Leveraging Soil Moisture Assimilation in Permafrost Affected Regions
Abstract
:1. Introduction
2. Study Area
3. Model and Data Products
3.1. Noah Land Surface Models
3.2. Data Products
4. Land Data Assimilation Framework and Runoff Routing
4.1. Assimilation Setup for the Iya River Basin in Russia
4.2. Routing of Runoff Estimates from LSM
5. Results
5.1. Enhancement after Assimilating ESA CCI SM
5.2. Soil Moisture Validation with Independent In-Situ Measurements
5.3. Impact of Assimilation on Streamflow Discharge
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, H.; Huang, Y.; Bense, V.F.; Ma, Q.; Marchenko, S.S.; Shepelev, V.V.; Hu, Y.; Liang, S.; Spektor, V.V.; Jin, X.; et al. Permafrost Degradation and Its Hydrogeological Impacts. Water 2022, 14, 372. [Google Scholar] [CrossRef]
- Ramage, J.; Jungsberg, L.; Wang, S.; Westermann, S.; Lantuit, H.; Heleniak, T. Population living on permafrost in the Arctic. Popul. Environ. 2021, 43, 22–38. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Nan, Z.; Che, J.; Sheng, Y.; Wu, Q.; Jin, H.; Luo, D.; Tang, Z.; et al. Mapping the permafrost stability on the Tibetan Plateau for 2005–2015. Sci. China Earth Sci. 2020, 64, 62–79. [Google Scholar] [CrossRef]
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Arenson, L.U.; Harrington, J.S.; Koenig, C.E.; Wainstein, P. Mountain Permafrost Hydrology—A Practical Review Following Studies from the Andes. Geosciences 2022, 12, 48. [Google Scholar] [CrossRef]
- Newman, B.D.; Throckmorton, H.M.; Graham, D.E.; Gu, B.; Hubbard, S.S.; Liang, L.; Wu, Y.; Heikoop, J.M.; Herndon, E.M.; Phelps, T.J.; et al. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground. Geophys. Res. Lett. 2015, 42, 1808–1817. [Google Scholar] [CrossRef]
- Lara, M.J.; McGuire, A.D.; Euskirchen, E.S.; Tweedie, C.E.; Hinkel, K.M.; Skurikhin, A.N.; Romanovsky, V.E.; Grosse, G.; Bolton, W.R.; Genet, H. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Glob. Change Biol. 2015, 21, 1634–1651. [Google Scholar] [CrossRef]
- Grosse, G.; Jones, B.; Arp, C. Thermokarst lakes, drainage, and drained basins. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 8, pp. 325–353. [Google Scholar]
- Andresen, C.G.; Lara, M.J.; Tweedie, C.E.; Lougheed, V.L. Rising plant-mediated methane emissions from arctic wetlands. Glob. Change Biol. 2017, 23, 1128–1139. [Google Scholar] [CrossRef]
- Oberbauer, S.F.; Tweedie, C.E.; Welker, J.M.; Fahnestock, J.T.; Henry, G.H.; Webber, P.J.; Hollister, R.D.; Walker, M.D.; Kuchy, A.; Elmore, E.; et al. Tundra CO2 Fluxes in Response to Experimental Warming across Latitudinal and Moisture Gradients. Ecol. Monogr. 2007, 77, 221–238. [Google Scholar] [CrossRef] [Green Version]
- Kanevskiy, M.Z.; Shur, Y.; Jorgenson, T.; Brown, D.R.; Moskalenko, N.G.; Brown, J.; Walker, D.A.; Raynolds, M.K.; Buchhorn, M. Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska. Geomorphology 2017, 297, 20–42. [Google Scholar] [CrossRef]
- Liljedahl, A.K.; Boike, J.; Daanen, R.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijma, Y.; Jorgenson, J.C.; Matveyeva, N.; et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Throckmorton, H.M.; Heikoop, J.M.; Newman, B.D.; Altmann, G.L.; Conrad, M.; Muss, J.D.; Perkins, G.B.; Smith, L.J.; Torn, M.S.; Wullschleger, S.D.; et al. Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes. Glob. Biogeochem. Cycles 2014, 29, 1893–1910. [Google Scholar] [CrossRef] [Green Version]
- Frey, K.E.; McClelland, J.W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process. 2009, 23, 169–182. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic Impacts of Thawing Permafrost—A Review. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Jafarov, E.E.; Coon, E.T.; Harp, D.R.; Wilson, C.J.; Painter, S.L.; Atchley, A.L.; Romanovsky, V.E. Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape. Environ. Res. Lett. 2018, 13, 105006. [Google Scholar] [CrossRef]
- Nair, A.S.; Mangla, R.; Thiruvengadam, P.; Indu, J. Remote sensing data assimilation. Hydrol. Sci. J. 2022, 67, 2457–2489. [Google Scholar] [CrossRef]
- Krishnan, S.; Nair, A.S.; Indu, J. Simulation of Passive Microwave Data toward Efficient Assimilation over Indian Subcontinent. IEEE Geosci. Remote Sens. Lett. 2021, 18, 851–855. [Google Scholar] [CrossRef]
- Nair, A.S.; Indu, J. Improvement of land surface model simulations over India via data assimilation of satellite-based soil moisture products. J. Hydrol. 2019, 573, 406–421. [Google Scholar] [CrossRef]
- Shrestha, A.; Nair, A.S.; Indu, J. Role of precipitation forcing on the uncertainty of land surface model simulated soil moisture estimates. J. Hydrol. 2020, 580, 124264. [Google Scholar] [CrossRef]
- Nair, A.S.; Indu, J. Enhancing Noah Land Surface Model Prediction Skill over Indian Subcontinent by Assimilating SMOPS Blended Soil Moisture. Remote. Sens. 2016, 8, 976. [Google Scholar] [CrossRef] [Green Version]
- Sorooshian, S.; Lawford, R.; Try, P.D.; Rossow, W.B.; Roads, J.; Polcher, J.; Sommeria, G.; Schiffer, R. Water and energy cycles: Investigating the links. World Meteorol. Organ. Bull. 2005, 54, 58–64. [Google Scholar]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.; Nobre, C.A.; et al. Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Mitchell, K.E.; Schaake, J.C.; Xue, Y.; Pan, H.L.; Koren, V.; Duan, Q.; Ek, M.B.; Betts, A.K. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. 1996, 101, 7251–7268. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xie, H.; Guan, H.; Zhou, X. Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. J. Hydrol. 2007, 340, 12–24. [Google Scholar] [CrossRef]
- Bolten, J.D.; Crow, W.T.; Zhan, X.; Jackson, T.J.; Reynolds, C. Evaluating the Utility of Remotely Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Adegoke, J.O.; Carleton, A.M. Relations between Soil Moisture and Satellite Vegetation Indices in the U.S. Corn Belt. J. Hydrometeorol. 2002, 3, 395–405. [Google Scholar] [CrossRef]
- Han, E.; Crow, W.T.; Holmes, T.R.; Bolten, J.D. Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring. J. Hydrometeorol. 2014, 15, 1117–1134. [Google Scholar] [CrossRef]
- Walker, J.P.; Houser, P.R. A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. J. Geophys. Res. 2001, 106, 11761–11774. [Google Scholar] [CrossRef] [Green Version]
- Mclaughlin, D. An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and filtering. Adv. Water Resour. 2002, 25, 1275–1286. [Google Scholar] [CrossRef]
- Walker, J.P.; Willgoose, G.R.; Kalma, J.D. Three-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: Simplified Kalman filter covariance forecasting and field application. Water Resour. Res. 2002, 38, 37-1–37-13. [Google Scholar] [CrossRef] [Green Version]
- Che, T.; Li, X.; Jin, R.; Huang, C. Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth. Remote Sens. Environ. 2014, 143, 54–63. [Google Scholar] [CrossRef]
- Brocca, L.L.; Tarpanelli, A.; Filippucci, P.; Dorigo, W.A.; Zaussinger, F.; Gruber, A.; Fernández-Prieto, D. How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 752–766. [Google Scholar] [CrossRef]
- Kumar, S.V.; Peters-Lidard, C.D.; Santanello, J.A.; Reichle, R.H.; Draper, C.; Koster, R.D.; Nearing, G.S.; Jasinski, M.F. Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes. Hydrol. Earth Syst. Sci. 2015, 19, 4463–4478. [Google Scholar] [CrossRef] [Green Version]
- Lawston, P.M.; Santanello, J.A.; Franz, T.E.; Rodell, M. Assessment of Irrigation Physics in a Land Surface Modeling Framework using Non-Traditional and Human-Practice Datasets. Hydrol. Earth Syst. Sci. 2017, 21, 2953–2966. [Google Scholar] [CrossRef] [Green Version]
- Blankenship, C.B.; Case, J.L.; Crosson, W.L.; Zavodsky, B.T. Correction of Forcing-Related Spatial Artifacts in a Land Surface Model by Satellite Soil Moisture Data Assimilation. IEEE Geosci. Remote Sens. Lett. 2018, 15, 498–502. [Google Scholar] [CrossRef]
- Lievens, H.; Al Bitar, A.; Verhoest, N.E.; Cabot, F.; Lannoy, G.D.; Drusch, M.; Dumedah, G.; Franssen, H.J.; Kerr, Y.H.; Tomer, S.K.; et al. Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin. J. Hydrometeorol. 2015, 16, 1109–1134. [Google Scholar] [CrossRef] [Green Version]
- Lievens, H.; Lannoy, G.D.; Al Bitar, A.; Drusch, M.; Dumedah, G.; Franssen, H.J.; Kerr, Y.H.; Tomer, S.K.; Martens, B.; Merlin, O.; et al. Assimilation of SMOS soil moisture and brightness temperature products into a land surface model. Remote Sens. Environ. 2016, 180, 292–304. [Google Scholar] [CrossRef] [Green Version]
- Lannoy, G.D.; Reichle, R.H. Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model. Hydrol. Earth Syst. Sci. 2016, 20, 4895–4911. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.H.; McLaughlin, D.; Entekhabi, D. Hydrologic Data Assimilation with the Ensemble Kalman Filter. Mon. Weather Rev. 2002, 130, 103–114. [Google Scholar] [CrossRef]
- Dunne, S.C.; Entekhabi, D. An ensemble-based reanalysis approach to land data assimilation. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.E.; Meng, C.; Arsenault, K.R.; Cosgrove, B.; Radakovich, J.D.; Bosilovich, M.G.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.V.; Harrison, K.W.; Peters-Lidard, C.D.; Santanello, J.A.; Kirschbaum, D.B. Assessing the Impact of L-Band Observations on Drought and Flood Risk Estimation: A Decision-Theoretic Approach in an OSSE Environment. J. Hydrometeorol. 2014, 15, 2140–2156. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D. Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, Z.; Hoar, T.J. Global Soil Moisture Estimation by Assimilating AMSR-E Brightness Temperatures in a Coupled CLM4-RTM-DART System. J. Hydrometeorol. 2016, 17, 2431–2454. [Google Scholar] [CrossRef]
- Tian, X.; Xie, Z.; Dai, A.; Jia, B.; Shi, C. A microwave land data assimilation system: Scheme and preliminary evaluation over China. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Natali, S.M.; Schuur, E.A.; Mauritz, M.; Schade, J.D.; Celis, G.; Crummer, K.G.; Johnston, C.; Krapek, J.P.; Pegoraro, E.; Salmon, V.G.; et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosci. 2015, 120, 525–537. [Google Scholar] [CrossRef]
- Zwieback, S.; Westermann, S.; Langer, M.; Boike, J.; Marsh, P.; Berg, A.A. Improving Permafrost Modeling by Assimilating Remotely Sensed Soil Moisture. Water Resour. Res. 2019, 55, 1814–1832. [Google Scholar] [CrossRef]
- Andresen, C.G.; Lawrence, D.M.; Wilson, C.J.; McGuire, A.D.; Koven, C.D.; Schaefer, K.M.; Jafarov, E.; Peng, S.; Chen, X.; Gouttevin, I.; et al. Soil moisture and hydrology projections of the permafrost region—A model intercomparison. Cryosphere 2020, 14, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Streletskiy, D.A. Permafrost degradation. In Snow and Ice-Related Hazards, Risks, and Disasters; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Slater, A.; Lawrence, D.M. Diagnosing Present and Future Permafrost from Climate Models. J. Clim. 2013, 26, 5608–5623. [Google Scholar] [CrossRef] [Green Version]
- Seo, E.; Lee, M.; Reichle, R.H. Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman Filter. Remote Sens. Environ. 2021, 253, 112222. [Google Scholar] [CrossRef]
- Albergel, C.; Rosnay, P.D.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.H.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar] [CrossRef]
- Reichle, R.H.; Crow, W.T.; Keppenne, C.L. An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Al-Yaari, A.; Wigneron, J.; Dorigo, W.A.; Colliander, A.; Pellarin, T.; Hahn, S.; Mialon, A.; Richaume, P.; Fernandez-Moran, R.; Fan, L.; et al. Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements. Remote Sens. Environ. 2019, 224, 289–303. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.M.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Xu, L.; Abbaszadeh, P.; Moradkhani, H.; Chen, N.; Zhang, X. Continental drought monitoring using satellite soil moisture, data assimilation and an integrated drought index. Remote Sens. Environ. 2020, 250, 112028. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Kichigina, N.V. Hydroclimatic changes and analysis of floods in large river basins of southern East Siberia. Hydrol. Process. 2013, 27, 2144–2152. [Google Scholar] [CrossRef]
- Fedorova, A.; Makarieva, O.; Nesterova, N.; Shikhov, A.N.; Vinogradova, T.A. Modelling maximum discharge of the catastrophic flood at the Iya River (Irkutsk region, Russia) in 2019. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020. [Google Scholar]
- Kalugin, A. Process-Based Modeling of the High Flow of a Semi-Mountain River under Current and Future Climatic Conditions: A Case Study of the Iya River (Eastern Siberia). Water 2021, 13, 1042. [Google Scholar] [CrossRef]
- Mahrt, L.; Ek, M.B. The Influence of Atmospheric Stability on Potential Evaporation. J. Appl. Meteorol. Climatol. 1984, 23, 222–234. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.J.; Koren, V.; Gayno, G.A.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Derber, J.; Parrish, D.F.; Lord, S.J. The New Global Operational Analysis System at the National Meteorological Center. Weather Forecast. 1991, 6, 538–547. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; Jeu, R.D.; Wagner, W.; Mccabe, M.F.; Evans, J.P.; Dijk, A.I. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.A.; Crow, W.T.; Wagner, W. Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6780–6792. [Google Scholar] [CrossRef]
- Pradhan, A.; Nair, A.S.; Indu, J.; Kirstetter, P. Impact of sampling of GPM orbital data on streamflow simulations. J. Hydrol. 2021, 593, 125798. [Google Scholar] [CrossRef]
- Ganesh, S.; Pradhan, A.; Indu, J. Evaluation of GPM sampling error over major basins in Indian subcontinent using bootstrap technique. Adv. Space Res. 2019, 63, 3289–3302. [Google Scholar] [CrossRef]
- Fisher, R.A.; Koven, C.D. Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems. J. Adv. Model. Earth Syst. 2020, 12, e2018MS001453. [Google Scholar] [CrossRef] [Green Version]
- Dumedah, G.; Walker, J.P. Assessment of land surface model uncertainty: A crucial step towards the identification of model weaknesses. J. Hydrol. 2014, 519, 1474–1484. [Google Scholar] [CrossRef]
- Pradhan, A.; Indu, J. Assessment of SM2RAIN derived and IMERG based Precipitation Products for Hydrological Simulation. J. Hydrol. 2021, 603, 127191. [Google Scholar] [CrossRef]
- Kumar, S.V.; Reichle, R.H.; Peters-Lidard, C.D.; Koster, R.D.; Zhan, X.; Crow, W.T.; Eylander, J.; Houser, P.R. A land surface data assimilation framework using the land information system: Description and applications. Adv. Water Resour. 2008, 31, 1419–1432. [Google Scholar] [CrossRef]
- Lohmann, D.; Nolte-Holube, R.; Raschke, E. A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus A 1996, 48, 708–721. [Google Scholar] [CrossRef]
- Makarieva, O.; Nesterova, N.; Fedorova, A.; Shikhovd, A.N.; Vinogradova, T. Modeling of the Summer 2019 Disastrous Floods on the Iya River (Irkutsk Oblast). Geogr. Nat. Resour. 2020, 41, 354–363. [Google Scholar] [CrossRef]
Variable | Spatial Resolution | Temporal Resolution | Source |
---|---|---|---|
Near surface air temperature | 0.47° × 0.47° | 3 Hourly | GDAS (Source: https://www.ncdc.noaa.gov/dataaccess/model-data/modeldatasets/global-dataassimilation-system-gdas (accessed on 26 April 2021) |
Near surface specific humidity | |||
Total incident shortwave radiation | |||
Incident Longwave Radiation | |||
Eastward wind | |||
Northward wind | |||
Surface pressure | |||
Rainfall rate | |||
Convective rainfall rate |
Variable | Spatial Resolution | Source |
---|---|---|
Landcover | 0.01° × 0.01° | Moderate Resolution Imaging Spectroradiometer (MODIS) [ https://modis.gsfc.nasa.gov/data/dataprod/mod12.php], (accessed on 26 April 2021) |
Soil Texture | 0.25° × 0.25° | Food and Agriculture Organization (FAO) [http://www.fao.org/soils-portal/soilsurvey/soil-properties/physical-properties/en/], (accessed on 26 April 2021) |
Soil Fraction (clay, sand, silt) | 0.25° × 0.25° | FAO [http://www.fao.org/soils-portal/soilsurvey/soil-properties/physical-properties/en/], (accessed on 26 April 2021) |
Slope type | 0.01° × 0.01° | NCEP_LIS [Source: https://lis.gsfc.nasa.gov/], (accessed on 26 April 2021) |
Elevation Data | Shuttle Radar Topographic Mission (SRTM) [http://srtm.csi.cgiar.org/], (accessed on 26 April 2021) | |
Albedo (Monthly) | 0.01° × 0.01° | NCEP_LIS [https://lis.gsfc.nasa.gov/], (accessed on 26 April 2021) |
Greenness fraction | 0.01° × 0.01° | NCEP_LIS [https://lis.gsfc.nasa.gov/], (accessed on 26 April 2021) |
Index\Station | Tulun | Ikey | ||
---|---|---|---|---|
PA | OL | PA | OL | |
Bias | 0.3% | 2.2% | 11.5% | 15.5% |
Correlation | 0.91 | 0.88 | 0.94 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradhan, A.; Nair, A.S.; Indu, J.; Makarieva, O.; Nesterova, N. Leveraging Soil Moisture Assimilation in Permafrost Affected Regions. Remote Sens. 2023, 15, 1532. https://doi.org/10.3390/rs15061532
Pradhan A, Nair AS, Indu J, Makarieva O, Nesterova N. Leveraging Soil Moisture Assimilation in Permafrost Affected Regions. Remote Sensing. 2023; 15(6):1532. https://doi.org/10.3390/rs15061532
Chicago/Turabian StylePradhan, Ankita, Akhilesh S. Nair, J. Indu, Olga Makarieva, and Nataliia Nesterova. 2023. "Leveraging Soil Moisture Assimilation in Permafrost Affected Regions" Remote Sensing 15, no. 6: 1532. https://doi.org/10.3390/rs15061532
APA StylePradhan, A., Nair, A. S., Indu, J., Makarieva, O., & Nesterova, N. (2023). Leveraging Soil Moisture Assimilation in Permafrost Affected Regions. Remote Sensing, 15(6), 1532. https://doi.org/10.3390/rs15061532