Sustainability Evaluation of Chinese Capital Cities Based on Urban Geographic Environment Index
Abstract
:1. Introduction
2. Study Area and Datasets
3. The UGEI Model
Subindex | Composition | Indicator Content | Unit | References |
---|---|---|---|---|
Pressure index | Population | P1. Population | Ten thousand people | [13,23,37,38,39,40] |
P2. Natural population growth rate | % | |||
Industrial structure | P3. Second industry share | % | ||
Emissions | P4. General industrial solid waste production | 10,000 tons | ||
P5. Wastewater discharge | million tons | |||
P6. Emissions of major pollutants from waste gas | one hundred tons | |||
State index | Biomass | S1. Biological abundance index | dimensionless | [41,42,43,44,45,46,47,48,49] |
Surface coverage | S2. Building land area | square kilometer | ||
S3. Cultivated land area | square kilometer | |||
S4. Forest area | square kilometer | |||
S5. Grassland area | square kilometer | |||
S6. Other vegetation coverage areas | square kilometer | |||
S7. Water area | square kilometer | |||
Air quality | S8. Good air days throughout the year | day | ||
Response index | Planting trees | R1. Afforestation area | square kilometer | [13,23,41,42,43,44,45] |
Environmental investment | R2. Investment in water conservancy, environment, and public facilities management | billion | ||
R3. Agriculture, forestry, animal husbandry, and fishery investment | billion | |||
Pollution control | R4. Centralized treatment rate of sewage treatment plant | % | ||
R5. General industrial solid waste comprehensive utilization rate | % | |||
R6. Harmless treatment rate of domestic garbage | % |
3.1. Data Preprocessing
- The specific indicator values are obtained from the statistics of the national condition survey, urban built-up area products from remote sensing monitoring, and the statistical yearbook.
- Units of the same type of indicators are unified.
- As for indicators of the percentage and dimensionless types, the ratio of other indicator values to the urban built-up area of the city is used as the average indicator.
3.2. Urban Built-Up Area Extraction from High-Resolution Remote Sensing Imagery
- (1)
- An urban built-up area must be within the administrative divisions of the city.
- (2)
- An urban built-up area outline is preferentially drawn along the boundary of linear objects.
- (3)
- Urban landscapes are important features of urban built-up areas. Figure 4 shows some typical marks of urban landscapes.
- (4)
- Judgment of central urban built-up areas and enclave urban built-up areas. The central centralized and contiguous region is a central urban built-up area. The large regions with significant urban landscapes (away from the central urban built-up area but near the central city) are enclave urban built-up areas.
3.3. Comprehensive Weighting Method
3.3.1. Analytic Hierarchy Process
- Our judgment matrix is as follows:
- 2.
- Calculate the eigenvalue and eigenvector.
- 3.
- Check consistency:
3.3.2. Entropy Weight Method
- Data matrix. The normalized data of the indicators are taken as an matrix, where is defined as the number of evaluation objects and indicates the number of indicators. Hence, the normalized data matrix of the index system can be expressed as Equation (7):
- 2.
- Data normalization. The standardization processes for forward and negative indices are elucidated by Equations (8) and (9), respectively.
- 3.
- Calculate the entropy of each indicator. To calculate the entropy value of each indicator, the standardized value of indicator for object must first be calculated, and is written as Equation (10):
- 4.
- Calculate the entropy weight of each criterion. The weighting value of the th indicator is defined as Equation (12):
3.4. The Calculation of the UGEI
- Pressure index calculation
- 2.
- State index calculation
- 3.
- Response index calculation
3.5. Index Grading Based on Natural Discontinuities
4. Results and Analysis
4.1. Pressure Index Analysis
4.2. State Index Analysis
4.3. Response Index Analysis
4.4. Analysis of UGEI
5. Discussion
5.1. Different Types of Indicators
5.2. Comparison and Validation
- (1)
- Analysis of reliability. From Figure 13a, we observe that the mean and variance of UGEI, UGEI-A, UGEI-P, and UGEI-T do not differ much. The proposed UGEI lies in the middle position, with the widest variance. In addition, UGEI is the only index with no outlier, indicating that UGEI is more stable and reliable compared with other indices. Figure 13b shows that the difference between UGEI and UGEI-A, UGEI-P, and UGEI-T is at the 0.05 level F-test and T-test is not significant. The F-test of UGEI and UGEI-P and the T-test result of UGEI and UGEI-A are close to 0.05, but the F-test and T-test results of UGEI and UGEI-T are higher than 0.05. The results indicate that UGEI is statistically similar to UGEI-A, UGEI-P, and UGEI-T, suggesting that our proposed UGEI does not deviate from other measurements, which proves the stability of our measurement. The correlation coefficients between UGEI and UGEI-A as well as UGEI-P and UGEI-T are greater than 0.5 but less than 0.8, revealing a statistically significant positive correlation between UGEI and the 3 indicators. The correlation coefficient between UGEI and UGEI-T is the largest. In general, we can conclude that the proposed UGEI complies with other measurements while reducing the occurrence of outliers.
- (2)
- Analysis of effectiveness. From Figure 13c, it can be seen that the evaluation results of UGEI, UGEI-A, UGEI-P, and UGEI-T in Beijing, Shanghai, Tianjin, Guangzhou, Wuhan, Nanjing, Haikou, Harbin, Chongqing, Urumqi, and Nanning are quite different. Based on the data presented in Figure 13d, it is apparent that Beijing, Shanghai, Tianjin, Guangzhou, Wuhan, and Nanjing are cities with high GDP, large urban built-up areas, small administrative areas, and large populations. The UGEI-A values for these cities are significantly higher than the UGEI, UGEI-P, and UGEI-T values. This indicates that the administrative area-based evaluation index is closely related to the overall level of urban development. Haikou’s high UGEI-A value can be attributed to its small administrative area. Conversely, Urumqi and Harbin have small populations and large administrative areas, namely, high per capita administrative areas, resulting in their UGEI-P values being higher than other indicators. This suggests that per capita indicators tend to favor cities with smaller urban population densities. Chongqing ranks first in terms of total urban population and administrative area, and its GDP and urban built-up area rank in the top five. Consequently, the UGEI-T value of Chongqing is the highest, and the UGEI value is second, both significantly higher than the UGEI-A and UGEI-P values. This indicates that the total indicators generally favor megacities and larger cities. Additionally, the proposed UGEI takes into account urban mass to a certain extent. Nanning is a city with medium GDP, population, administrative area, and urban built-up area. The proposed UGEI in Nanning is the highest. In contrast, Fuzhou, which is also a medium-level city, has the lowest UGEI value. Although the two cities have similar levels of development, the difference in UGEI values indicates that the UGEI index can effectively distinguish cities with the same level of development. Through our analysis of cities with different levels of development, we find that the use of other types of indicators would be influenced by the level of city development. However, our proposed UGEI index can effectively reduce the impact of a city’s development level on sustainable urban evaluation.
6. Conclusions
- Nearly half of China’s capital cities have poor environmental conditions and require further environmental protection measures to improve their quality. Among the selected cities, Nanning, Chongqing, and Haikou have the best environmental quality, while Zhengzhou, Taiyuan, and Shijiazhuang have the worst.
- The environmental conditions of China’s provincial capital cities can be divided into four regions, with the Qinling-Huaihe River Line serving as the boundary. The geographic environment of the provincial capitals in the southern region is better than that in the northern regions, while coastal cities in the northern regions have better environmental conditions than inland cities.
- Our evaluation results suggest that indices based on urban built-up areas extracted from high-resolution remote sensing imagery can accurately reflect environmental conditions and are not affected by varying levels of urban economic development, total population, and predefined administrative areas. Therefore, the proposed UGEI serves as an objective and reliable measurement of geographic environmental conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Cities | P1 | P2 | P3 | P4 | P5 | P6 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | R1 | R2 | R3 | R4 | R5 | R6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 2171 | 3.01 | 20 | 710 | 16.42 | 16.41 | 0.31 | 2737 | 1274 | 9296 | 857 | 1568 | 302 | 186 | 29,503 | 586 | 1093 | 88 | 83 | 100 |
Shanghai | 2415 | −1.27 | 32 | 1868 | 22.41 | 38.19 | 0.12 | 1922 | 1367 | 397 | 514 | 453 | 551 | 252 | 18,395 | 474 | 4 | 91 | 96 | 100 |
Tianjin | 1547 | 0.23 | 47 | 1546 | 9.40 | 42.30 | 0.15 | 1871 | 2056 | 575 | 1255 | 215 | 1814 | 216 | 8865 | 1639 | 236 | 99 | 99 | 99 |
Guangzhou | 1350 | 11.94 | 32 | 460 | 14.92 | 10.70 | 0.26 | 1303 | 594 | 2800 | 518 | 1135 | 806 | 312 | 27,200 | 415 | 34 | 92 | 95 | 95 |
Wuhan | 1061 | 6.95 | 43 | 1334 | 8.32 | 26.69 | 0.19 | 1148 | 2618 | 1396 | 874 | 348 | 1834 | 189 | 11,796 | 861 | 41 | 95 | 98 | 100 |
Shenyang | 829 | −1.58 | 45 | 692 | 5.97 | 27.87 | 0.11 | 992 | 2731 | 516 | 440 | 128 | 201 | 207 | 7282 | 351 | 75 | 95 | 92 | 100 |
Chongqing | 3017 | 4.01 | 45 | 2828 | 11.41 | 86.17 | 0.27 | 2319 | 11558 | 16191 | 1982 | 1468 | 1253 | 292 | 25,657 | 2165 | 533 | 94 | 84 | 99 |
Nanjing | 824 | 4.14 | 40 | 1426 | 9.50 | 28.40 | 0.18 | 1056 | 1733 | 1116 | 818 | 520 | 1053 | 231 | 88,910 | 419 | 47 | 64 | 91 | 100 |
Chengdu | 1466 | 5.43 | 44 | 293 | 1.15 | 10.14 | 0.14 | 645 | 432 | 354 | 167 | 429 | 53 | 211 | 24,530 | 867 | 80 | 92 | 96 | 100 |
Urumqi | 73 | 11.06 | 30 | 778 | 18.11 | 18.82 | 0.24 | 536 | 405 | 3159 | 3744 | 129 | 185 | 218 | 1853 | 305 | 9 | 84 | 90 | 96 |
Xi’an | 816 | 4.64 | 39 | 236 | 6.21 | 16.34 | 0.18 | 901 | 1160 | 1017 | 311 | 282 | 53 | 250 | 25,640 | 485 | 117 | 92 | 91 | 98 |
Jinan | 365 | 5.09 | 32 | 857 | 3.95 | 27.37 | 0.21 | 598 | 768 | 1059 | 226 | 481 | 81 | 124 | 17,561 | 163 | 142 | 96 | 99 | 100 |
Hangzhou | 870 | 4.21 | 37 | 649 | 5.70 | 16.96 | 0.28 | 1029 | 511 | 2287 | 187 | 526 | 487 | 242 | 18,949 | 590 | 36 | 94 | 89 | 100 |
Changchun | 753 | 2.15 | 55 | 388 | 3.03 | 25.01 | 0.13 | 717 | 4947 | 1160 | 356 | 60 | 234 | 237 | 18,927 | 480 | 52 | 90 | 97 | 100 |
Shijiazhuang | 1070 | 5.88 | 38 | 1605 | 5.69 | 37.99 | 0.11 | 671 | 970 | 249 | 127 | 132 | 31 | 180 | 17,466 | 457 | 169 | 95 | 98 | 95 |
Taiyuan | 432 | 3.40 | 37 | 2560 | 2.84 | 27.43 | 0.24 | 365 | 175 | 549 | 157 | 76 | 20 | 230 | 19,250 | 31 | 36 | 93 | 56 | 100 |
Zhengzhou | 957 | 5.78 | 43 | 1548 | 4.81 | 25.29 | 0.14 | 433 | 112 | 182 | 91 | 77 | 46 | 136 | 3446 | 772 | 87 | 96 | 77 | 100 |
Harbin | 387 | −0.20 | 34 | 461 | 4.09 | 39.83 | 0.14 | 814 | 6414 | 1489 | 709 | 137 | 506 | 227 | 13,514 | 311 | 255 | 90 | 100 | 92 |
Changsha | 680 | 9.59 | 42 | 108 | 0.51 | 4.57 | 0.21 | 425 | 479 | 573 | 101 | 48 | 176 | 257 | 10,000 | 753 | 83 | 100 | 86 | 100 |
Kunming | 668 | 5.98 | 41 | 2397 | 4.96 | 14.60 | 0.28 | 488 | 606 | 1997 | 880 | 175 | 249 | 350 | 52,300 | 255 | 36 | 92 | 36 | 93 |
Lanzhou | 322 | 5.67 | 35 | 608 | 2.00 | 17.75 | 0.15 | 215 | 231 | 159 | 781 | 39 | 22 | 252 | 3562 | 287 | 40 | 89 | 98 | 20 |
Hefei | 779 | 8.10 | 51 | 818 | 4.50 | 18.60 | 0.15 | 292 | 103 | 98 | 113 | 107 | 134 | 238 | 11,208 | 543 | 146 | 92 | 92 | 100 |
Nanning | 740 | 6.04 | 39 | 257 | 4.05 | 9.73 | 0.29 | 586 | 2563 | 5043 | 287 | 852 | 353 | 324 | 5162 | 405 | 115 | 77 | 100 | 98 |
Fuzhou | 678 | 10.67 | 35 | 602 | 3.57 | 21.42 | 0.33 | 187 | 28 | 579 | 73 | 35 | 62 | 344 | 4729 | 552 | 62 | 88 | 95 | 98 |
Hohhot | 306 | 1.97 | 21 | 1165 | 1.05 | 22.83 | 0.19 | 340 | 541 | 519 | 543 | 14 | 11 | 276 | 14,077 | 560 | 117 | 92 | 33 | 100 |
Haikou | 222 | 8.00 | 19 | 5 | 1.24 | 0.39 | 0.21 | 227 | 437 | 623 | 194 | 586 | 432 | 349 | 2419 | 79 | 19 | 92 | 100 | 100 |
Nanchang | 523 | 6.93 | 51 | 240 | 4.65 | 6.86 | 0.19 | 331 | 875 | 558 | 474 | 73 | 396 | 311 | 12,290 | 411 | 44 | 98 | 97 | 100 |
Guiyang | 462 | 5.25 | 34 | 1201 | 2.60 | 16.07 | 0.27 | 308 | 634 | 1170 | 163 | 109 | 37 | 340 | 11,531 | 832 | 207 | 99 | 48 | 95 |
Yinchuan | 216 | 0.06 | 38 | 803 | 1.57 | 16.25 | 0.15 | 270 | 409 | 208 | 660 | 115 | 67 | 259 | 9460 | 270 | 38 | 94 | 44 | 100 |
Xining | 201 | 4.91 | 41 | 470 | 0.74 | 19.28 | 0.23 | 111 | 27 | 157 | 109 | 11 | 4 | 295 | 9154 | 88 | 38 | 74 | 100 | 95 |
Cities | P1 | P2 | P3 | P4 | P5 | P6 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | R1 | R2 | R3 | R4 | R5 | R6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.85 | 0.90 | 0.03 | 0.30 | 0.78 | 0.22 | 3.76 | 0.78 | 0.49 | 3.26 | 0.38 | 2.69 | 0.59 | 0.55 | 0.53 | 0.26 | 3.22 | 0.60 | 1.27 | 0.53 |
Shanghai | 0.96 | 0.06 | 0.76 | 0.84 | 1.13 | 0.59 | 0.15 | 1.32 | 0.54 | 0.00 | 0.13 | 0.66 | 1.17 | 1.14 | 0.25 | 0.20 | 0.00 | 0.68 | 1.59 | 0.53 |
Tianjin | 0.69 | 0.35 | 1.65 | 0.82 | 0.49 | 0.79 | 0.76 | 1.12 | 1.04 | 0.11 | 0.85 | 0.30 | 4.91 | 0.82 | 0.05 | 1.07 | 0.82 | 0.89 | 1.65 | 0.52 |
Guangzhou | 0.73 | 2.64 | 0.75 | 0.28 | 1.05 | 0.20 | 2.69 | 1.37 | 0.30 | 1.31 | 0.29 | 2.77 | 2.55 | 1.67 | 0.77 | 0.26 | 0.13 | 0.71 | 1.57 | 0.50 |
Wuhan | 0.76 | 1.66 | 1.44 | 1.12 | 0.74 | 0.79 | 1.43 | 1.17 | 2.18 | 0.81 | 0.95 | 1.02 | 7.87 | 0.58 | 0.34 | 0.87 | 0.21 | 0.79 | 1.64 | 0.53 |
Shenyang | 1.14 | 0.00 | 1.57 | 1.05 | 1.00 | 1.53 | 0.09 | 0.36 | 4.19 | 0.49 | 0.84 | 0.63 | 1.47 | 0.74 | 0.41 | 0.62 | 0.74 | 0.79 | 1.49 | 0.53 |
Chongqing | 2.19 | 1.09 | 1.57 | 2.15 | 0.94 | 2.38 | 2.95 | 0.00 | 8.91 | 9.83 | 2.18 | 4.33 | 4.79 | 1.49 | 0.88 | 2.08 | 2.64 | 0.75 | 1.30 | 0.52 |
Nanjing | 0.97 | 1.12 | 1.27 | 1.91 | 1.45 | 1.36 | 1.27 | 0.52 | 2.28 | 1.07 | 1.52 | 2.64 | 7.14 | 0.95 | 6.54 | 0.65 | 0.41 | 0.00 | 1.45 | 0.53 |
Chengdu | 1.60 | 1.37 | 1.49 | 0.33 | 0.02 | 0.39 | 0.52 | 1.49 | 0.42 | 0.19 | 0.07 | 1.86 | 0.21 | 0.77 | 1.41 | 1.25 | 0.60 | 0.71 | 1.59 | 0.53 |
Urumqi | 0.00 | 2.47 | 0.65 | 1.66 | 4.69 | 1.44 | 2.44 | 0.92 | 0.79 | 5.32 | 12.59 | 0.94 | 1.92 | 0.83 | 0.00 | 0.77 | 0.12 | 0.51 | 1.45 | 0.50 |
Xi’an | 0.65 | 1.21 | 1.19 | 0.21 | 0.61 | 0.53 | 1.29 | 1.32 | 1.05 | 0.65 | 0.24 | 0.93 | 0.15 | 1.12 | 1.18 | 0.53 | 0.73 | 0.70 | 1.46 | 0.52 |
Jinan | 0.47 | 1.30 | 0.76 | 1.43 | 0.68 | 1.65 | 1.80 | 1.13 | 1.22 | 1.29 | 0.37 | 3.08 | 0.58 | 0.00 | 1.45 | 0.27 | 1.55 | 0.81 | 1.67 | 0.53 |
Hangzhou | 0.56 | 1.13 | 1.08 | 0.51 | 0.43 | 0.45 | 3.05 | 1.39 | 0.32 | 1.34 | 0.00 | 1.53 | 1.90 | 1.05 | 0.64 | 0.54 | 0.18 | 0.77 | 1.40 | 0.53 |
Changchun | 0.89 | 0.73 | 2.17 | 0.51 | 0.37 | 1.21 | 0.40 | 1.17 | 6.79 | 1.13 | 0.53 | 0.16 | 1.52 | 1.00 | 1.24 | 0.77 | 0.45 | 0.66 | 1.60 | 0.53 |
Shijiazhuang | 2.35 | 1.46 | 1.12 | 3.67 | 1.48 | 3.17 | 0.00 | 0.34 | 2.17 | 0.31 | 0.22 | 1.05 | 0.26 | 0.50 | 2.04 | 1.28 | 2.52 | 0.80 | 1.64 | 0.50 |
Taiyuan | 0.77 | 0.97 | 1.04 | 5.38 | 0.60 | 2.08 | 2.37 | 1.48 | 0.28 | 0.78 | 0.29 | 0.48 | 0.10 | 0.94 | 2.06 | 0.00 | 0.48 | 0.74 | 0.58 | 0.53 |
Zhengzhou | 1.55 | 1.44 | 1.46 | 2.70 | 0.90 | 1.58 | 0.64 | 1.49 | 0.11 | 0.11 | 0.01 | 0.37 | 0.30 | 0.11 | 0.12 | 1.68 | 0.99 | 0.81 | 1.12 | 0.53 |
Harbin | 0.41 | 0.27 | 0.88 | 0.65 | 0.59 | 2.08 | 0.48 | 0.87 | 9.39 | 1.59 | 1.40 | 0.63 | 3.64 | 0.91 | 0.88 | 0.50 | 2.40 | 0.66 | 1.68 | 0.48 |
Changsha | 1.40 | 2.18 | 1.38 | 0.22 | 0.00 | 0.32 | 1.91 | 1.21 | 1.00 | 0.89 | 0.12 | 0.27 | 1.90 | 1.18 | 1.04 | 2.13 | 1.21 | 0.91 | 1.34 | 0.53 |
Kunming | 0.94 | 1.47 | 1.29 | 3.87 | 0.85 | 0.82 | 3.07 | 1.45 | 0.90 | 2.46 | 2.03 | 0.97 | 1.94 | 2.01 | 4.56 | 0.45 | 0.37 | 0.71 | 0.08 | 0.49 |
Lanzhou | 1.01 | 1.41 | 0.93 | 2.15 | 0.74 | 2.29 | 0.72 | 1.48 | 0.74 | 0.31 | 4.20 | 0.39 | 0.28 | 1.14 | 0.49 | 1.25 | 0.91 | 0.63 | 1.65 | 0.00 |
Hefei | 1.50 | 1.89 | 1.92 | 1.69 | 1.02 | 1.38 | 0.68 | 1.71 | 0.12 | 0.02 | 0.14 | 0.73 | 1.32 | 1.01 | 1.10 | 1.39 | 1.97 | 0.71 | 1.48 | 0.53 |
Nanning | 1.79 | 1.49 | 1.18 | 0.65 | 1.16 | 0.87 | 3.36 | 0.38 | 6.64 | 10.34 | 0.94 | 8.63 | 4.55 | 1.77 | 0.53 | 1.28 | 1.92 | 0.32 | 1.69 | 0.52 |
Fuzhou | 2.18 | 2.39 | 0.92 | 2.02 | 1.36 | 2.63 | 4.10 | 1.68 | 0.00 | 1.43 | 0.15 | 0.31 | 0.97 | 1.95 | 0.68 | 2.35 | 1.36 | 0.61 | 1.57 | 0.52 |
Hohhot | 0.74 | 0.69 | 0.09 | 3.33 | 0.23 | 2.37 | 1.50 | 1.17 | 1.49 | 1.05 | 2.25 | 0.00 | 0.05 | 1.35 | 2.06 | 2.01 | 2.18 | 0.70 | 0.00 | 0.53 |
Haikou | 0.74 | 1.87 | 0.00 | 0.00 | 0.47 | 0.00 | 1.84 | 1.28 | 1.67 | 1.85 | 0.99 | 9.15 | 8.66 | 2.00 | 0.32 | 0.33 | 0.49 | 0.71 | 1.69 | 0.53 |
Nanchang | 2.05 | 1.66 | 1.94 | 0.98 | 2.25 | 1.00 | 1.54 | 0.59 | 3.59 | 1.72 | 2.89 | 1.05 | 8.26 | 1.66 | 2.65 | 2.14 | 1.17 | 0.86 | 1.62 | 0.53 |
Guiyang | 2.02 | 1.33 | 0.91 | 5.56 | 1.35 | 2.70 | 2.91 | 0.51 | 2.90 | 4.22 | 0.96 | 1.86 | 0.77 | 1.92 | 2.79 | 4.95 | 6.23 | 0.88 | 0.38 | 0.50 |
Yinchuan | 0.62 | 0.32 | 1.15 | 2.82 | 0.54 | 2.07 | 0.71 | 1.21 | 1.38 | 0.45 | 3.48 | 1.46 | 1.09 | 1.20 | 1.66 | 1.16 | 0.86 | 0.76 | 0.28 | 0.53 |
Xining | 0.94 | 1.27 | 1.32 | 2.51 | 0.35 | 3.79 | 2.26 | 1.73 | 0.05 | 0.53 | 0.70 | 0.07 | 0.00 | 1.52 | 2.56 | 0.53 | 1.31 | 0.26 | 1.69 | 0.50 |
Cities | UGEI | UGEI-A | UGEI-P | UGEI-T | UBA | AA | Population | GDP |
---|---|---|---|---|---|---|---|---|
Beijing | 0.46 | 0.76 | 0.47 | 0.66 | 997.90 | 16,411.00 | 2170.50 | 23,014.59 |
Shanghai | 0.25 | 0.38 | 0.27 | 0.22 | 992.33 | 6341.00 | 2415.27 | 25,123.45 |
Tianjin | 0.35 | 0.62 | 0.37 | 0.45 | 836.26 | 11,917.00 | 1546.95 | 16,538.19 |
Guangzhou | 0.34 | 0.62 | 0.35 | 0.41 | 702.16 | 7434.00 | 1350.11 | 18,100.41 |
Wuhan | 0.38 | 0.66 | 0.36 | 0.40 | 532.01 | 8569.00 | 1060.77 | 10,905.60 |
Shenyang | 0.31 | 0.36 | 0.30 | 0.28 | 294.56 | 12,860.00 | 829.10 | 7272.31 |
Chongqing | 0.66 | 0.42 | 0.39 | 0.75 | 592.62 | 82,375.00 | 3016.55 | 15,717.27 |
Nanjing | 0.49 | 0.74 | 0.50 | 0.46 | 336.42 | 6587.00 | 823.59 | 9720.77 |
Chengdu | 0.29 | 0.35 | 0.29 | 0.34 | 385.13 | 12,121.00 | 1465.75 | 10,801.16 |
Urumqi | 0.40 | 0.46 | 0.69 | 0.34 | 210.94 | 13,788.00 | 73.11 | 2631.64 |
Xi’an | 0.31 | 0.42 | 0.36 | 0.34 | 466.84 | 10,097.00 | 815.66 | 5801.20 |
Jinan | 0.34 | 0.39 | 0.49 | 0.31 | 269.11 | 7998.00 | 364.54 | 6100.23 |
Hangzhou | 0.35 | 0.37 | 0.36 | 0.37 | 562.13 | 16,596.00 | 870.04 | 10,050.21 |
Changchun | 0.37 | 0.36 | 0.35 | 0.33 | 331.82 | 20,594.00 | 753.40 | 5530.03 |
Shijiazhuang | 0.18 | 0.26 | 0.29 | 0.22 | 197.37 | 13,056.00 | 1070.16 | 5440.60 |
Taiyuan | 0.14 | 0.17 | 0.28 | 0.18 | 215.39 | 6988.00 | 431.87 | 2735.34 |
Zhengzhou | 0.14 | 0.24 | 0.24 | 0.19 | 258.86 | 7446.00 | 956.90 | 7311.52 |
Harbin | 0.51 | 0.31 | 0.66 | 0.41 | 312.24 | 53,100.00 | 387.08 | 5751.21 |
Changsha | 0.35 | 0.35 | 0.33 | 0.32 | 201.61 | 11,816.00 | 680.36 | 8510.13 |
Kunming | 0.34 | 0.31 | 0.39 | 0.31 | 280.02 | 18,419.00 | 667.70 | 3968.01 |
Lanzhou | 0.24 | 0.25 | 0.28 | 0.25 | 127.18 | 13086.00 | 321.90 | 2095.99 |
Hefei | 0.21 | 0.25 | 0.30 | 0.24 | 217.35 | 11,445.00 | 779.00 | 5660.27 |
Nanning | 0.72 | 0.42 | 0.42 | 0.42 | 175.61 | 22,235.00 | 740.23 | 3410.09 |
Fuzhou | 0.23 | 0.30 | 0.31 | 0.27 | 133.90 | 12,675.00 | 678.36 | 5618.08 |
Hohhot | 0.32 | 0.28 | 0.44 | 0.28 | 157.93 | 17,186.00 | 306.00 | 3090.52 |
Haikou | 0.61 | 0.79 | 0.51 | 0.35 | 114.02 | 2304.00 | 222.30 | 1161.96 |
Nanchang | 0.49 | 0.44 | 0.36 | 0.31 | 109.52 | 7402.00 | 522.79 | 5618.08 |
Guiyang | 0.46 | 0.46 | 0.46 | 0.31 | 97.83 | 8043.00 | 462.18 | 2891.16 |
Yinchuan | 0.30 | 0.29 | 0.38 | 0.26 | 128.30 | 9025.00 | 216.41 | 1493.86 |
Xining | 0.20 | 0.23 | 0.35 | 0.25 | 84.23 | 7660.00 | 201.35 | 1131.62 |
References
- Zhou, M.; Lu, L.; Guo, H.; Weng, Q.; Cao, S.; Zhang, S.; Li, Q. Urban Sprawl and Changes in Land-Use Efficiency in the Beijing–Tianjin–Hebei Region, China from 2000 to 2020: A Spatiotemporal Analysis Using Earth Observation Data. Remote Sens. 2021, 13, 2850. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Shan, J.; Shao, Z.; Zhou, X.; Yao, Y. Geomatics for smart cities-concept, key techniques, and applications. Geo-Spat. Inf. Sci. 2013, 16, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.R.; Hui, C.M.; Choguill, C.; Jia, S.H. The new urbanization policy in China: Which way forward? Habitat Int. 2015, 47, 279–284. [Google Scholar] [CrossRef]
- Lu, X.-H.; Ke, S.-G. Evaluating the effectiveness of sustainable urban land use in China from the perspective of sustainable urbanization. Habitat Int. 2018, 77, 90–98. [Google Scholar] [CrossRef]
- Li, H.L.; Peng, J.; Liu, Y.X.; Hu, Y.N. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ. 2018, 635, 1467–1476. [Google Scholar] [CrossRef]
- Dahl, A.L. Agenda 21. Glob. Environ. Chang. 2014, 1, 527–531. [Google Scholar] [CrossRef]
- Chen, H.-S. The establishment and application of environment sustainability evaluation indicators for ecotourism environments. Sustainability 2015, 7, 4727–4746. [Google Scholar] [CrossRef] [Green Version]
- Hsu, A.; Lloyd, A.; Emerson, J.W. What progress have we made since Rio? Results from the 2012 Environmental Performance Index (EPI) and Pilot Trend EPI. Environ. Sci. Policy 2013, 33, 171–185. [Google Scholar] [CrossRef]
- Lucena-Moya, P.; Pardo, I. An invertebrate multimetric index to classify the ecological status of small coastal lagoons in the Mediterranean ecoregion (MIBIIN). Mar. Freshw. Res. 2012, 63, 801–814. [Google Scholar] [CrossRef]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An overview of sustainability assessment methodologies. Ecol. Indic. 2009, 9, 189–212. [Google Scholar] [CrossRef]
- Cifrian, E.; Andres, A.; Viguri, J.R. Developing a regional environmental information system based on macro-level waste indicators. Ecol. Indic. 2015, 53, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Howden, M.; Crimp, S. Informing regional level policy development and actions for increased adaptive capacity in rural livelihoods. Environ. Sci. Policy 2012, 15, 23–37. [Google Scholar] [CrossRef]
- Yue, D.X.; Zeng, J.J.; Chao, Y.; Zou, M.L.; Kai, L.; Chen, G.G.; Guo, J.J.; Xu, X.F.; Meng, X.M. Ecological risk assessment of the Gannan Plateau, northeastern Tibetan Plateau. J. Mt. Sci. 2018, 15, 105–118. [Google Scholar] [CrossRef]
- Alwi, S.R.W.; Manan, Z.A.; Klemeš, J.J.; Huisingh, D. Sustainability engineering for the future. J. Clean. Prod. 2014, 71, 1–10. [Google Scholar] [CrossRef]
- Estrada, M.A.R.; Park, D. The Application of the Gross City Development Index (GCD-Index) in Tokyo, Japan. Econ. Anal. Policy 2019, 62, 37–46. [Google Scholar] [CrossRef]
- Pereira, D.V.E.S.; Mota, C.M.D.M. Human development index based on ELECTRE TRI-C multicriteria method: An application in the city of Recife. Soc. Indic. Res. 2016, 125, 19–45. [Google Scholar] [CrossRef]
- Collen, B.; Loh, J.; Whitmee, S.; Mcrae, L.; Amin, R.; Jem, B. Monitoring change in vertebrate abundance: The Living Planet Index. Conserv. Biol. 2010, 23, 317–327. [Google Scholar] [CrossRef]
- López-Ruiz, V.-R.; Alfaro-Navarro, J.-L.; Nevado-Peña, D. Knowledge-city index construction: An intellectual capital perspective. Expert Syst. Appl. 2014, 41, 5560–5572. [Google Scholar] [CrossRef]
- Meijering, J.V.; Kern, K.; Tobi, H. Identifying the methodological characteristics of European green city rankings. Ecol. Indic. 2014, 43, 132–142. [Google Scholar] [CrossRef]
- Fu, W.; Turner, J.C.; Zhao, J.; Du, G. Ecological footprint (EF): An expanded role in calculating resource productivity (RP) using China and the G20 member countries as examples. Ecol. Indic. 2015, 48, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Herva, M.; Roca, E. Ranking municipal solid waste treatment alternatives based on ecological footprint and multi-criteria analysis. Ecol. Indic. 2013, 25, 77–84. [Google Scholar] [CrossRef]
- Silalertruksa, T.; Gheewala, S.H.; Pongpat, P. Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator. Appl. Energy 2015, 160, 603–609. [Google Scholar] [CrossRef]
- Uchiyama, Y.; Mori, K. Methods for specifying spatial boundaries of cities in the world: The impacts of delineation methods on city sustainability indices. Sci. Total Environ. 2017, 592, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Christenson, E.; Bain, R.; Wright, J.; Aondoakaa, S.; Hossain, R.; Bartram, J. Examining the influence of urban definition when assessing relative safety of drinking-water in Nigeria. Sci. Total Environ. 2014, 490, 301–312. [Google Scholar] [CrossRef]
- Shen, X.; Shao, Z.; Tian, Y. Built-up areas extraction of high-resolution remote sensing images by texture driven visual attention mechanism. Acta Geod. Cartogr. Sin. 2014, 43, 842–847. [Google Scholar]
- Mori, K.; Christodoulou, A. Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI). Environ. Impact Assess. Rev. 2012, 32, 94–106. [Google Scholar] [CrossRef]
- Michael, F.L.; Noor, Z.Z.; Figueroa, M.J. Review of urban sustainability indicators assessment—Case study between Asian countries. Habitat Int. 2014, 44, 491–500. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Dur, F.; Dizdaroglu, D. Towards prosperous sustainable cities: A multiscalar urban sustainability assessment approach. Habitat Int. 2015, 45, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Shao, Z.; Zhang, H.; Xu, C.; Wu, D. A comprehensive evaluation of urban sustainable development in China based on the TOPSIS-Entropy method. Sustainability 2016, 8, 746. [Google Scholar] [CrossRef] [Green Version]
- Mansour, S.; Ghoneim, E.; El-Kersh, A.; Said, S.; Abdelnaby, S. Spatiotemporal Monitoring of Urban Sprawl in a Coastal City Using GIS-Based Markov Chain and Artificial Neural Network (ANN). Remote Sens. 2023, 15, 601. [Google Scholar] [CrossRef]
- Kut, P.; Pietrucha-Urbanik, K. Most Searched Topics in the Scientific Literature on Failures in Photovoltaic Installations. Energies 2022, 15, 8108. [Google Scholar] [CrossRef]
- Koko, A.F.; Han, Z.; Wu, Y.; Abubakar, G.A.; Bello, M. Spatiotemporal Land Use/Land Cover Mapping and Prediction Based on Hybrid Modeling Approach: A Case Study of Kano Metropolis, Nigeria (2020–2050). Remote Sens. 2022, 14, 6083. [Google Scholar] [CrossRef]
- Mu, B.; Zhao, X.; Zhao, J.; Liu, N.; Si, L.; Wang, Q.; Sun, N.; Sun, M.; Guo, Y.; Zhao, S. Quantitatively Assessing the Impact of Driving Factors on Vegetation Cover Change in China’s 32 Major Cities. Remote Sens. 2022, 14, 839. [Google Scholar] [CrossRef]
- Yuan, Y.; Wen, Q.; Zhao, X.; Liu, S.; Zhu, K.; Hu, B. Identifying Grassland Distribution in a Mountainous Region in Southwest China Using Multi-Source Remote Sensing Images. Remote Sens. 2022, 14, 1472. [Google Scholar] [CrossRef]
- Shen, L.; Kyllo, J.M.; Guo, X. An integrated model based on a hierarchical indices system for monitoring and evaluating urban sustainability. Sustainability 2013, 5, 524–559. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.Y.; Ochoa, J.J.; Shah, M.N.; Zhang, X. The application of urban sustainability indicators—A comparison between various practices. Habitat Int. 2011, 35, 17–29. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, Q.; Li, J.; Kong, X.; Jiao, L. Suitability evaluation of rural settlements based on accessibility of production and living: A case study of tingzu town in Hubei province of China. Chin. Geogr. Sci. 2016, 26, 550–565. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Han, J.; Fan, P. Measuring the level of industrial green development and exploring its influencing factors: Empirical evidence from China’s 30 provinces. Sustainability 2016, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Koschke, L.; Fürst, C.; Frank, S.; Makeschin, F. A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning. Ecol. Indic. 2012, 21, 54–66. [Google Scholar] [CrossRef]
- Thivierge, M.-N.; Parent, D.; Bélanger, V.; Angers, D.A.; Allard, G.; Pellerin, D.; Vanasse, A. Environmental sustainability indicators for cash-crop farms in Quebec, Canada: A participatory approach. Ecol. Indic. 2014, 45, 677–686. [Google Scholar] [CrossRef]
- Boyle, P.; Hayes, M.; Gormally, M.; Sullivan, C.; Moran, J. Development of a nature value index for pastoral farmland—A rapid farm-level assessment. Ecol. Indic. 2015, 56, 31–40. [Google Scholar] [CrossRef]
- Li, L.; Lu, H.; Tilley, D.R.; Ren, H.; Shen, W. The maximum empower principle: An invisible hand controlling the self-organizing development of forest plantations in south China. Ecol. Indic. 2013, 29, 278–292. [Google Scholar] [CrossRef]
- Kotwal, P.C.; Omprakash, M.D.; Gairola, S.; Dugaya, D. Ecological indicators: Imperative to sustainable forest management. Ecol. Indic. 2008, 8, 104–107. [Google Scholar] [CrossRef]
- Yuan, X.; Mu, R.; Zuo, J.; Wang, Q. Economic development, energy consumption, and air pollution: A critical assessment in China. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 781–798. [Google Scholar] [CrossRef]
- Ji, J.; Tang, Z.; Jiang, L.; Sheng, T.; Zhao, F.; Zhang, R.; Shifaw, E.; Liu, W.; Li, H.; Liu, X.; et al. Study on Regional Eco-Environmental Quality Evaluation Considering Land Surface and Season Differences: A Case Study of Zhaotong City. Remote Sens. 2023, 15, 657. [Google Scholar] [CrossRef]
- Tchórzewska-Cieślak, B.; Pietrucha-Urbanik, K. Water System Safety Analysis Model. Energies 2023, 16, 2809. [Google Scholar] [CrossRef]
- Li, Z.; Lu, Y.; Yang, X. Multi-Level Dynamic Analysis of Landscape Patterns of Chinese Megacities during the Period of 2016–2021 Based on a Spatiotemporal Land-Cover Classification Model Using High-Resolution Satellite Imagery: A Case Study of Beijing, China. Remote Sens. 2022, 15, 74. [Google Scholar] [CrossRef]
- Mansour, S.; Alahmadi, M.; Atkinson, P.M.; Dewan, A. Forecasting of Built-Up Land Expansion in a Desert Urban Environment. Remote Sens. 2022, 14, 2037. [Google Scholar] [CrossRef]
- Fiala, N. Measuring sustainability: Why the ecological footprint is bad economics and bad environmental science. Ecol. Econ. 2008, 67, 519–525. [Google Scholar] [CrossRef]
- Graymore, M.L.M.; Sipe, N.G.; Rickson, R.E. Sustaining Human Carrying Capacity: A tool for regional sustainability assessment. Ecol. Econ. 2010, 69, 459–468. [Google Scholar] [CrossRef]
- Zhang, H.; Ning, X.; Shao, Z.; Wang, H. Spatiotemporal Pattern Analysis of China’s Cities Based on High-Resolution Imagery from 2000 to 2015. ISPRS Int. J. Geo-Inf. 2019, 8, 241. [Google Scholar] [CrossRef] [Green Version]
Index | Original Indicators | Per Capita Indicators | Area-Averaged Indicators |
---|---|---|---|
ESI | √ | √ | √ |
EVI | √ | √ | |
EPI | √ | √ | |
EDI | √ | √ | |
CBI | √ | √ | √ |
GCD-Index | √ | √ | |
HDI | √ | √ | |
LPI | √ | ||
GCI | √ | √ | |
CDI | √ | √ | |
GUI | √ | √ |
Subindex | Weights (%) | Index | Indicator Content | Weights (%) |
---|---|---|---|---|
Pressure index | 25 | P1 | Population | 2.35 |
P2 | Natural population growth rate | 2.64 | ||
P3 | Second industry ratio | 2.17 | ||
P4 | General industrial solid waste production | 5.56 | ||
P5 | Sewage discharge | 4.69 | ||
P6 | Exhaust emissions of major pollutants | 3.79 | ||
State index | 50 | S1 | Biological abundance index | 4.10 |
S2 | Building land area | 1.73 | ||
S3 | Cultivated area | 9.39 | ||
S4 | Forest area | 10.34 | ||
S5 | Grassland area | 12.59 | ||
S6 | Other vegetation coverage | 9.15 | ||
S7 | Water area | 8.66 | ||
S8 | Good air days throughout the year | 2.01 | ||
Response index | 25 | R1 | Afforestation area | 6.54 |
R2 | Investment in water conservancy, environment, and public facilities management | 4.95 | ||
R3 | Agriculture, forestry, animal husbandry | 6.23 | ||
R4 | Sewage treatment plant centralized treatment rate | 0.91 | ||
R5 | General industrial solid waste comprehensive utilization rate | 1.69 | ||
R6 | Harmless treatment rate of domestic garbage | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, X.; Zhang, H.; Shao, Z.; Huang, X.; Wang, H.; Zhang, R.; Hao, M. Sustainability Evaluation of Chinese Capital Cities Based on Urban Geographic Environment Index. Remote Sens. 2023, 15, 1966. https://doi.org/10.3390/rs15081966
Ning X, Zhang H, Shao Z, Huang X, Wang H, Zhang R, Hao M. Sustainability Evaluation of Chinese Capital Cities Based on Urban Geographic Environment Index. Remote Sensing. 2023; 15(8):1966. https://doi.org/10.3390/rs15081966
Chicago/Turabian StyleNing, Xiaogang, Hanchao Zhang, Zhenfeng Shao, Xiao Huang, Hao Wang, Ruiqian Zhang, and Minghui Hao. 2023. "Sustainability Evaluation of Chinese Capital Cities Based on Urban Geographic Environment Index" Remote Sensing 15, no. 8: 1966. https://doi.org/10.3390/rs15081966
APA StyleNing, X., Zhang, H., Shao, Z., Huang, X., Wang, H., Zhang, R., & Hao, M. (2023). Sustainability Evaluation of Chinese Capital Cities Based on Urban Geographic Environment Index. Remote Sensing, 15(8), 1966. https://doi.org/10.3390/rs15081966