Radiometric Correction with Topography Influence of Multispectral Imagery Obtained from Unmanned Aerial Vehicles
Abstract
:1. Introduction
1.1. Related Works
- The expected quality of the result (simple cosine models are sufficient for rough correction, but semi-empirical models with additional corrections are recommended for more accurate results);
- The nature of the imaged area and its cover (most of the studies concern the correction of areas covered with vegetation, and here models based on SCS are most often recommended, but for other types of land cover the effectiveness of other topographic correction models should be tested);
- Technical conditions.
1.2. Research Purpose
2. Materials
2.1. UAV Platform
2.2. Multispectral Camera
2.3. Spectroradiometer
2.4. Area of Interest
3. Research Method
3.1. Radiometric Correction
3.2. Data Processing—Generate DSM, DEM, and Orthomosaic
3.3. Proposed Methodology
- Field measurements—flight.
- Field measurement of spectral reflection characteristics of various land cover elements, such as grass, bare soil, paving stones, stone, sand, gravel, concrete, asphalt, etc., using a spectroradiometer.
- Generating a DEM.
- Generating a multispectral orthomosaic based on the acquired image data.
- Generating products from the DEM—slope—Figure 13.
- Carrying out radiometric correction using algorithms in Pix4D (irradiance, sun angle, and azimuth).
- Comparison of spectral reflection characteristics from direct measurement with those from direct measurement—for objects at different angles to the platform.
- Reading the pixel values for selected points—reading the slope for these values, determining the angle of incidence of radiation and the distance from the object sensor.
- Development of an empirical approach to radiometric correction based on spectral measurements, a numerical land cover model, slope value, and the angle of incidence of radiation.
- Comparison of results.
4. Results
Radiometric Correction Quality Assessment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Feng, Z.-K.; Wang, M.; Li, Z.; Lu, C. Application of UAV Photogrammetric System for Monitoring Ancient Tree Communities in Beijing. Forests 2018, 9, 735. [Google Scholar] [CrossRef] [Green Version]
- Vivoni, E.R.; Rango, A.; Anderson, C.A.; Pierini, N.A.; Schreiner-McGraw, A.P.; Saripalli, S.; Laliberte, A.S. Ecohydrology with Unmanned Aerial Vehicles. Ecosphere 2014, 5, 130. [Google Scholar] [CrossRef] [Green Version]
- Clemens, S.R. Procedures for Correcting Digital Camera Imagery Acquired by the AggieAir Remote Sensing Platform. Master′s Thesis, Utah State University, Logan, UT, USA, 2012. [Google Scholar]
- Jakomulska, A.; Sobczak, M. Korekcja Radiometryczna Obrazów Satelitarnych-Metodyka i Przykłady | Radiometric Correction of Satellite Images—Methodology and Exemplification. Teledetekcja Śr. 2001, 32, 152–171. [Google Scholar]
- Honkavaara, E.; Khoramshahi, E. Radiometric Correction of Close-Range Spectral Image Blocks Captured Using an Unmanned Aerial Vehicle with a Radiometric Block Adjustment. Remote Sens. 2018, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Kedzierski, M.; Wierzbicki, D.; Sekrecka, A.; Fryskowska, A.; Walczykowski, P.; Siewert, J. Influence of Lower Atmosphere on the Radiometric Quality of Unmanned Aerial Vehicle Imagery. Remote Sens. 2019, 11, 1214. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Liu, Q.; Liu, X.; Liu, X.; Wang, Y. A Physical-Based Atmospheric Correction Algorithm of Unmanned Aerial Vehicles Images and Its Utility Analysis. Int. J. Remote Sens. 2017, 38, 3101–3112. [Google Scholar] [CrossRef]
- Yoon, I.; Jeong, S.; Jeong, J.; Seo, D.; Paik, J. Wavelength-Adaptive Dehazing Using Histogram Merging-Based Classification for UAV Images. Sensors 2015, 15, 6633–6651. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Ding, W.; Li, H. Haze Removal for UAV Reconnaissance Images Using Layered Scattering Model. Chin. J. Aeronaut. 2016, 29, 502–511. [Google Scholar] [CrossRef] [Green Version]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the Slope-Aspect Correction of Multispectral Scanner Data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.; Lin, T.; Ranson, K.J. The Lambertian Assumption and Landsat Data. Photogramm. Eng. Remote Sens. 1980, 46, 1183–1189. [Google Scholar]
- Cavayas, F. Modelling and Correction of Topographic Effect Using Multi-Temporal Satellite Images. Can. J. Remote Sens. 1987, 13, 49–67. [Google Scholar] [CrossRef]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A.; Hall, R.J.; Hall, F.G. Improved topographic correction of forest image data using a 3-D canopy reflectance model in multiple forward mode. Int. J. Remote Sens. 2008, 29, 1007–1027. [Google Scholar] [CrossRef]
- Proy, C.; Tanre, D.; Deschamps, P. Evaluation of Topographic Effects in Remotely Sensed Data. Remote Sens. Environ. 1989, 30, 21–32. [Google Scholar] [CrossRef]
- Kimes, D.S.; Kirchner, J.A. Modeling the Effects of Various Radiant Transfers in Mountainous Terrain on Sensor Response. IEEE Trans. Geosci. Remote Sens. 1981, GE-19, 100–108. [Google Scholar] [CrossRef]
- Conese, C. Topographic Normalization of TM Scenes through the Use of an Atmospheric Correction Method and Digital Terrain Model. Photogramm. Eng. Remote Sens. 1993, 59, 1745–1753. [Google Scholar]
- Du, Y.; Teillet, P.M.; Cihlar, J. Radiometric Normalization of Multitemporal High-Resolution Satellite Images with Quality Control for Land Cover Change Detection. Remote Sens. Environ. 2002, 82, 123–134. [Google Scholar] [CrossRef]
- Yan, W.Y.; van Ewijk, K.; Treitz, P.; Shaker, A. Effects of Radiometric Correction on Cover Type and Spatial Resolution for Modeling Plot Level Forest Attributes Using Multispectral Airborne LiDAR Data. ISPRS J. Photogramm. Remote Sens. 2020, 169, 152–165. [Google Scholar] [CrossRef]
- Koukal, T.; Suppan, F.; Schneider, W. The Impact of Relative Radiometric Calibration on the Accuracy of KNN-Predictions of Forest Attributes. Remote Sens. Environ. 2007, 110, 431–437. [Google Scholar] [CrossRef]
- Hakala, T.; Markelin, L.; Honkavaara, E.; Scott, B.; Theocharous, T.; Nevalainen, O.; Näsi, R.; Suomalainen, J.; Viljanen, N.; Greenwell, C.; et al. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization. Sensors 2018, 18, 1417. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.-I.; Cho, Y.-M.; Lim, P.-C.; Lee, H.-M.; Ahn, H.-Y.; Park, C.-W.; Kim, T. Relative Radiometric Calibration Using Tie Points and Optimal Path Selection for UAV Images. Remote Sens. 2020, 12, 1726. [Google Scholar] [CrossRef]
- Helder, D.; Anderson, C.; Beckett, K.; Houborg, R.; Zuleta, I.; Boccia, V.; Clerc, S.; Kuester, M.; Markham, B.; Pagnutti, M. Observations and Recommendations for Coordinated Calibration Activities of Government and Commercial Optical Satellite Systems. Remote Sens. 2020, 12, 2468. [Google Scholar] [CrossRef]
- Luo, S.; Jiang, X.; Yang, K.; Li, Y.; Fang, S. Multispectral Remote Sensing for Accurate Acquisition of Rice Phenotypes: Impacts of Radiometric Calibration and Unmanned Aerial Vehicle Flying Altitudes. Front. Plant Sci. 2022, 13, 958106. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, N.S.; Bakhtazad, A.; Sabarinathan, J. Customized Shape Detection Algorithms for Radiometric Calibration of Multispectral Imagers for Precision Agriculture Applications. In Proceedings of the 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), London, ON, Canada, 30 August–2 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar]
- Shin, T.; Jeong, S.; Ko, J. Development of a Radiometric Calibration Method for Multispectral Images of Croplands Obtained with a Remote-Controlled Aerial System. Remote Sens. 2023, 15, 1408. [Google Scholar] [CrossRef]
- Siok, K.; Jenerowicz, A.; Ewiak, I. A Simulation Approach to the Spectral Quality of Multispectral Images Enhancement. Comput. Electron. Agric. 2020, 174, 105432. [Google Scholar] [CrossRef]
- Ren, H. Relative Radiometric Calibration for Multispectral Remote Sensing Imagery; Christesen, S.D., Sedlacek, A.J., III., Gillespie, J.B., Ewing, K.J., Eds.; SPIE: Bellingham, WA, USA, 2006; p. 63781F. [Google Scholar]
- Paolini, L.; Grings, F.; Sobrino, J.A.; Jiménez Muñoz, J.C.; Karszenbaum, H. Radiometric Correction Effects in Landsat Multi-date/Multi-Sensor Change Detection Studies. Int. J. Remote Sens. 2006, 27, 685–704. [Google Scholar] [CrossRef]
- Khadka, N.; Teixeira Pinto, C.; Leigh, L. Detection of Change Points in Pseudo-Invariant Calibration Sites Time Series Using Multi-Sensor Satellite Imagery. Remote Sens. 2021, 13, 2079. [Google Scholar] [CrossRef]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS+C: A Modified Sun-Canopy-Sensor Topographic Correction in Forested Terrain. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Richter, R. Atmospheric/Topographic Correction: Model ATCOR3 (User Manual) Ver. 3.0. October 1998, DLR-IB 552-05/98; DLR Institute of Optoelectronics: Weßling, Germany, 2006. [Google Scholar]
- do Carmo, A.F.C.; Bernardo, N.M.R.; Imai, N.N.; Shimabukuro, M.H. Improving the Empirical Line Method Applied to Hyperspectral Inland Water Images by Combining Reference Targets and in Situ Water Measurements. Remote Sens. Lett. 2020, 11, 186–194. [Google Scholar] [CrossRef]
- Wang, C.; Myint, S.W. A Simplified Empirical Line Method of Radiometric Calibration for Small Unmanned Aircraft Systems-Based Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1876–1885. [Google Scholar] [CrossRef]
- Herrero-Huerta, M.; Hernández-López, D.; Rodriguez-Gonzalvez, P.; González-Aguilera, D.; González-Piqueras, J. Vicarious Radiometric Calibration of a Multispectral Sensor from an Aerial Trike Applied to Precision Agriculture. Comput. Electron. Agric. 2014, 108, 28–38. [Google Scholar] [CrossRef]
- Chavez, P.S. Radiometric Calibration of Landsat Thematic Mapper Multispectral Images. Photogramm. Eng. Remote Sens. 1989, 55, 1285–1294. [Google Scholar]
- Karpouzli, E.; Malthus, T. The Empirical Line Method for the Atmospheric Correction of IKONOS Imagery. Int. J. Remote Sens. 2003, 24, 1143–1150. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, W. A Simple Empirical Topographic Correction Method for ETM+ Imagery. Int. J. Remote Sens. 2009, 30, 2259–2275. [Google Scholar] [CrossRef]
- Ma, Z.; Jia, G.; Schaepman, M.E.; Zhao, H. Uncertainty Analysis for Topographic Correction of Hyperspectral Remote Sensing Images. Remote Sens. 2020, 12, 705. [Google Scholar] [CrossRef] [Green Version]
- Vincini, M.; Reeder, D. Seasonal Changes of Minnaert Topographic Normalization Constants (Ks) in Rugged Deciduous Forest Areas. In Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), Honolulu, HI, USA, 24–28 July 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 1603–1605. [Google Scholar]
- Qiu, S.; Lin, Y.; Shang, R.; Zhang, J.; Ma, L.; Zhu, Z. Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data. Remote Sens. 2018, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Reese, H.; Olsson, H. C-Correction of Optical Satellite Data over Alpine Vegetation Areas: A Comparison of Sampling Strategies for Determining the Empirical C-Parameter. Remote Sens. Environ. 2011, 115, 1387–1400. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.M.; Milton, E.J. The Use of the Empirical Line Method to Calibrate Remotely Sensed Data to Reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- MicaSense, Inc. Support Micasense. 2022. Available online: https://support.micasense.com/hc/en-us/articles/360039671254-User-Guide-for-MicaSense-Sensors (accessed on 19 January 2023).
- Walczykowski, P.; Orych, A.; Dąbrowski, R. Designing a Modern Measuring Station for Obtaining Spectral Response Characteristics in Laboratory Conditions. In Proceedings of the the 1st Research Conference in Technical Disciplines, Slovakia, 18–22 November 2013; 2013; pp. 121–124. [Google Scholar]
- Walczykowski, P.; Jenerowicz, A.; Orych, A.; Siok, K. Determining Spectral Reflectance Coefficients from Hyperspectral Images Obtained from Low Altitudes. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Sekrecka, A. Application of the XBoost Regressor for an A Priori Prediction of UAV Image Quality. Remote Sens. 2021, 13, 4757. [Google Scholar] [CrossRef]
- Gao, B.-C.; Heidebrecht, K.B.; Goetz, A.F.H. Derivation of Scaled Surface Reflectances from AVIRIS Data. Remote Sens. Environ. 1993, 44, 165–178. [Google Scholar] [CrossRef]
- Bernardo, N.; Watanabe, F.; Rodrigues, T.; Alcântara, E. An Investigation into the Effectiveness of Relative and Absolute Atmospheric Correction for Retrieval the TSM Concentration in Inland Waters. Model. Earth Syst. Environ. 2016, 2, 114. [Google Scholar] [CrossRef] [Green Version]
- Support Pix4D Radiometric Correction. 2022. Available online: https://support.pix4d.com/hc/en-us/articles/202559509-Radiometric-corrections (accessed on 19 January 2023).
- Poncet, A.M.; Knappenberger, T.; Brodbeck, C.; Fogle, M.; Shaw, J.N.; Ortiz, B.V. Multispectral UAS Data Accuracy for Different Radiometric Calibration Methods. Remote Sens. 2019, 11, 1917. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Liu, C.; Xue, Y.; Akbar, A.; Jia, S.; Zhou, Y.; Zeng, D. Radiometric Calibration of a Large-Array Commodity CMOS Multispectral Camera for UAV-Borne Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102968. [Google Scholar] [CrossRef]
- Ortiz, J.D.; Avouris, D.; Schiller, S.; Luvall, J.C.; Lekki, J.D.; Tokars, R.P.; Anderson, R.C.; Shuchman, R.; Sayers, M.; Becker, R. Intercomparison of Approaches to the Empirical Line Method for Vicarious Hyperspectral Reflectance Calibration. Front. Mar. Sci. 2017, 4, 296. [Google Scholar] [CrossRef] [Green Version]
- Wald, L. Quality of High Resolution Synthesised Images: Is There a Simple Criterion ? In Proceedings of the Third Conference Fusion of Earth Data: Merging Point Measurements, Raster Maps and Remotely Sensed Images, Antibes, France, 26–28 January 2000; Ranchin, T., Wald, L., Eds.; SEE/URISCA: Antibes, France, 2000; pp. 99–103. [Google Scholar]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-Driven Fusion of High Spatial and Spectral Resolution Images Based on Oversampled Multiresolution Analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [Google Scholar] [CrossRef]
- Cakir, H.I.; Khorram, S. Pixel Level Fusion of Panchromatic and Multispectral Images Based on Correspondence Analysis. Photogramm. Eng. Remote Sens. 2008, 74, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.-H.; Phinn, S.; Johansen, K.; Robson, A. Assessing Radiometric Correction Approaches for Multi-Spectral UAS Imagery for Horticultural Applications. Remote Sens. 2018, 10, 1684. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Gu, X.; Sun, Y.; Gao, H.; Tao, Z.; Shi, S. Comparing, Validating and Improving the Performance of Reflectance Obtention Method for UAV-Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102391. [Google Scholar] [CrossRef]
- Chiliński, M.T.; Ostrowski, M. Error Simulations of Uncorrected NDVI and DCVI during Remote Sensing Measurements from UAS. Misc. Geogr. 2014, 18, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Siok, K.; Ewiak, I.; Jenerowicz, A. Multi-Sensor Fusion: A Simulation Approach to Pansharpening Aerial and Satellite Images. Sensors 2020, 20, 7100. [Google Scholar] [CrossRef] [PubMed]
- Siok, K.; Ewiak, I.; Jenerowicz, A. Enhancement of Spectral Quality of Natural Land Cover in the Pan-Sharpening Process. In Proceedings of the Image and Signal Processing for Remote Sensing XXIV, Berlin, Germany, 10–12 September 2018; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10789, pp. 513–526. [Google Scholar]
Sensor | Micasense Altum |
---|---|
Acquisition date | 25 June 2021 |
Acquisition time | 10 UTC; 12 UTC |
Number of images | 400 per flight |
Spatial resolution (cm) | 0.06 m |
DN bit range | 10 bit |
Solar zenith Angle (°) | 56.128446 |
Solar azimuth Angle (°) | 281.073873 |
Method 1 | Method 2 | Method 3 | |
---|---|---|---|
Blue | 0.98 | 0.98 | 0.99 |
Green | 0.97 | 0.98 | 0.99 |
Red | 0.96 | 0.97 | 0.97 |
RedEdge | 0.96 | 0.96 | 0.98 |
NIR | 0.97 | 0.96 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenerowicz, A.; Wierzbicki, D.; Kedzierski, M. Radiometric Correction with Topography Influence of Multispectral Imagery Obtained from Unmanned Aerial Vehicles. Remote Sens. 2023, 15, 2059. https://doi.org/10.3390/rs15082059
Jenerowicz A, Wierzbicki D, Kedzierski M. Radiometric Correction with Topography Influence of Multispectral Imagery Obtained from Unmanned Aerial Vehicles. Remote Sensing. 2023; 15(8):2059. https://doi.org/10.3390/rs15082059
Chicago/Turabian StyleJenerowicz, Agnieszka, Damian Wierzbicki, and Michal Kedzierski. 2023. "Radiometric Correction with Topography Influence of Multispectral Imagery Obtained from Unmanned Aerial Vehicles" Remote Sensing 15, no. 8: 2059. https://doi.org/10.3390/rs15082059
APA StyleJenerowicz, A., Wierzbicki, D., & Kedzierski, M. (2023). Radiometric Correction with Topography Influence of Multispectral Imagery Obtained from Unmanned Aerial Vehicles. Remote Sensing, 15(8), 2059. https://doi.org/10.3390/rs15082059