Spatial and Temporal Evolution Characteristics of the Salween River Delta from 1973 to 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Extraction of Coastlines
2.3. Digital Shoreline Analysis System
3. Results
3.1. Coastline Changes
3.1.1. Overall Changes in the Coast
3.1.2. Changes in Continental Coastlines and Bilu Island
3.2. Coastal Erosion and Accretion
4. Discussion
4.1. Reasons for the Evolution of the Salween River Delta
4.2. A Comparison with Other River Deltas in Indochina
4.3. Research Limitations and Future Needs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jordan, C.; Visscher, J.; Dung, N.V.; Apel, H.; Schlurmann, T. Impacts of human activity and global changes on future morphodynamics within the Tien River, Vietnamese Mekong Delta. Water 2020, 12, 2204. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.J.; Guo, L.; Lam, N.S.; Xu, K.; Yang, S.; Yao, Q.; Liu, K. Comparing the Yangtze and Mississippi River Deltas in the light of coupled natural-human dynamics: Lessons learned and implications for management. Geomorphology 2022, 399, 108075. [Google Scholar] [CrossRef]
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Climate change: Protect the world’s deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Milliman, J.D.; Zhao, D.; Cao, Z.; Zhou, J.; Zhou, C. Geomorphologic changes in the lower Pearl River Delta, 1850–2015, largely due to human activity. Geomorphology 2018, 314, 42–54. [Google Scholar] [CrossRef]
- Roy, S.; Robeson, S.M.; Ortiz, A.C.; Edmonds, D.A. Spatial and temporal patterns of land loss in the Lower Mississippi River Delta from 1983 to 2016. Remote Sens. Environ. 2020, 250, 112046. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the World’s Free-flowing Rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Sahoo, B.; Bhaskaran, P.K. A comprehensive data set for tropical cyclone storm surge-induced inundation for the east coast of India. Int. J. Climatol. 2018, 38, 403–419. [Google Scholar] [CrossRef]
- Sreeraj, P.; Swapna, P.; Krishnan, R.; Nidheesh, A.G.; Sandeep, N. Extreme sea level rise along the Indian Ocean coastline: Observations and 21st century projections. Environ. Res. Lett. 2022, 17, 114016. [Google Scholar] [CrossRef]
- Li, J.; Ye, M.; Pu, R.; Liu, Y.; Guo, Q.; Feng, B.; Huang, R.; He, G. Spatiotemporal change patterns of coastlines in Zhejiang Province, China, over the last twenty-five years. Sustainability 2018, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Li, D.; Hou, X. Characteristics of mainland coastline changes in Southeast Asia during the 21st century. J. Coast. Res. 2019, 36, 261–275. [Google Scholar] [CrossRef]
- Wang, C.; Yang, J.; Li, J.; Chu, J. Deriving natural coastlines using multiple satellite remote sensing images. J. Coast. Res. 2020, 102, 296–302. [Google Scholar] [CrossRef]
- Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Yang, X.; Jin, H.; Wang, Z.; Liu, Y.; Liu, B.; Zhang, J.; Liu, X.; Gao, K.; Meng, D. Monitoring coastline changes of the Malay Islands based on Google Earth Engine and dense time-series remote sensing images. Remote Sens. 2021, 13, 3842. [Google Scholar] [CrossRef]
- Zerrouk, E. Water grabbing/ land grabbing in shared water basins the case of Salween River Hatgyi Dam. J. Water Resour. Ocean Sci. 2013, 2, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Tian, Y.; He, C.; Huang, Z.; Dong, S.; Wang, B.; Li, G.; Xiang, Z.; Long, Y.; Xiao, W. The Critically Endangered Myanmar snub-nosed monkey Rhinopithecus strykeri found in the Salween River Basin, China. Oryx 2016, 52, 134–136. [Google Scholar] [CrossRef] [Green Version]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef] [Green Version]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Wang, Y. Coastline fractal dimension of mainland, island, and estuaries using multi-temporal Landsat remote sensing data from 1978 to 2018: A case study of the Pearl River estuary area. Remote Sens. 2020, 12, 2482. [Google Scholar] [CrossRef]
- Dewidar, K.; Bayoumi, S. Forecasting shoreline changes along the Egyptian Nile Delta coast using Landsat image series and Geographic Information System. Environ. Monit. Assess. 2021, 193, 429. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhu, L.; Dai, Z.; Wu, Z. Study on spatiotemporal evolution of the Yellow River Delta coastline from 1976 to 2020. Remote Sens. 2021, 13, 4789. [Google Scholar] [CrossRef]
- Moussaid, J.; Fora, A.A.; Zourarah, B.; Maanan, M.; Maanan, M. Using automatic computation to analyze the rate of shoreline change on the Kenitra coast, Morocco. Ocean Eng. 2015, 102, 71–77. [Google Scholar] [CrossRef]
- Kale, M.M.; Ataol, M.; Tekkanat, I.S. Assessment of shoreline alterations using a Digital Shoreline Analysis System: A case study of changes in the Yeşilırmak Delta in northern Turkey from 1953 to 2017. Environ. Monit. Assess. 2019, 191, 398. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, F. Increased stream flow in the Nu River (Salween) Basin of China, due to climatic warming and increased precipitation. Geogr. Ann. A 2017, 99, 327–337. [Google Scholar] [CrossRef]
- Chen, Y.; Gagen, M.H.; Chen, F.; Zhang, H.; Shang, H.; Xu, H. Precipitation variations recorded in tree rings from the upper Salween and Brahmaputra River valleys, China. Ecol. Indic. 2020, 113, 106189. [Google Scholar] [CrossRef]
- Shimozono, T.; Tajima, Y.; Akamatsu, S.; Matsuba, Y.; Kawasaki, A. Large-scale channel migration in the Sittang River estuary. Sci. Rep. 2019, 9, 9862. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Sunder, S.; Ramsankaran, R.; Ramakrishnan, B. Inter-comparison of remote sensing sensing-based shoreline mapping techniques at different coastal stretches of India. Environ. Monit. Assess. 2017, 189, 290. [Google Scholar] [CrossRef]
- Kuleli, T.; Guneroglu, A.; Karsli, F.; Dihkan, M. Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Eng. 2011, 38, 1141–1149. [Google Scholar] [CrossRef]
- Darwish, K.; Smith, S.E.; Torab, M.; Monsef, H.; Hussein, O. Geomorphological changes along the Nile Delta coastline between 1945 and 2015 detected using satellite remote sensing and GIS. J. Coast. Res. 2017, 33, 786–794. [Google Scholar] [CrossRef]
- Nassar, K.; Mahmod, W.E.; Fath, H.; Masria, A.; Nadaoka, K.; Negm, A. Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Mar. Georesour. Geotec. 2019, 37, 81–95. [Google Scholar] [CrossRef]
- Hua, L.L.; Ding, P.X.; Yang, S.L.; Wang, Z.B. Accretion-erosion conversion in the subaqueous Yangtze Delta in response to fluvial sediment decline. Geomorphology 2021, 382, 107680. [Google Scholar]
- Sarun Lal, M.A.; Sijinkumar, A.V.; Nath, B.N.; Sandeep, K.; Badesab, F. Environmental magnetic records of the sediments from the Andaman Sea: Evidence for late Quaternary changes in provenance and monsoon. OCEANS 2022-Chennai 2022, 1–9. [Google Scholar] [CrossRef]
- Huang, Q.; Long, D.; Han, Z.; Han, P. High-resolution satellite images combined with hydrological modeling derive river discharge for headwaters: A step toward discharge estimation in ungauged basins. Remote Sens. Environ. 2022, 277, 113030. [Google Scholar] [CrossRef]
- Wyrtki, K. Physical Oceanography of the Indian Ocean. In The Biology of the Indian Ocean; Zeitschel, B., Gerlach, S.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1973; pp. 18–36. [Google Scholar]
- Ramaswamy, V.; Rao, P.S.; Rao, K.H.; Thwin, S.; Rao, N.S.; Raiker, V. Tidal influence on suspended sediment distribution and dispersal in the northern Andaman Sea and Gulf of Martaban. Mar. Geol. 2004, 208, 33–42. [Google Scholar] [CrossRef]
- Robinson, R.A.J.; Bird, M.I.; Oo, N.W.; Hoey, T.B.; Aye, M.M.; Higgitt, D.L.; Lu, X.X.; Swe, A.; Tun, T.; Win, S.L. The Irrawaddy River sediment flux to the Indian Ocean: The original nineteenth-century data revisited. J. Geol. 2007, 115, 629–640. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.P.; Kuehl, S.A.; Pierce, A.C.; Williams, J.; Blair, N.E.; Harris, C.; Aung, D.W.; Aye, Y.Y. Fate of Ayeyarwady and Thanlwin Rivers Sediments in the Andaman Sea and Bay of Bengal. Mar. Geol. 2020, 423, 106137. [Google Scholar] [CrossRef]
- Baronas, J.J.; Stevenson, E.I.; Hackney, C.R.; Darby, S.E.; Bickle, M.J.; Hilton, R.G. Integrating suspended sediment flux in large alluvial river channels: Application of a synoptic Rouse-based model to the Irrawaddy and Salween rivers. J. Geophys. Res.-Earth. 2020, 125, e2020JF005554. [Google Scholar] [CrossRef]
- Anthony, E.J.; Besset, M.; Dussouillez, P.; Goichot, M.; Loisel, H. Overview of the Monsoon-influenced Ayeyarwady River delta, and delta shoreline mobility in response to changing fluvial sediment supply. Mar. Geol. 2019, 417, 106038. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 2006, 33, L01602. [Google Scholar] [CrossRef]
- Swapna, P.; Jyoti, J.; Krishnan, R.; Sandeep, N.; Griffies, S.M. Multidecadal weakening of Indian summer monsoon circulation induces an increasing northern Indian Ocean sea level. Geophys. Res. Lett. 2017, 44, 10560–10572. [Google Scholar] [CrossRef]
- Chambers, D.P.; Tapley, B.D.; Stewart, R.H. Anomalous warming in the Indian Ocean coincident with El Nino. J. Geophys. Res. 1999, 104, 3035–3047. [Google Scholar] [CrossRef]
- Tiwari, V.M.; Cabanes, C.; DoMinh, K.; Cazenave, A. Correlation of interannual sea level variations in the Indian Ocean from Topex/Poseidon altimetry, temperature data and tide gauges with ENSO. Glob. Planet Chang. 2004, 43, 183–196. [Google Scholar] [CrossRef]
- Hedley, P.J.; Bird, M.I.; Robinson, R.A.J. Evolution of the Irrawaddy delta region since 1850. Geogr. J. 2010, 176, 138–149. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.P.; Saito, Y.; Nguyen, V.L. Recent evolution of the Mekong Delta and the impacts of dams. Earth-Sci. Rev. 2017, 175, 1–17. [Google Scholar] [CrossRef]
- Wang, H.; Saito, Y.; Zhang, Y.; Bi, N.; Sun, X.; Yang, Z. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia. Earth-Sci. Rev. 2011, 108, 80–100. [Google Scholar] [CrossRef]
- Chen, D.; Li, X.; Saito, Y.; Liu, J.P.; Duan, Y.; Liu, S.; Zhang, L. Recent evolution of the Irrawaddy (Ayeyarwady) Delta and the impacts of anthropogenic activities: A review and remote sensing survey. Geomorphology 2020, 365, 107231. [Google Scholar] [CrossRef]
- Webb, E.L.; Jachowski, N.R.A.; Phelps, J.; Friess, D.A.; Than, M.M.; Ziegler, A.D. Deforestation in the Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar. Glob. Environ. Chang. 2014, 24, 321–333. [Google Scholar] [CrossRef]
- Hu, X.Y.; Wang, Y.P. Monitoring coastline variations in the Pearl River Estuary from 1978 to 2018 by integrating Canny edge detection and Otsu methods using long time series Landsat dataset. CATENA 2022, 209, 105840. [Google Scholar] [CrossRef]
Year | Satellite | Sensor | Bands | WRS (Path/Row) | Cloud Cover (%) | Spatial Resolution (m) |
---|---|---|---|---|---|---|
1973 | Landsat-1 | MSS | 4 | 131/49 | 0.00 | 80 × 80 |
1979 | Landsat-3 | MSS | 4 | 141/49 | 2.00 | 80 × 80 |
1989 | Landsat-4 | TM | 7 | 131/49 | 0.00 | 80 × 80 |
2000 | Landsat-7 | ETM+ | 8 | 131/49 | 0.00 | 30 × 30 |
2003 | Landsat-7 | ETM+ | 8 | 131/49 | 3.00 | 30 × 30 |
2009 | Landsat-5 | TM | 7 | 131/49 | 0.00 | 30 × 30 |
2012 | Landsat-5 | TM | 7 | 131/49 | 6.00 | 30 × 30 |
2013 | Landsat-8 | OLI, TIRS | 11 | 131/49 | 6.72 | 30 × 30 |
2014 | Landsat-8 | OLI, TIRS | 11 | 131/49 | 0.03 | 30 × 30 |
2015 | Landsat-8 | OLI, TIRS | 11 | 131/49 | 2.05 | 30 × 30 |
2016 | Landsat-8 | OLI, TIRS | 11 | 131/49 | 3.65 | 30 × 30 |
2017 | Landsat-8 | OLI, TIRS | 11 | 131/49 | 0.04 | 30 × 30 |
2018 | Landsat-8 | OLI, TIRS | 11 | 131/49 | 0.19 | 30 × 30 |
2019 | Landsat-8 | OLI, TIRS | 11 | 131/49 | 0.00 | 30 × 30 |
2020 | Landsat-8 | OLI, TIRS | 11 | 131/49 | 0.82 | 30 × 30 |
2021 | Landsat-8 | OLI, TIRS | 11 | 131/49 | 0.90 | 30 × 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, A.; Huang, J.; Sun, Z.; Zhou, J.; Yang, C. Spatial and Temporal Evolution Characteristics of the Salween River Delta from 1973 to 2021. Remote Sens. 2023, 15, 1467. https://doi.org/10.3390/rs15051467
He A, Huang J, Sun Z, Zhou J, Yang C. Spatial and Temporal Evolution Characteristics of the Salween River Delta from 1973 to 2021. Remote Sensing. 2023; 15(5):1467. https://doi.org/10.3390/rs15051467
Chicago/Turabian StyleHe, Aoyang, Jiangcheng Huang, Zhengbao Sun, Jingyi Zhou, and Cheng Yang. 2023. "Spatial and Temporal Evolution Characteristics of the Salween River Delta from 1973 to 2021" Remote Sensing 15, no. 5: 1467. https://doi.org/10.3390/rs15051467
APA StyleHe, A., Huang, J., Sun, Z., Zhou, J., & Yang, C. (2023). Spatial and Temporal Evolution Characteristics of the Salween River Delta from 1973 to 2021. Remote Sensing, 15(5), 1467. https://doi.org/10.3390/rs15051467