Statistical Assessment of Some Interpolation Methods for Building Grid Format Digital Bathymetric Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.2. Seabed Morpholological Complexity
2.3. Interpolation Methods
2.3.1. Radial Basis Multiquadric Function
2.3.2. Ordinary Kriging
2.3.3. Universal Kriging
2.3.4. Gaussian Markov Random Fields
2.4. Vertical Accuracy Evaluation
2.5. ANOVA Test
3. Results and Discussion
3.1. Vertical Systematic Error
3.2. Vertical Random Error
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, I.O.; de Andrade, L.C.; Teixeira, V.G.; Santos, F.C.M. State of art of bathymetric surveys. Bull. Geod. Sci. 2022, 28, 1. [Google Scholar] [CrossRef]
- Le Deunf, J.; Debese, N.; Schmitt, T.; Billot, R. A Review of Data Cleaning Approaches in a Hydrographic Framework with a Focus on Bathymetric Multibeam Echosounder Datasets. Geosciences 2020, 10, 254. [Google Scholar] [CrossRef]
- Lague, D.; Feldmann, B. Topo-bathymetric airborne LiDAR for fluvial-geomorphology analysis. Dev. Earth Surf. Process. 2020, 23, 25–54. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Fernandez-Luque, I.; Aguilar, M.A.; García Lorca, A.M.; Viciana, A.R. The integration of multi-source remote sensing data for the modelling of shoreline change rates in a mediterranean coastal sector. Int. J. Remote Sens. 2019, 40, 1148–1174. [Google Scholar] [CrossRef]
- Prampolini, M.; Angeletti, L.; Castellan, G.; Grande, V.; Le Bas, T.; Taviani, M.; Foglini, F. Benthic Habitat Map of the Southern Adriatic Sea (Mediterranean Sea) from Object-Based Image Analysis of Multi-Source Acoustic Backscatter Data. Remote Sens. 2021, 13, 2913. [Google Scholar] [CrossRef]
- Brown, C.J.; Smith, S.J.; Lawton, P.; Anderson, J.T. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar. Coast. Shelf Sci. 2011, 92, 502–520. [Google Scholar] [CrossRef]
- Lamarche, G.; Orpin, A.R.; Mitchell, J.S.; Pallentin, A. Benthic Habitat Mapping. In Biological Sampling in the Deep Sea; Wiley: Hoboken, NJ, USA, 2016; pp. 80–102. ISBN 9781118332535. [Google Scholar]
- Arseni, M.; Voiculescu, M.; Georgescu, L.P.; Iticescu, C.; Rosu, A. Testing Different Interpolation Methods Based on Single Beam Echosounder River Surveying. Case Study: Siret River. ISPRS Int. J. Geo-Inf. 2019, 8, 507. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.F.J.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A.J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 2007, 30, 3–35. [Google Scholar] [CrossRef] [Green Version]
- Degraer, S.; Moerkerke, G.; Rabaut, M.; Van Hoey, G.; Du Four, I.; Vincx, M.; Henriet, J.P.; Van Lancker, V. Very-high resolution side-scan sonar mapping of biogenic reefs of the tube-worm Lanice conchilega. Remote Sens. Environ. 2008, 112, 3323–3328. [Google Scholar] [CrossRef]
- Amoroso, P.P.; Parente, C. The importance of sound velocity determination for bathymetric survey. Acta IMEKO 2021, 10, 46–53. [Google Scholar] [CrossRef]
- Figliomeni, F.G.; Parente, C. Bathymetry from satellite images: A proposal for adapting the band ratio approach to IKONOS data. Appl. Geomat. 2022, 1, 1–17. [Google Scholar] [CrossRef]
- Sagawa, T.; Yamashita, Y.; Okumura, T.; Yamanokuchi, T. Satellite Derived Bathymetry Using Machine Learning and Multi-Temporal Satellite Images. Remote Sens. 2019, 11, 1155. [Google Scholar] [CrossRef] [Green Version]
- Muzirafuti, A.; Barreca, G.; Crupi, A.; Faina, G.; Paltrinieri, D.; Lanza, S.; Randazzo, G. The Contribution of Multispectral Satellite Image to Shallow Water Bathymetry Mapping on the Coast of Misano Adriatico, Italy. J. Mar. Sci. Eng. 2020, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Parente, C.; Pepe, M. Bathymetry from worldview-3 satellite data using radiometric band ratio. Acta Polytech. 2018, 58, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Alcaras, E.; Amoroso, P.P.; Figliomeni, F.G.; Parente, C.; Vallario, A. Using Electronic Navigational Chart for 3d Bathymetric Model of the Port of Naples. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-4/W6-2022, 7–13. [Google Scholar] [CrossRef]
- International Hydrographic Organization. Standards for Hydrographic Surveys S-44 Edition 6.0.0; International Hydrographic Organization: 16 Bld Princesse Charlotte, Monaco, 2020. [Google Scholar]
- Alcaras, E.; Vallario, A.; Claudio, P. Comparison of different interpolation methods for DEM production. Int. J. Adv. Trends Comput. Sci. Eng. 2019, 6, 1654–1659. [Google Scholar] [CrossRef]
- Weng, Q. An evaluation of spatial interpolation accuracy of elevation data. In Progress in Spatial Data Handling: 12th International Symposium on Spatial Data Handling; Springer: Berlin/Heidelberg, Germany, 2006; pp. 805–824. [Google Scholar]
- Tobler, W. Frame independent spatial analysis. In Accuracy of Spatial Databases; CRC Press: Boca Raton, FL, USA, 1989; pp. 115–122. [Google Scholar]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Griffith, D.A. Advanced spatial statistics for analysing and visualizing geo-referenced data. Int. J. Geogr. Inf. Syst. 1993, 7, 107–123. [Google Scholar] [CrossRef]
- Arun, P.V. A comparative analysis of different DEM interpolation methods. Egypt. J. Remote Sens. Space Sci. 2013, 16, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Wu, C.Y.; Mossa, J.; Mao, L.; Almulla, M. Comparison of different spatial interpolation methods for historical hydrographic data of the lowermost Mississippi River. Ann. GIS 2019, 25, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Özdamar, L.; Demirhan, M.; Özpınar, A. A comparison of spatial interpolation methods and a fuzzy areal evaluation scheme in environmental site characterization. Comput. Environ. Urban Syst. 1999, 23, 399–422. [Google Scholar] [CrossRef]
- Lam, N.S.-N. Spatial Interpolation Methods: A Review. Am. Cartogr. 1983, 10, 129–150. [Google Scholar] [CrossRef]
- Caruso, C.; Quarta, F. Interpolation methods comparison. Comput. Math. Appl. 1998, 35, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Negreiros, J.G.; Painho, M.; Aguilar, M.A.; Aguilar, F. Spatial error and interpolation uncertainty appraisal within Geographic Information Systems. Res. J. Appl. Sci. 2008, 3, 471–479. [Google Scholar]
- Colin Childs. Interpolating Surfaces in ArcGIS Spatial. Semant. Sch. 2004, p. 17804891. Available online: https://www.semanticscholar.org/paper/Interpolating-Surfaces-in-ArcGIS-Spatial-Childs/944f410c2ac7456fe951b726f63c2f41466b9f67 (accessed on 3 February 2023).
- Gunarathna, M.H.J.P.; Nirmanee, K.G.; Kumari, N. Are Geostatistical Interpolation Methods Better than Deterministic Interpolation Methods in Mapping Salinity of Groundwater? Int. J. Res. Innov. Earth Sci. 2016, 3, 1375–2394. [Google Scholar]
- Meng, Q.; Liu, Z.; Borders, B.E. Assessment of regression kriging for spatial interpolation–comparisons of seven GIS interpolation methods. Cartogr. Geogr. Inf. Sci. 2013, 40, 28–39. [Google Scholar] [CrossRef]
- Varouchakis, Ε.A.; Hristopulos, D.T. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Environ. Monit. Assess. 2013, 185, 1–19. [Google Scholar] [CrossRef]
- Negreiros, J.; Painho, M.; Aguilar, F.; Aguilar, M. Geographical information systems principles of ordinary kriging interpolator. J. Appl. Sci. 2010, 10, 852–867. [Google Scholar] [CrossRef] [Green Version]
- Gong, G.; Mattevada, S.; O’Bryant, S.E. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ. Res. 2014, 130, 59–69. [Google Scholar] [CrossRef]
- Aguilar Torres, F.J.; Aguilar Torres, M.Á.; Agüera Vega, F.; Carvajal Ramírez, F.; Sánchez Salmerón, P.L. Efectos de la morfología del terreno, densidad muestral y métodos de interpolación en la calidad de los modelos digitales de elevaciones. In Evaluación de la Calidad en Modelos Digitales de Elevaciones; Grupo de Investigación Ingeniería Cartográfica: Jaén, Spain, 2002; pp. 453–465. [Google Scholar]
- Aguilar, F.J.; Agüera, F.; Aguilar, M.A.; Carvajal, F. Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogramm. Eng. Remote Sens. 2005, 71, 805–816. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, V.; Darboux, F.; Bourennane, H.; Leguédois, S.; Silvera, N.; Phachomphon, K. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology 2006, 77, 126–141. [Google Scholar] [CrossRef]
- Chen, C.; Yang, S.; Li, Y. Accuracy Assessment and Correction of SRTM DEM Using ICESat/GLAS Data under Data Coregistration. Remote Sens. 2020, 12, 3435. [Google Scholar] [CrossRef]
- Gosciewski, D. The effect of the distribution of measurement points around the node on the accuracy of interpolation of the digital terrain model. J. Geogr. Syst. 2013, 15, 513–535. [Google Scholar] [CrossRef] [Green Version]
- Guo-an, T.; Strobl, J.; Jian-ya, G.; Mu-dan, Z.; Zhen-jiang, C. Evaluation on the accuracy of digital elevation models. J. Geogr. Sci. 2001, 11, 209–216. [Google Scholar] [CrossRef]
- Guo, Q.; Li, W.; Yu, H.; Alvarez, O. Effects of topographie variability and lidar sampling density on several DEM interpolation methods. Photogramm. Eng. Remote Sens. 2010, 76, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Masataka, T. Accuracy of Digital Elevation Model according to Spatial Resolution. Int. Arch. Photogramm. Remote Sens. 1998, 32, 613–617. [Google Scholar]
- Mesa-Mingorance, J.L.; Ariza-López, F.J. Accuracy Assessment of Digital Elevation Models (DEMs): A Critical Review of Practices of the Past Three Decades. Remote Sens. 2020, 12, 2630. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Mills, J.P.; Delgado, J.; Aguilar, M.A.; Negreiros, J.G.; Pérez, J.L. Modelling vertical error in LiDAR-derived digital elevation models. ISPRS J. Photogramm. Remote Sens. 2010, 65, 103–110. [Google Scholar] [CrossRef]
- Alcaras, E.; Amoroso, P.P.; Parente, C. The Influence of Interpolated Point Location and Density on 3D Bathymetric Models Generated by Kriging Methods: An Application on the Giglio Island Seabed (Italy). Geosciences 2022, 12, 62. [Google Scholar] [CrossRef]
- Krivoruchko, K. “Spatial Statistical Data Analysis for GIS Users”-Esri Community. Available online: https://community.esri.com/t5/arcgis-geostatistical-analyst-questions/quot-spatial-statistical-data-analysis-for-gis/td-p/394418 (accessed on 3 February 2023).
- Zimmerman, D.L.; Zimmerman, M.B. A Comparison of Spatial Semivariogram Estimators and Corresponding Ordinary Kriging Predictors. Technometrics 1991, 33, 77–91. [Google Scholar] [CrossRef]
- Wang, J.-F.; Stein, A.; Gao, B.-B.; Ge, Y. A review of spatial sampling. Spat. Stat. 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Pardo-Iguzquiza, E.; Chica-Olmo, M. Geostatistics with the Matern semivariogram model: A library of computer programs for inference, kriging and simulation. Comput. Geosci. 2008, 34, 1073–1079. [Google Scholar] [CrossRef]
- Goovaerts, P. Kriging and Semivariogram Deconvolution in the Presence of Irregular Geographical Units. Math. Geosci. 2008, 40, 101–128. [Google Scholar] [CrossRef] [Green Version]
- ArcGIS. How Radial Basis Functions Work—ArcGIS Pro|Documentation; ArcGIS: Online, 2023; Available online: https://pro.arcgis.com/en/pro-app/latest/help/analysis/geostatistical-analyst/how-radial-basis-functions-work.htm (accessed on 3 February 2023).
- Buhmann, M.D. Radial basis functions. Acta Numer. 2000, 9, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Franke, R. Scattered Data Interpolation: Tests of Some Method. Math. Comput. 1982, 38, 181–200. [Google Scholar] [CrossRef]
- Van Beers, W.C.M.; Kleijnen, J.P.C. Kriging for interpolation in random simulation. J. Oper. Res. Soc. 2003, 54, 255–262. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 1–315. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Bei, Y.; Li, Y.; Zhou, W. Effect of interpolation methods on quantifying terrain surface roughness under different data densities. Geomorphology 2022, 417, 108448. [Google Scholar] [CrossRef]
- Oliver, M.; Webster, R.; Gerrard, J. Geostatistics in Physical Geography. Part I: Theory. Trans. Inst. Br. Geogr. 1989, 14, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, J.; Sjöstedt de Luna, S.; Mateu, J. Prediction of spatial functional random processes: Comparing functional and spatio-temporal kriging approaches. Stoch. Environ. Res. Risk Assess. 2019, 33, 1699–1719. [Google Scholar] [CrossRef] [Green Version]
- Johnston, K.; Ver Hoef, J.M.; Krivoruchko, K.; Lucas, N. (2) (PDF) Using ArcGIS Geostatistical Analyst. Available online: https://www.researchgate.net/publication/200043204_Using_ArcGIS_geostatistical_analyst (accessed on 3 February 2023).
- Gundogdu, K.S.; Guney, I. Spatial analyses of groundwater levels using universal kriging. J. Earth Syst. Sci. 2007, 116, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, M. Problems with universal kriging. J. Int. Assoc. Math. Geol. 1984, 16, 101–108. [Google Scholar] [CrossRef]
- Booker, A.J.; Dennis, J.E.; Boeing, P.D.F.; Serafini, D.B.; Lawrence Berkeley, E.O.; Torczon, V.; Trosset, M.W. A Rigorous Framework for Optimization of Expensive Functions by Surrogates. Struct. Optim. 1998, 17, 1–13. [Google Scholar] [CrossRef]
- Kiš, I.M. Comparison of ordinary and universal kriging interpolation techniques on a depth variable (a case of linear spatial trend), case study of the Šandrovac Field. Rud. Geol. Naft. Zb. 2016, 31, 41–58. [Google Scholar] [CrossRef]
- Li, S.Z. Markov Random Field Modeling in Image Analysis; Springer: Berlin/Heidelberg, Germany, 2009; p. 357. [Google Scholar]
- Aguilar, F.J.; Aguilar, M.A.; Blanco, J.L.; Nemmaoui, A.; Lorca, A.M.G. Analysis and validation of grid DEM generation based on Gaussian markov random field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Voltz, M.; Webster, R. A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. J. Soil Sci. 1990, 41, 473–490. [Google Scholar] [CrossRef]
- Li, Z. On the Measure of Digital Terrain Model Accuracy. Photogramm. Rec. 1988, 12, 873–877. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Aguilar, M.A.; Agüera, F. Accuracy assessment of digital elevation models using a non-parametric approach. Int. J. Geogr. Inf. Sci. 2007, 21, 667–686. [Google Scholar] [CrossRef]
- Höhle, J.; Höhle, M. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens. 2009, 64, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Rousseeuw, P.J.; Croux, C. Alternatives to the Median Absolute Deviation. J. Am. Stat. Assoc. 1993, 88, 1273–1283. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Hubert, M. Robust statistics for outlier detection. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 73–79. [Google Scholar] [CrossRef]
- Cochran, R.S. Book Review: Statistical Methods-7th Edition. Educ. Psychol. Meas. 1983, 43, 319–320. [Google Scholar] [CrossRef]
- Sthle, L.; Wold, S. Analysis of Variance (ANOVA). Chemom. Intell. Lab. Syst. 1989, 6, 259–272. [Google Scholar] [CrossRef]
- Ruxton, G.D.; Beauchamp, G. Time for some a priori thinking about post hoc testing. Behav. Ecol. 2008, 19, 690–693. [Google Scholar] [CrossRef] [Green Version]
- Abdi, H.; Williams, L.J. Encyclopedia of Research Design; Sage: Thousand Oaks, CA, USA, 2010. [Google Scholar]
- Alcaras, E.; Amoroso, P.P.; Falchi, U.; Parente, C. On the Accuracy of Geoid Heights Derived from Discrete GNSS/Levelling Data Using Kriging Interpolation. In International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Carlson, R.E.; Foley, T.A. The parameter R2 in multiquadric interpolation. Comput. Math. Appl. 1991, 21, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, F.J.; Aguilar, M.A.; Agüera, F.; Sánchez, J. The accuracy of grid digital elevation models linearly constructed from scattered sample data. Int. J. Geogr. Inf. Sci. 2006, 20, 169–192. [Google Scholar] [CrossRef]
- Huber, P.J.; Ronchetti, E.M. Robust Statistics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2009; pp. 1–354. [Google Scholar] [CrossRef]
- Borga, M.; Vizzaccaro, A. On the interpolation of hydrologic variables: Formal equivalence of multiquadratic surface fitting and kriging. J. Hydrol. 1997, 195, 160–171. [Google Scholar] [CrossRef]
- Lazzaro, D.; Montefusco, L.B. Radial basis functions for the multivariate interpolation of large scattered data sets. J. Comput. Appl. Math. 2002, 140, 521–536. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Z.; Peterson, J.; Chandra, S. The Effect of LiDAR Data Density on DEM Accuracy. In Proceedings of the International Congress on Modelling and Simulation (MODSIM07), Christchurch, New Zealand, 10–13 December 2007. [Google Scholar]
- Bello-Pineda, J.; Luis Hernández-Stefanoni, J. Comparing the performance of two spatial interpolation methods for creating a digital bathymetric model of the Yucatan submerged platform. Panam. J. Aquat. Sci. 2007, 2, 247–254. [Google Scholar]
- Curtarelli, M.; Leão, J.; Ogashawara, I.; Lorenzzetti, J.; Stech, J. Assessment of Spatial Interpolation Methods to Map the Bathymetry of an Amazonian Hydroelectric Reservoir to Aid in Decision Making for Water Management. ISPRS Int. J. Geo-Inf. 2015, 4, 220–235. [Google Scholar] [CrossRef]
- Erdogan, S. A comparision of interpolation methods for producing digital elevation models at the field scale. Earth Surf. Process. Landf. 2009, 34, 366–376. [Google Scholar] [CrossRef]
Sampling Density | Points | Points/m2 | Equivalent Grid Spacing (m) |
---|---|---|---|
SD1 | 16 | 0.0016 | 25.00 |
SD2 | 32 | 0.0032 | 17.68 |
SD3 | 64 | 0.0064 | 12.50 |
SD4 | 128 | 0.0128 | 8.84 |
SD5 | 256 | 0.0256 | 6.25 |
SD6 | 512 | 0.0512 | 4.42 |
SD7 | 1024 | 0.1024 | 3.13 |
SD8 | 2048 | 0.2048 | 2.21 |
MVI | Sector |
---|---|
0.589 | Q2 |
0.487 | Q3 |
1.604 | Q4 |
0.303 | Q8 |
0.205 | Q15 |
0.057 | Q23 |
Sum of Squares (SS) | Degree of Freedom (DG) | Mean Sum of Squares (MS) | F | p-Value | |
---|---|---|---|---|---|
Sampling Density (SD) | 1.238929 | 7 | 0.176990 | 10.736 | <0.01 |
Morphology (M) | 1.296660 | 5 | 0.259332 | 15.731 | <0.01 |
Interpolation Method (IM) | 0.439461 | 3 | 0.146487 | 8.886 | <0.01 |
SD ∙ M | 6.626965 | 35 | 0.189342 | 11.485 | <0.01 |
SD ∙ IM | 1.241455 | 21 | 0.059117 | 3.586 | <0.01 |
M ∙ IM | 1.807560 | 15 | 0.120504 | 7.310 | <0.01 |
SD ∙ M ∙ IM | 7.168532 | 105 | 0.068272 | 4.141 | <0.01 |
Error | 9.495654 | 576 | 0.016486 |
Sum of Squares (SS) | Degree of Freedom (DG) | Mean Sum of Squares (MS) | F | p-Value | |
---|---|---|---|---|---|
Sampling Density (SD) | 225.8777 | 7 | 32.2682 | 545.538 | <0.01 |
Morphology (M) | 112.4945 | 5 | 22.4989 | 380.374 | <0.01 |
Interpolation Method (IM) | 51.5142 | 3 | 17.1714 | 290.306 | <0.01 |
SD ∙ M | 76.6551 | 35 | 2.1901 | 37.027 | <0.01 |
SD ∙ IM | 75.2735 | 21 | 3.5845 | 60.600 | <0.01 |
M ∙ IM | 12.3450 | 15 | 0.8230 | 13.914 | <0.01 |
SD ∙ M ∙ IM | 20.1571 | 105 | 0.1920 | 3.246 | <0.01 |
Error | 34.0700 | 576 | 0.0591 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoroso, P.P.; Aguilar, F.J.; Parente, C.; Aguilar, M.A. Statistical Assessment of Some Interpolation Methods for Building Grid Format Digital Bathymetric Models. Remote Sens. 2023, 15, 2072. https://doi.org/10.3390/rs15082072
Amoroso PP, Aguilar FJ, Parente C, Aguilar MA. Statistical Assessment of Some Interpolation Methods for Building Grid Format Digital Bathymetric Models. Remote Sensing. 2023; 15(8):2072. https://doi.org/10.3390/rs15082072
Chicago/Turabian StyleAmoroso, Pier Paolo, Fernando J. Aguilar, Claudio Parente, and Manuel A. Aguilar. 2023. "Statistical Assessment of Some Interpolation Methods for Building Grid Format Digital Bathymetric Models" Remote Sensing 15, no. 8: 2072. https://doi.org/10.3390/rs15082072
APA StyleAmoroso, P. P., Aguilar, F. J., Parente, C., & Aguilar, M. A. (2023). Statistical Assessment of Some Interpolation Methods for Building Grid Format Digital Bathymetric Models. Remote Sensing, 15(8), 2072. https://doi.org/10.3390/rs15082072