Scale Residual Siamese Network fusing Integrated Residual Attention | Double-Stream UNet-like, Attention | CDD, WHU, LEVIR, SYSU | MultiRes blocks (fusion of different size kernels) instead of traditional convolutions, channel attention | 2022 |
Recurrent CNN [63] | Double-Stream + LSTM | Taizhou | LSTM | 2018 | |
FC-EF [64] | Fully Conv. Early Fusion | Single-Stream UNet | SZTAKI, OSCD | early fusion | 2018 |
FC-Siam-conc [64] | Fully Conv. Siamese Concatenation | Double-Stream UNet | SZTAKI, OSCD | Siamese concatenation | 2018 |
FC-Siam-diff [64] | Fully Conv. Siamese Difference | Double-Stream UNet | SZTAKI, OSCD | Siamese difference | 2018 |
SSJLN [65] | Spectral-spatial joint learning | Double-Stream | other | new loss | 2019 |
DLSF [66] | Dual-learning Siamese | Double-Stream + GAN | SZTAKI, other | GAN-domain transfer | 2019 |
CD-UNet++ [67] | Change Detection UNet++ | Single-Stream UNet | CDD | UNet++ | 2019 |
DSMS-FCN [68] | Deep Siamese Multi-scale FCN | Double-Stream UNet | other | conv units with different kernels | 2019 |
FC-EF-Res [42] | Fully Conv. Early Fusion Residual | Single-Stream UNet | HRSCD, OSCD | landcover mapping + CD in one | 2019 |
UNetLSTM [69] | Double-Stream UNet + LSTM | OSCD | LSTM | 2019 | |
SiamCRNN [70] | Siamese Conv. RNN | Double-Stream + LSTM | other | LSTM | 2019 |
STANet [43] | Spatial-Temporal Attention Net | Double-Stream, Attention | LEVIR, SZTAKI | ResNet, attention | 2020 |
DSIFN [44] | Deeply Supervised Image Fusion | Double-Stream UNet | CDD, DSIFN | 2020 | |
TCDNet [71] | Trilateral CD Net | 3× Double-Stream | other | parallel CNNs, dilated conv | 2020 |
DASNet [72] | Dual Attentive Siamese Net | Double-Stream, Attention | CDD | VGG16, attention | 2020 |
AG-GAAN [73] | Attention Gates Generative Adversarial Adaptation Net | GAN, Attention | CDD | attention, new loss, GAN | 2020 |
SNUNet-CD [74] | Siamese Network UNet | Double-Stream UNet | CDD | Nested UNet, attention | 2021 |
CLNet [75] | Cross-Layer CNN | Single-Stream UNet, Attention | CDD, LEVIR, WHU | conv with different strides | 2021 |
SRCDNet [76] | Super-Resolution CD Net | GAN + Double-Stream | CDD, Google | ResNet | 2021 |
ESCNet [77] | End-to-end Superpixel | (FE) Superpixel segm + Double-Stream UNet | CDD SZTAKI | superpixel segmentation | 2021 |
CapsNet [78] | Capsule Net | Double-Stream | SZTAKI, other | capsule network | 2021 |
BIT_CD [79] | Bitemporal Image Transformer CD | Double-Stream Transformer | LEVIR, WHU, DSIFN | ResNet18, then transformer | 2021 |
CEECNet [80] | Compress–Expand/Expand–Compress Net | Double-Stream, Attention | LEVIR, WHU | attention, CEEC unit, new loss | 2021 |
FDORNet [81] | Feature Decomposition–Optimization–Reorganization Net | Double-Stream | LEVIR | boundary extraction, strided conv | 2022 |
MLDANets [82] | Multilevel Deformable Attention-Aggregated Networks | Double-Stream UNet, Attention | LEVIR, SECOND | attention module with deformable sampling | 2022 |
Siamese_AUNet [83] | Siamese attention + UNet | Double-Stream UNet, Attention | LEVIR, WHU, SZTAKI | attention, atrous spatial pyramid pooling | 2022 |
DARNet [84] | Densely Attentive Refinement Nets | Double-Stream UNet, Attention | CDD, SYSU, LEVIR | attention and refinement module | 2022 |
SwinSUNet | Swin Transformer Siamese U-shaped Net | Double-Stream Transformer | CDD, WHU, OSCD, HRSCD | Swin transformer | 2022 |
UCDNet [85] | Urban Change Detection Net | Double-Stream UNet | OSCD | residual connections, new spatial pyramid pooling, new loss | 2022 |
BESNet [21] | Boundary Extraction Constrained Siamese Net | Double-Stream | CDD, DSIFN, LEVIR | boundary extraction | 2022 |
HFA-Net [86] | High Frequency Attention Net | Double-Stream UNet, Attention | WHU, LEVIR, Google | attention, boundary | 2022 |
ISNet [87] | Improved Separability Net | Double-Stream, Attention | LEVIR, SYSU, CDD | attention, margin maximization | 2022 |
Unsupervised | ||||
---|---|---|---|---|
Network Name | Type | Year | ||
VGG16_LR [99] | VGG16 Low Rank | pretraining | superpixels, VGG16 on scene class., low rank decomp | 2017 |
GDCN [100] | Generative Discriminatory Classified Network | generates training set | GAN, CVA for training set | 2019 |
DCVA [101] | Deep Change Vector Analysis | pretraining | CNN on scene class., deep CVA | 2019 |
DSMS-CN [68] | Deep Siamese Multi-Scale | generates training set | CVA for training set, Double-Stream UNet | 2019 |
-cGAN [102] | Self Supervised Conditional GAN | generates training set | trained on no change, GAN, Generator (UNet) | 2020 |
KPCAMNet [103] | Kernel Principal Component Analysis Network | unsupervised | layerwise training of KPCA modules | 2021 |
Semi-supervised | ||||
FDCNN [104] | Feature Difference CNN | pretraining | VGG16 pretrained on RS scene | 2020 |
Self-supervised Pre-training [105] | pretraining | pretrained on a pretext task | 2021 | |
SemiCDNet [47] | Semi-Supervised Change Detection Network | semi-supervised | GAN, Generator (UNet) + 2x Discriminator | 2020 |
IAug_CDNet [106] | Instance-Level Augmentation CD Net | semi-supervised, augmentation | GAN | 2021 |
GCN [107] | Graph Convolutional Network | semi-supervised | graph conv net | 2021 |
Network Name | Precision (%) | Recall (%) | F1 (%) | OA (%) |
---|---|---|---|---|
SZTAKI–Szada | ||||
FC-EF | 43.57 | 62.65 | 51.4 | (93.08) |
FC-Siam-conc | 40.93 | (65.61) | 50.41 | 92.46 |
FC-Siam-diff | 41.38 | 72.38 | 52.66 | 92.4 |
DSMS-FCN | 52.78 | 63.39 | 57.72 | 94.57 |
STANet | (45.5) | 63.5 | 53.0 | |
ESCNet | 48.89 | 58.21 | (53.73) | 94.07 |
CapsNet | 44.4 | 68.9 | 54.0 | |
* FDCNN | 56.05 | 92.86 | ||
SZTAKI–Tiszadob | ||||
FC-EF | (90.28) | 96.74 | 93.4 | 97.66 |
FC-Siam-conc | 72.07 | 96.87 | 82.65 | 93.04 |
FC-Siam-diff | 69.51 | 88.29 | 77.78 | 91.37 |
DSMS-FCN | 89.18 | 88.56 | 88.86 | 96.20 |
STANet | 95.0 | 90.8 | (93.0) | |
ESCNet | 76.33 | 72.87 | 74.56 | (93.95) |
CapsNet | 96.8 | (95.3) | 96.0 | |
OSCD | ||||
FC-EF | 64.42 | 50.97 | 56.91 | 96.05 |
FC-Siam-conc | 42.39 | 65.15 | 51.36 | 93.68 |
FC-Siam-diff | 57.8 | 57.99 | (57.92) | 95.68 |
FC-EF-Res | 54.93 | 66.48 | 60.15 | 95.64 |
UNetLSTM | (63.59) | 52.93 | 57.78 | (96.00) |
* FDCNN | (65.47) | 91.17 | ||
UCDNet | 92.53 | 86.16 | 89.21 | 99.30 |
SwinSUNet | 55.0 | 54.0 | 54.5 | 95.3 |
CDD | ||||
CD-UNet++ | 89.54 | 87.11 | 87.56 | 96.73 |
DSIFN | 94.96 | 86.08 | 90.30 | 97.71 |
DASNet | 92.2 | 93.2 | 92.7 | 98.2 |
SNUNet-CD | 96.3 | 96.2 | 96.2 | |
CLNet | 94.7 | 89.7 | 92.1 | 98.1 |
SRCDNet | 92.07 | 88.07 | 90.02 | |
ESCNet | 90.90 | (96.35) | 93.54 | 98.47 |
ISNet | 95.18 | 94.43 | 94.80 | 98.78 |
BESNet | 95.20 | 92.40 | 93.78 | 98.51 |
DARNet | 97.05 | 96.91 | 96.98 | 99.29 |
SwinSUNet | 95.7 | 92.3 | 94.0 | 98.5 |
TransUNetCD | (96.93) | 97.42 | 97.17 | |
MCTNet | 96.56 | 95.33 | 95.94 | (99.05) |
ASFNet | 98.44 | 92.85 | 95.56 | 98.94 |
IRA-MRSNet | 96.81 | 96.13 | (96.47) | 99.14 |
LEVIR | ||||
STANet | 83.8 | (91.0) | 87.3 | |
CLNet | 89.8 | 90.3 | 90.0 | 98.9 |
BIT_CD | 89.24 | 89.37 | 89.31 | 98.92 |
CEECNet | 93.81 | 89.92 | 91.83 | |
* IAug_CDNet 20% | 90.1 | 85.1 | 87.5 | |
* IAug_CDNet 100% | 91.6 | 86.5 | 89 | |
ISNet | 92.46 | 88.27 | 90.32 | 99.04 |
HFA-Net | 88.32 | 98.90 | ||
BESNet | 94.41 | 84.26 | 89.05 | 97.69 |
SiameseAUNet | 85.82 | 87.02 | 85.57 | |
DARNet | 92.67 | 91.31 | 91.98 | 97.76 |
MLDANets | (93.08) | 90.18 | (91.57) | 99.15 |
FDORNet | 91.29 | 90.42 | 90.85 | 99.07 |
TransUNetCD | 92.43 | 89.82 | 91.11 | |
UVACD | 91.90 | 90.70 | 91.30 | 99.12 |
ChangeFormer | 92.05 | 88.80 | 90.40 | 99.04 |
Pyramid-SCDFormer-B | 92.72 | 90.18 | 91.41 | 98.39 |
MAEANet | 88.84 | (91.00) | 89.90 | 89.35 |
FTN | 92.71 | 89.37 | 91.01 | 99.06 |
MCTNet | 91.21 | 90.76 | 90.98 | (99.08) |
MFATNet | 91.85 | 88.93 | 90.36 | 99.03 |
ASFNet | 90.74 | 91.06 | 90.90 | 99.07 |
IRA-MRSNet | 84.81 | 89.37 | 86.23 | 98.74 |
DSIFN | ||||
DSIFN | 67.11 | 67.54 | 67.33 | 88.86 |
BIT_CD | 68.36 | 70.18 | 69.26 | 89.41 |
BESNet | (83.60) | (72.17) | (77.47) | 97.98 |
TransUNetCD | 71.55 | 69.42 | 66.62 | |
ChangeFormer | 88.48 | 84.94 | 86.67 | (95.56) |
MFATNet | 88.65 | 86.62 | 87.62 | 95.84 |
WHU | ||||
CLNet | 96.9 | 95.7 | 96.3 | 99.7 |
CEECNet | (95.57) | (92.04) | (93.77) | |
* IAug_CDNet 20% | 86.8 | 78.1 | 82.2 | |
* IAug_CDNet 100% | 91.4 | 86.9 | 89.1 | |
* SemiCDNet 5% | 82.90 | 94.34 | ||
* SemiCDNet 10% | 85.28 | 95.17 | ||
* SemiCDNet 20% | 86.57 | 95.59 | ||
* SemiCDNet 50% | 87.74 | 95.95 | ||
HFA-Net | 88.23 | 97.58 | ||
SiameseAUNet | 82.02 | 86.33 | 84.47 | |
SwinSUNet | 95.0 | 92.6 | 93.8 | 99.4 |
TransUNetCD | 93.59 | 89.60 | 93.59 | |
UVACD | 94.59 | 91.17 | 92.84 | 99.14 |
Pyramid-SCDFormer-B | 92.22 | 86.86 | 89.31 | 96.43 |
MAEANet | 92.82 | 90.38 | 91.56 | 99.36 |
FTN | 93.09 | 91.24 | 92.16 | (99.37) |
MFATNet | 93.18 | 83.93 | 88.31 | 99.01 |
RFNet | 95.72 | 89.46 | 92.49 | |
IRAM-MRSNet | 84.07 | 85.18 | 84.52 | 98.63 |
SYSU | ||||
ISNet | 80.27 | (76.41) | 78.29 | 90.01 |
DARNet | (83.04) | 79.11 | 81.03 | 91.26 |
FTN | 86.86 | 76.82 | 81.53 | 97.79 |
IRA-MRSNet | 85.39 | 75.20 | (79.98) | (90.85) |
HFA-Net | 82.77 | 96.47 | ||
FTN | 86.99 | 84.21 | 85.58 | 97.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parelius, E.J. A Review of Deep-Learning Methods for Change Detection in Multispectral Remote Sensing Images. Remote Sens. 2023, 15, 2092. https://doi.org/10.3390/rs15082092
Parelius EJ. A Review of Deep-Learning Methods for Change Detection in Multispectral Remote Sensing Images. Remote Sensing. 2023; 15(8):2092. https://doi.org/10.3390/rs15082092
Chicago/Turabian StyleParelius, Eleonora Jonasova. 2023. "A Review of Deep-Learning Methods for Change Detection in Multispectral Remote Sensing Images" Remote Sensing 15, no. 8: 2092. https://doi.org/10.3390/rs15082092
APA StyleParelius, E. J. (2023). A Review of Deep-Learning Methods for Change Detection in Multispectral Remote Sensing Images. Remote Sensing, 15(8), 2092. https://doi.org/10.3390/rs15082092