Analysis of Seismic Impact on Hailuogou Glacier after the 2022 Luding Ms 6.8 Earthquake, China, Using SAR Offset Tracking Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Regional Geological Background
2.1.2. Hailuogou Catchment Area
2.2. Data
2.3. Deformation Monitoring Method: POT
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- China Earthquake Network Center. Available online: https://www.cenc.ac.cn/ (accessed on 6 September 2022). (In Chinese).
- Sichuan Earthquake Administration. Available online: http://www.scdzj.gov.cn/xwzx/fzjzyw/202210/t20221022_53715.html (accessed on 22 October 2022). (In Chinese)
- Fan, X.; Wang, X.; Dai, L.; Fang, C.; Deng, Y.; Zou, C.; Tang, M.; Wei, Z.; Dou, X.; Zhang, J.; et al. Characteristics and spatial distribution pattern of Ms 6.8 Luding earthquake occurred on 5 September 2022. J. Eng. Geol. 2022, 30, 1504–1516. (In Chinese) [Google Scholar] [CrossRef]
- Büyüksaraç, A.; Isik, E.; Harirchian, E. A case study for determination of seismic risk priorities in Van (Eastern Turkey). Earthq. Struct. 2021, 20, 445–455. [Google Scholar] [CrossRef]
- Gupta, K.; Satyam, N. Co-seismic landslide hazard assessment of Uttarakhand state (India) based on the modified Newmark model. J. Asian Earth Sci. 2022, 8, 100120. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, V.; Kumar, P.; Sundriyal, Y.P. Coseismic landslide hazard assessment for the future scenario earthquakes in the Kumaun Himalaya, India. Bull. Eng. Geol. Environ. 2021, 80, 5219–5235. [Google Scholar] [CrossRef]
- Du, G.; Zhang, Y.; Zou, L.; Yang, Z.; Yuan, Y.; Ren, S. Co-seismic landslide hazard assessment of the 2017 Ms 6.9 Milin earthquake, Tibet, China, combining the logistic regression–information value and Newmark displacement models. Bull. Eng. Geol. Environ. 2022, 81, 1–7. [Google Scholar] [CrossRef]
- Li, Z.; Sun, J.; Gao, M.; Fu, G.; An, Z.; Zhao, Y.; Fang, L.; Guo, X. Evaluation of horizontal ground motion waveforms at Sedongpu Glacier during the 2017 M6. 9 Mainling earthquake based on the equivalent Green’s function. Eng. Geol. 2022, 306, 106743. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.; Chen, C.; Liang, H.; Guo, N.; Li, Y. GNSS deformation characteristics of North China in the past two decades. Geod. Geodyn. 2021, 12, 392–398. [Google Scholar] [CrossRef]
- Lazos, I.; Sboras, S.; Chousianitis, K.; Bitharis, S.; Mouzakiotis, E.; Karastathis, V.; Pikridas, C.; Fotiou, A.; Galanakis, D. Crustal deformation analysis of Thessaly (central Greece) before the March 2021 earthquake sequence near Elassona-Tyrnavos (northern Thessaly). Acta Geodyn. Geomater. 2021, 18, 379–385. [Google Scholar] [CrossRef]
- Shen, Z. Satellite geodesy applied to geodynamic and seismological studies in East Asia: A review. Chin. J. Geophys. 2021, 64, 3514–3520, (In Chinese with English Abstract). [Google Scholar]
- Li, G.; Li, Y.; Lin, H.; Ye, Q.; Jiang, L. Two periods of geodetic glacier mass balance at Eastern Nyainqentanglha derived from multi-platform bistatic SAR interferometry. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102541. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Xu, Z.; Wu, J.; Chen, Q.; Zhang, H.; Zhang, R.; Jia, H.; Luo, X. Surface deformation associated with the 2008 Ms8. 0 Wenchuan earthquake from ALOS L-band SAR interferometry. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 496–505. [Google Scholar] [CrossRef]
- Xiao, R.; Jiang, M.; Li, Z.; He, X. New insights into the 2020 Sardoba dam failure in Uzbekistan from Earth observation. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102705. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, L.; Dong, J.; Wang, C.; Liao, M. Polarimetric SAR pixel offset tracking for large-gradient landslide displacement mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 6, 248–249. [Google Scholar] [CrossRef]
- Jiang, M.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Feng, G.C. Modeling minimum and maximum detectable deformation gradients of interferometric SAR measurements. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 766–777. [Google Scholar] [CrossRef]
- Jiang, M.; Guarnieri, A.M. Distributed scatterer interferometry with the refinement of spatiotemporal coherence. IEEE Trans. Geosci. Remote Sens. 2022, 58, 3977–3987. [Google Scholar] [CrossRef]
- Radicioni, F.; Stoppini, A.; Brigante, R.; Fornaro, G.; Bovenga, F.; Nitti, D.O. Long-Term GNSS and SAR Data Comparison for the Deformation Monitoring of the Assisi Landslide. In Proceedings of the FIG Working Week, Rome, Italy, 6–10 May 2012. [Google Scholar]
- Ramzan, U.; Fan, H.; Aeman, H.; Ali, M.; Al-qaness, M.A.A. Combined analysis of PS-InSAR and hypsometry integral (HI) for comparing seismic vulnerability and assessment of various regions of Pakistan. Sci. Rep. 2022, 12, 1–24. [Google Scholar] [CrossRef]
- Michel, R.; Rignot, E. Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: Comparison of the phase correlation method with radar interferometry. J. Glaciol. 1999, 45, 93–100. [Google Scholar] [CrossRef]
- Yuan, W.; Ran, G.; Zhang, H. Genetic analysis of Hailuogou hot spring. Min. Mag. 2015, 4, 83–87, (In Chinese with English Abstract). [Google Scholar]
- Li, Q.; Huang, G.; Nie, Z.; Chang, H. Research on slope defects of roadbeds in Hailuogou scenic area. Road Transp. Technol. 2012, 10, 59–61+64. (In Chinese) [Google Scholar]
- Allen, C.R.; Zhuoli, L.; Hong, Q.; Xueze, W.; Huawei, Z.; Weishi, H. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China. Geol. Soc. Am. Bull. 1991, 103, 1178–1199. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.; Yuan, Z.; Yao, W.; Zhang, J.; Ji, L.; Shao, Z.; Han, L.; Wang, Z. Airborne LiDAR-Based Mapping of Surface Ruptures and Coseismic Slip of the 1955 Zheduotang Earthquake on the Xianshuihe Fault, East Tibet. Bull. Seismol. Soc. Am. 2022, 112, 3102–3120. [Google Scholar] [CrossRef]
- Zhou, R.; He, Y.; Huang, Z.; Li, X.; Yang, T. The Slip Rate and Strong Earthquake Recurrence Interval on the Qianning-Kangding Segment of the Xianshuihe Fault Zone. Acta Seismol. Sin. 2001, 23, 250–261. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, J.; Xu, X. Features of earthquake clustering form calculation of Coulmb stress around the Bayan Har Block, Tibetan Plateau. Seismol. Geol. 2018, 40, 133–154. (In Chinese) [Google Scholar] [CrossRef]
- Liu, G.; Zhang, B.; Zhang, R.; Cai, J.; Fu, Y.; Liu, Q.; Yu, B.; Li, Z. Monitoring Dynamics of Hailuogou Glacier and the Secondary Monitoring Dynamics of Hailuogou Glacier and the Secondary Landslide Disasters Based on Combination of Satellite SAR and Ground-Based SAR. Geomat. Inf. Sci of Wuhan Univ. 2019, 44, 980–995. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Fujita, K.; Liu, S.; Liu, Q.; Wang, X. Multi-decadal ice-velocity and elevation changes of a monsoonal maritime glacier: Hailuogou glacier, China. J. Glaciol. 2010, 56, 65–74. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, Z.; Yang, X.; Jia, W.; He, X.; Song, B.; Zhang, N.; Liu, Q. Changes of the Hailuogou Glacier, Mt. Gongga, China, against the Background of Global Warming in the Last Several Decades. J. China Univ. Geosci. 2008, 19, 271–281. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; Yang, X.; Theakstone, W.H.; Jia, W.; Pu, T.; Liu, Q.; He, X.; Song, B.; Zhang, N.; et al. Changes of the Hailuogou glacier, Mt. Gongga, China, against the background of climate change during the Holocene. Quat. Int. 2008, 218, 166–175. [Google Scholar] [CrossRef]
- Planet. Available online: https://www.planet.com/explorer/ (accessed on 12 September 2022).
- European Space Agency. Available online: https://www.esa.int/ (accessed on 10 September 2022).
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Tianqi. Available online: www.lishi.tianqi.com (accessed on 2 October 2022).
- Michel, R.; Avouac, J.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar] [CrossRef] [Green Version]
- Wegmüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 IWS Mode Support in the GAMMA Software. In Proceedings of the IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015. [Google Scholar]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C.L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef] [Green Version]
- Alean, J. Ice avalanche activity and mass balance of a high-altitude hanging glacier in the Swiss Alps. Ann. Glaciol. 1985, 6, 248–249. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Yang, L.; Chang, M.; van Asch, T.W.C. A new prediction model on debris flows caused by runoff mechanism. Environ. Earth Sci. 2021, 80, 1–11. [Google Scholar] [CrossRef]
- Zhang, G.; Cui, P.; Jin, W.; Zhang, Z.; Wang, H.; Bazai, N.A.; Li, Y.; Liu, D.; Pasuto, A. Changes in hydrological behaviours triggered by earthquake disturbance in a mountainous watershed. Sci. Total Environ. 2021, 760, 143349. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yang, Z.; Xie, Z.; Du, R. The glacial debris flow in Guxiang, Tibet. Chin. Sci. Bull. 1964, 6, 542–544. (In Chinese) [Google Scholar]
Year | Period Number | Date |
---|---|---|
2020 | I | 12 August 2020–24 August 2020 |
2021 | II | 14 July 2021–26 July 2021 |
III | 26 July 2021–7 August 2021 | |
IV | 7 August 2021–19 August 2021 | |
V | 19 August 2021–31 August 2021 | |
VI | 31 August 2021–12 September 2021 | |
2022 | VII | 9 July 2022–21 July 2022 |
VIII | 21 July 2022–2 August 2022 | |
IX | 2 August 2022–14 August 2022 | |
X | 14 August 2022–26 August 2022 | |
XI | 26 August 2022–7 September 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Chen, J.; Lu, H.; Yu, C.; Shan, Y.; Li, Z.; Dong, X.; Xu, Q. Analysis of Seismic Impact on Hailuogou Glacier after the 2022 Luding Ms 6.8 Earthquake, China, Using SAR Offset Tracking Technology. Remote Sens. 2023, 15, 1468. https://doi.org/10.3390/rs15051468
Li W, Chen J, Lu H, Yu C, Shan Y, Li Z, Dong X, Xu Q. Analysis of Seismic Impact on Hailuogou Glacier after the 2022 Luding Ms 6.8 Earthquake, China, Using SAR Offset Tracking Technology. Remote Sensing. 2023; 15(5):1468. https://doi.org/10.3390/rs15051468
Chicago/Turabian StyleLi, Weile, Junyi Chen, Huiyan Lu, Congwei Yu, Yunfeng Shan, Zhigang Li, Xiujun Dong, and Qiang Xu. 2023. "Analysis of Seismic Impact on Hailuogou Glacier after the 2022 Luding Ms 6.8 Earthquake, China, Using SAR Offset Tracking Technology" Remote Sensing 15, no. 5: 1468. https://doi.org/10.3390/rs15051468
APA StyleLi, W., Chen, J., Lu, H., Yu, C., Shan, Y., Li, Z., Dong, X., & Xu, Q. (2023). Analysis of Seismic Impact on Hailuogou Glacier after the 2022 Luding Ms 6.8 Earthquake, China, Using SAR Offset Tracking Technology. Remote Sensing, 15(5), 1468. https://doi.org/10.3390/rs15051468