Development of Hybrid Models to Estimate Gross Primary Productivity at a Near-Natural Peatland Using Sentinel 2 Data and a Light Use Efficiency Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Measurements of Net Ecosystem Carbon Dioxide Exchange and Ancillary Variables
2.3. Modelling Framework
2.3.1. Light Use Efficiency Model
2.3.2. Sentinel Data and Indices
2.3.3. LUE Parameter (ε)
2.3.4. The Hybrid Model Calibration
3.1. Seasonal Dynamics of Meteorological Parameters
3.2. Light Use Efficiency Parameter (εsite) and Eddy Covariance GPP
3.3. Validation of Hybrid Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gorham, E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Tanneberger, F.; Tegetmeyer, C. The peatland map of Europe. Mires Peat 2017, 19, 1–17. [Google Scholar] [CrossRef]
- Connolly, J.; Holden, N.M. Mapping peat soils in Ireland: Updating the derived Irish peat map. Ir. Geogr. 2009, 42, 343–352. [Google Scholar] [CrossRef]
- Renou-Wilson, F.; Byrne, K.A.; Flynn, R.; Premrov, A.; Riondato, E.; Saunders, M.; Walz, K.; Wilson, D. Peatland Properties Influencing Greenhouse Gas Emissions and Removal; Environmental Protection Agency: Wexford, Ireland, 2022.
- Connolly, J. Mapping land use on Irish peatlands using medium resolution satellite imagery. Ir. Geogr. 2018, 51, 187–204. [Google Scholar] [CrossRef]
- Renou-Wilson, F.; Moser, G.; Fallon, D.; Farrell, C.A.; Müller, C.; Wilson, D. Rewetting degraded peatlands for climate and biodiversity benefits: Results from two raised bogs. Ecol. Eng. 2019, 127, 547–560. [Google Scholar] [CrossRef]
- Lees, K.J.; Quaife, T.; Artz, R.R.E.; Khomik, M.; Clark, J.M. Potential for using remote sensing to estimate carbon fluxes across northern peatlands—A review. Sci. Total Environ. 2018, 615, 857–874. [Google Scholar] [CrossRef]
- Kiely, G.; Leahy, P.; Lewis, C.; Sottocornola, M.; Laine, A.; Koehler, A.-K. GHG Fluxes from Terrestrial Ecosystems in Ireland, Report No. 227; Environmental Protection Agency: Wexford, Ireland, 2018.
- Laine, A.; Sottocornola, M.; Kiely, G.; Byrne, K.A.; Wilson, D.; Tuittila, E.S. Estimating net ecosystem exchange in a patterned ecosystem: Example from blanket bog. Agric. For. Meteorol. 2006, 138, 231–243. [Google Scholar] [CrossRef]
- Baldocchi, D.; Chu, H.; Reichstein, M. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agric. For. Meteorol. 2018, 249, 520–533. [Google Scholar] [CrossRef] [Green Version]
- Barba, J.; Cueva, A.; Bahn, M.; Barron-Gafford, G.A.; Bond-Lamberty, B.; Hanson, P.J.; Jaimes, A.; Kulmala, L.; Pumpanen, J.; Scott, R.L.; et al. Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements. Agric. For. Meteorol. 2018, 249, 434–443. [Google Scholar] [CrossRef] [Green Version]
- Lees, K.J.; Artz, R.R.; Khomik, M.; Clark, J.M.; Ritson, J.; Hancock, M.H.; Cowie, N.R.; Quaife, T. Using Spectral Indices to Estimate Water Content and GPP in g C Moss and Other Peatland Vegetation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4547–4557. [Google Scholar] [CrossRef] [Green Version]
- Joiner, J.; Yoshida, Y.; Zhang, Y.; Duveiller, G.; Jung, M.; Lyapustin, A.; Wang, Y.; Tucker, C.J. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 2018, 10, 1346. [Google Scholar] [CrossRef] [Green Version]
- Junttila, S.; Kelly, J.; Kljun, N.; Aurela, M.; Klemedtsson, L.; Lohila, A.; Nilsson, M.B.; Rinne, J.; Tuittila, E.S.; Vestin, P.; et al. Upscaling northern peatland CO2 fluxes using satellite remote sensing data. Remote Sens. 2021, 13, 818. [Google Scholar] [CrossRef]
- Schubert, P.; Lund, M.; Eklundh, L. Estimation of gross primary productivity of an ombrotrophic bog in southern Sweden. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 7–11 July 2008; Volume 4, pp. 866–869. [Google Scholar] [CrossRef]
- Hilker, T.; Coops, N.; Wulder, M.; Black, T.A.; Guy, R.D. The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements. Sci. Total Environ. 2008, 404, 411–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goerner, A.; Reichstein, M.; Tomelleri, E.; Hanan, N.; Rambal, S.; Papale, D.; Dragoni, D.; Schmullius, C. Remote sensing of ecosystem light use efficiency with MODIS-based PRI. Biogeosciences 2011, 8, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.; Zhang, H.; Yu, L.; Wu, M.; Wang, F.; Huang, W.; Liu, L.; Sun, R.; Li, C.; Wang, D.; et al. Assessing spectral indices to estimate the fraction of photosynthetically active radiation absorbed by the vegetation canopy. Int. J. Remote Sens. 2018, 39, 8022–8040. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Black, T.A.; Amiro, B.D.; Arain, M.A.; Barr, A.G.; Bourque, C.P.; Dunn, A.L.; Flanagan, L.B.; Giasson, M.A.; Lafleur, P.M.; et al. Photosynthetic light use efficiency of three biomes across an east-west continental-scale transect in Canada. Agric. For. Meteorol. 2006, 140, 269–286. [Google Scholar] [CrossRef]
- Kross, A.; Seaquist, J.W.; Roulet, N.T. Light use efficiency of peatlands: Variability and suitability for modeling ecosystem production. Remote Sens. Environ. 2016, 183, 239–249. [Google Scholar] [CrossRef]
- Gan, R.; Zhang, L.; Yang, Y.; Wang, E.; Woodgate, W.; Zhang, Y.; Haverd, V.; Kong, D.; Fischer, T.; Chiew, F.; et al. Estimating ecosystem maximum light use efficiency based on the water use efficiency principle. Environ. Res. Lett. 2021, 16, 104032. [Google Scholar] [CrossRef]
- Lees, K.J.; Quaife, T.; Artz, R.R.; Khomik, M.; Sottocornola, M.; Kiely, G.; Hambley, G.; Hill, T.; Saunders, M.; Cowie, N.R.; et al. A model of gross primary productivity based on satellite data suggests formerly afforested peatlands undergoing restoration regain full photosynthesis capacity after five to ten years. J. Environ. Manag. 2019, 246, 594–604. [Google Scholar] [CrossRef]
- Biudes, M.S.; Vourlitis, G.L.; Velasque, M.C.; Machado, N.G.; de Morais Danelichen, V.H.; Pavao, V.M.; Arruda, P.H.; de Souza Nogueira, J. Gross primary productivity of Brazilian Savanna (Cerrado) estimated by different remote sensing-based models. Agric. For. Meteorol. 2021, 307, 108456. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Ghosh, B.; Regan, S.; Naughton, O.; Johnston, P.; Gill, L. Monitoring environmental supporting conditions of a raised bog using remote sensing techniques. Proc. Int. Assoc. Hydrol. Sci. 2018, 380, 9–15. [Google Scholar] [CrossRef]
- Couwenberg, J.; Thiele, A.; Tanneberger, F.; Augustin, J.; Bärisch, S.; Dubovik, D.; Liashchynskaya, N.; Michaelis, D.; Minke, M.; Skuratovich, A.; et al. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 2011, 674, 67–89. [Google Scholar] [CrossRef]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; Monson, R.K.; et al. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J. Geophys. Res. Biogeosci. 2006, 111, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lafleur, P.M.; Roulet, N.T.; Bubier, J.L.; Frolking, S.; Moore, T.R. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Glob. Biogeochem. Cycles 2003, 17, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Dong, J.; Zhang, Y.; Yuan, W.; Doughty, R.; Yang, J.; Zhou, D.; Zhang, L.; Xiao, X. Evolution of light use efficiency models: Improvement, uncertainties, and implications. Agric. For. Meteorol. 2022, 317, 108905. [Google Scholar] [CrossRef]
- Yuan, W.; Berry, J.A.; Zhang, Y.; Joiner, J.; Guanter, L.; Badgley, G.; Lobell, D.B. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 2007, 143, 189–207. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zhang, L.; Xiao, J.; Yuan, W.; Yan, M.; Li, T.; Zhang, Z. Sources of uncertainty in gross primary productivity simulated by light use efficiency models: Model structure, parameters, input data, and spatial resolution. Agric. For. Meteorol. 2018, 263, 242–257. [Google Scholar] [CrossRef]
- Lin, S.; Li, J.; Liu, Q.; Li, L.; Zhao, J.; Yu, W. Evaluating the effectiveness of using vegetation indices based on red-edge reflectance from Sentinel-2 to estimate gross primary productivity. Remote Sens. 2019, 11, 1303. [Google Scholar] [CrossRef] [Green Version]
- Van Gaalen, K.E.; Flanagan, L.B.; Peddle, D.R. Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents. Oecologia 2007, 153, 19–28. [Google Scholar] [CrossRef]
- Lees, K.J.; Clark, J.M.; Quaife, T.; Khomik, M.; Artz, R.R.E. Changes in carbon flux and spectral reflectance of Sphagnum mosses as a result of simulated drought. Ecohydrology 2019, 12, e2123. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Moss, D.M. Spectral Reflectance Measurements in the Genus Sphagnum. Remote Sens. Environ. 1993, 45, 273–279. [Google Scholar] [CrossRef]
- Harris, A. Spectral reflectance and photosynthetic properties of Sphagnum mosses exposed to progressive drought. Ecohydrology 2008, 1, 35–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Sun, G.; Band, L.E.; Noormets, A.; Zhang, Q. Understanding moisture stress on light use efficiency across terrestrial ecosystems based on global flux and remote-sensing data. J. Geophys. Res. Biogeosci. 2015, 120, 2053–2066. [Google Scholar] [CrossRef]
- Crushell, P.; Connolly, A.; Schouten, M.; Mitchell, F.J.G. The changing landscape of Clara Bog: The history of an Irish raised bog. Ir. Geogr. 2008, 41, 89–111. [Google Scholar] [CrossRef]
- Hammond, R.F. The Peatlands of Ireland, 2nd ed.; An Foras Taluntais: Dublin, Ireland, 1981. [Google Scholar]
- Van der Schaff, S.; Streefkerk, J.G. Relationships between Ecotopes, Hydrological Position and Subsidence on Clara Bog; Warsaw Agricultural University Press: Warsaw, Poland, 2011; pp. 127–136. [Google Scholar]
- Regan, S.; Flynn, R.; Gill, L.; Naughton, O.; Johnston, P. Impacts of Groundwater Drainage on Peatland Subsidence and Its Ecological Implications on an Atlantic Raised Bog. Water Resour. Res. 2019, 55, 6153–6168. [Google Scholar] [CrossRef]
- Van der Schaaf, S. Bog Hydrology. In Conservation and Restoration of Raised Bogs, No. 4; Schouten, M.G.C., Ed.; Staatsbosbeheer, Geological Survey of Ireland: Dublin, Ireland, 2002; pp. 54–109. [Google Scholar]
- Mauder, M.F.T. Documentation and Instruction Manual of the Eddy Covariance Software Abt. Mikrometeorologie Arbeitsergebnisse; No. 2014; Universität Bayreuth, Abt. Mikrometeorologie: Garmisch-Partenkirchen, Germany, 2011; ISSN 1614-8916. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Baldocchi, D.; Aubinet, M.; Bernhofer, C. On the Separation of Net Ecosystem Exchange into Assimilation and Ecosystem Respiration: Review and Improved Algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Foken, T.; Mathias, G.; Mauder, M.; Mahrt, L.; Amiro, B.; Munger, W. Chapter 9 post-field data quality control. In Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis; Kluwer: Dordrecht, The Netherlands, 2004; pp. 181–208. [Google Scholar]
- Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 2001, 107, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.; Leeuwen, W.J.D. The use of vegetation indices in forested regions: Issues of linearity and saturation. In Proceedings of the IGARSS’97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; Volume 4, pp. 1966–1968. [Google Scholar] [CrossRef]
- Gao, X.; Huete, A.R.; Ni, W.; Miura, T. Optical–Biophysical Relationships of Vegetation Spectra without Background Contamination. Remote Sens. Environ. 2000, 74, 609–620. [Google Scholar] [CrossRef]
- Gao, B.C. A normalized difference water index for remote sensing of vegetation liquid water from space Bo-Cai Gao Joint Center for Earth System Sciences Code 913, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Curran, P.J.; Windham, W.R.; Gholz, H.L. Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiol. 1995, 3, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Heinsch, F.A.; Vierling, L.; Deering, D.; Conley, A. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1908–1923. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, X.; Ren, J. Simulation of gross primary productivity using multiple light use efficiency models. Land 2021, 10, 329. [Google Scholar] [CrossRef]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.K.; Kayad, A.G.; Jha, C.S. Estimation of gross primary production of irrigated maize using Landsat-8 imagery and Eddy Covariance data. Saudi J. Biol. Sci. 2017, 24, 410–420. [Google Scholar] [CrossRef] [Green Version]
- Steenvoorden, J.; Limpens, J.; Crowley, W.; Schouten, M.G.C. There and back again: Forty years of change in vegetation patterns in Irish peatlands. Ecol. Indic. 2022, 145, 109731. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Gill, L.; Ghosh, B. Drone image segmentation using machine and deep learning for mapping raised bog vegetation communities. Remote Sens. 2020, 12, 2602. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 2017, 4, 170165. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Xiao, J.; Ma, M. Evaluating the performance of satellite-derived vegetation indices for estimating gross primary productivity using FLUXNET observations across the globe. Remote Sens. 2019, 11, 1823. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Yan, L.; Zhang, X.; Li, Y.; Tian, D.; Peng, C.; Wu, H.; Wang, J.; Zhong, L. Modeling gross primary production of a typical Coastal Wetland in China using MODIS time series and CO2 Eddy Flux Tower Data. Remote Sens. 2018, 10, 708. [Google Scholar] [CrossRef] [Green Version]
Index | Formula | Description |
---|---|---|
Normalized Difference VI (NDVI) [47] | 1 ≥ NDVI > 0.1 describes the presence and condition (health) of vegetation, (dimensionless index). | |
Enhanced VI (EVI) [48,49] | 0.8 ≥ EVI ≥ 0.2, improvement on NDVI; uses blue band to minimize noise caused by canopy background and atmospheric effects, and it describes the health of vegetation. | |
Land Surface Water Index (LSWI) [50] | LSWI > 0.5; detects open water and highlights the wet-vegetation communities. | |
Normalized Difference Water Index NDWI2 [51] | NDWI2 is used mainly for the detection and delineation of water bodies from the soil and vegetation. | |
(Modified Chlorophyll Absorption in Reflectance Index) MCARI [52] | MCARI depicts the leaf chlorophyll concentrations and responds to LAI-chlorophyll interactions. | |
Red Edge Position (REP2) [53] | REP2 = 740 nm | REP2 (red edge position-2) depicts the chlorophyll concentrations and highlights the green vegetation present in the area. |
Model | ε = 0.61 (Schwalm et al.) | ε = 0.83 (Gan et al.) | ε = 1.2 (Kross et al.) |
---|---|---|---|
1 | 3EVI − 1.1(NDWI2) | 1.7EVI − 0.63(NDWI2) | 2.5EVI − 0.9(NDWI2) |
2 | 0.61NDVI + 0.44(NDWI2) | 0.35NDVI + 0.25(NDWI2) | 0.5NDVI + 0.36(NDWI2) |
3 | 1.75(REP2) − 0.81(NDWI2) | (REP2) − 0.46(NDWI2) | 1.4(REP2) − 0.67(NDWI2) |
4 | 2.2EVI − 0.2NDVI | 1.28EVI − 0.11NDVI | 1.8EVI − 0.17NDVI |
5 | 1.3(REP2) − 0.09NDVI | 0.76(REP2) − 0.05NDVI | 1.1(REP2) − 0.08NDVI |
6 | 1.9(REP2) − 1.1EVI | 1.1(REP2) − 0.61EVI | 1.6(REP2) − 0.9EVI |
Date | GPP (EC) | Modelled GPP for ε = 0.61 | Modelled GPP for ε = 0.83 | Modelled GPP for ε = 1.2 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | ||
10/2/2019 | 0.880 | −0.106 | 1.017 | −0.176 | 0.148 | 0.111 | 0.127 | −0.095 | 1.002 | −0.185 | 0.136 | 0.107 | 0.135 | −0.112 | 1.012 | −0.172 | 0.163 | 0.118 | 0.140 |
21/04/2019 | 2.851 | 1.960 | 2.577 | 0.464 | 2.118 | 1.034 | 0.549 | 1.996 | 2.540 | 0.404 | 2.061 | 1.038 | 0.596 | 1.913 | 2.565 | 0.469 | 2.177 | 1.065 | 0.633 |
18/09/2019 | 3.818 | 1.624 | 2.735 | 0.314 | 1.558 | 0.715 | 0.378 | 1.654 | 2.695 | 0.267 | 1.506 | 0.712 | 0.415 | 1.585 | 2.723 | 0.318 | 1.615 | 0.743 | 0.446 |
28/10/2019 | 1.188 | −0.257 | 1.437 | −0.502 | 0.250 | 0.053 | 0.005 | −0.239 | 1.417 | −0.509 | 0.233 | 0.046 | 0.013 | −0.265 | 1.430 | −0.494 | 0.271 | 0.061 | 0.022 |
12/11/2019 | 0.740 | −0.005 | 0.720 | 0.024 | 0.158 | 0.191 | 0.227 | 0.003 | 0.709 | 0.012 | 0.149 | 0.190 | 0.235 | −0.010 | 0.717 | 0.026 | 0.170 | 0.198 | 0.239 |
22/12/2019 | 0.511 | 0.007 | 0.382 | 0.059 | 0.060 | 0.114 | 0.152 | 0.011 | 0.377 | 0.052 | 0.055 | 0.113 | 0.156 | 0.005 | 0.380 | 0.060 | 0.066 | 0.118 | 0.157 |
20/02/2020 | 1.137 | 0.518 | 1.157 | 0.126 | 0.538 | 0.299 | 0.215 | 0.531 | 1.140 | 0.106 | 0.518 | 0.298 | 0.230 | 0.504 | 1.152 | 0.128 | 0.561 | 0.311 | 0.241 |
15/04/2020 | 2.945 | 1.054 | 3.041 | 0.495 | 1.394 | 1.053 | 0.961 | 1.091 | 2.997 | 0.432 | 1.343 | 1.055 | 1.005 | 1.019 | 3.027 | 0.501 | 1.452 | 1.088 | 1.030 |
25/04/2020 | 2.989 | −1.826 | 4.094 | −1.230 | 1.106 | 1.138 | 1.231 | −1.751 | 4.033 | −1.289 | 1.059 | 1.140 | 1.274 | −1.846 | 4.068 | −1.202 | 1.161 | 1.174 | 1.294 |
27/11/2020 | 0.901 | −0.370 | 0.852 | −0.362 | 0.269 | 0.180 | 0.152 | −0.353 | 0.839 | −0.372 | 0.259 | 0.179 | 0.161 | −0.374 | 0.846 | −0.356 | 0.281 | 0.186 | 0.166 |
6/12/2020 | 0.328 | −0.127 | 0.244 | −0.005 | 0.066 | 0.128 | 0.161 | −0.123 | 0.240 | −0.012 | 0.063 | 0.129 | 0.164 | −0.129 | 0.242 | −0.004 | 0.069 | 0.131 | 0.165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ingle, R.; Bhatnagar, S.; Ghosh, B.; Gill, L.; Regan, S.; Connolly, J.; Saunders, M. Development of Hybrid Models to Estimate Gross Primary Productivity at a Near-Natural Peatland Using Sentinel 2 Data and a Light Use Efficiency Model. Remote Sens. 2023, 15, 1673. https://doi.org/10.3390/rs15061673
Ingle R, Bhatnagar S, Ghosh B, Gill L, Regan S, Connolly J, Saunders M. Development of Hybrid Models to Estimate Gross Primary Productivity at a Near-Natural Peatland Using Sentinel 2 Data and a Light Use Efficiency Model. Remote Sensing. 2023; 15(6):1673. https://doi.org/10.3390/rs15061673
Chicago/Turabian StyleIngle, Ruchita, Saheba Bhatnagar, Bidisha Ghosh, Laurence Gill, Shane Regan, John Connolly, and Matthew Saunders. 2023. "Development of Hybrid Models to Estimate Gross Primary Productivity at a Near-Natural Peatland Using Sentinel 2 Data and a Light Use Efficiency Model" Remote Sensing 15, no. 6: 1673. https://doi.org/10.3390/rs15061673
APA StyleIngle, R., Bhatnagar, S., Ghosh, B., Gill, L., Regan, S., Connolly, J., & Saunders, M. (2023). Development of Hybrid Models to Estimate Gross Primary Productivity at a Near-Natural Peatland Using Sentinel 2 Data and a Light Use Efficiency Model. Remote Sensing, 15(6), 1673. https://doi.org/10.3390/rs15061673