Modulation of the Marine Environment in the Natal Bight
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Climatology and Annual Cycle
3.2. Cross-Correlations and Inter-Annual Variability
3.3. Sharp Weather Transition: March–April 2022
3.4. Sediment Nutrification and Local Climate Trends
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchings, L.; Beckley, L.E.; Griffiths, M.H.; Roberts, M.J.; Sundby, S.; VanDerLingen, C. Spawning on the edge: Spawning grounds and nursery areas around the southern African coastline. Mar. Freshw. Res. 2002, 53, 307–318. [Google Scholar] [CrossRef]
- Pearce, A.F.; Schumann, E.H.; Lundie, G.S.H. Features of the shelf circulation off the Natal coast. S. Afr. J. Sci. 1978, 74, 328–331. [Google Scholar]
- Schumann, E.H. The coastal ocean off the east coast of South Africa. Trans. Roy. Soc. S. Afr. 1987, 46, 215–229. [Google Scholar] [CrossRef]
- Guastella, L.A.; Roberts, M.J. Dynamics and role of the Durban cyclonic eddy in the KwaZulu-Natal Bight ecosystem. Afr. J. Mar. Sci. 2016, 38, 23–42. [Google Scholar] [CrossRef]
- Lutjeharms, J.R.E.; Roberts, H.R. The Natal pulse: An extreme transient on the Agulhas Current. J. Geophys. Res. 1988, 93, 631–645. [Google Scholar] [CrossRef]
- Schouten, M.W.; DeRuijter, W.M.P.; VanLeeuwen, P.J. Upstream control of Agulhas Ring shedding. J. Geophys. Res. 2002, 107, 3109. [Google Scholar] [CrossRef]
- Tsugawa, M.; Hasumi, H. Generation and growth mechanism of the Natal Pulse. J. Phys. Oceanogr. 2010, 40, 1597–1612. [Google Scholar] [CrossRef]
- Gründlingh, M.L.; Pearce, A.F. Frontal features of the Agulhas Current in the Natal Bight. S. Afr. Geogr. J. 1990, 72, 11–14. [Google Scholar] [CrossRef]
- Jury, M.R.; MacArthur, C.; Reason, C.J. Observations of trapped waves in the atmosphere and ocean along the coast of southern Africa. S. Afr. Geogr. J. 1990, 72, 33–46. [Google Scholar] [CrossRef]
- DeLecea, A.M.; Cooper, R. The importance of the Thukela River estuary, east coast of South Africa, for the biology of the near-shore environment and associated human aspects: A review. In Estuaries: A Lifeline of Ecosystem Services in the Western Indian Ocean; Springer: Cham, Switzerland, 2016; pp. 53–65. [Google Scholar]
- Jury, M.R. Modulation of currents near Durban. Reg. Stud. Mar. Sci. 2018, 18, 208–218. [Google Scholar] [CrossRef]
- Carter, R.; Schleyer, M.H. Plankton distribution in Natal coastal waters. In Coastal Ocean Studies Off Natal, South Africa; Schumann, E.H., Ed.; Coastal & Estuarine Studies 26; American Geophysical Union: Washington, DC, USA, 1988; pp. 152–177. [Google Scholar]
- Lutjeharms, J.R.E.; Gründlingh, M.L.; Carter, R.A. Topographically induced upwelling in the Natal Bight. S. Afr. J. Sci. 1989, 85, 310–316. [Google Scholar]
- Fennessy, S.T.; Roberts, M.J.; Barlow, R.G. An editorial synthesis of the ACEP project: Ecosystem Processes in the KwaZulu-Natal Bight. Afr. J. Mar. Sci. 2016, 38, S217–S223. [Google Scholar] [CrossRef]
- Roberts, M.J.; Nieuwenhuys, C. Observations and mechanisms of upwelling in the northern KwaZulu-Natal Bight, South Africa. Afr. J. Mar. Sci. 2016, 38, S43–S63. [Google Scholar] [CrossRef]
- Green, A.N.; MacKay, C.F. Unconsolidated sediment distribution patterns in the KwaZulu-Natal Bight, South Africa: The role of wave ravinement in separating relict versus active sediment populations. Afr. J. Mar. Sci. 2016, 38, S65–S74. [Google Scholar] [CrossRef]
- Lamont, T.; VanDenBerg, M.A.; RG Barlow, R.G. Agulhas Current influence on the shelf dynamics of the KwaZulu-Natal bight. J. Phys. Oceanogr. 2016, 46, 1323–1338. [Google Scholar] [CrossRef]
- Jury, M.R. Coastal climate and beach dynamics at Ponta do Ouro, Mozambique. Sci. Res. Essays 2015, 10, 1–13. [Google Scholar]
- MacKay, C.F.; Untiedt, C.B.; Hein, L. Local habitat drivers of macrobenthos in the northern, central and southern KwaZulu-Natal Bight, South Africa. Afr. J. Mar. Sci. 2016, 38, S105–S121. [Google Scholar] [CrossRef]
- Untiedt, C.B.; MacKay, C.F. Distribution and feeding modes of macrobenthos within three oceanographic feature areas of the KwaZulu-Natal Bight, South Africa. Afr. J. Mar. Sci. 2016, 38, S91–S104. [Google Scholar] [CrossRef]
- Barlow, R.G.; Lamont, T.; Gibberd, M.J.; van den Berg, M.; Britz, K. Chemotaxonomic investigation of phytoplankton in the shelf ecosystem of the KwaZulu-Natal Bight, South Africa. Afr. J. Mar. Sci. 2015, 37, 467–484. [Google Scholar] [CrossRef]
- Muir, D.; Kunnen, T.; Scharler, U.M. A seasonal comparison of prokaryote numbers, biomass and heterotrophic productivity in waters of the KwaZulu-Natal Bight, South Africa. Afr. J. Mar. Sci. 2016, 38, S123–S138. [Google Scholar] [CrossRef]
- VanDerMolen, J.S.; Scharler, U.M.; Muir, D. Species composition, abundance and biomass of microphytoplankton in the KwaZulu-Natal Bight on the east coast of South Africa. Afr. J. Mar. Sci. 2016, 38, S139–S153. [Google Scholar] [CrossRef]
- DeLecea, A.M.; Cooper, R.; Smit, A.J. Identifying the drivers of the pelagic ecosystem of an oligotrophic bight (KwaZulu–Natal, South Africa) using stable isotopes (δ13C, δ15N) and C:N ratio analysis. Mar. Freshw. Res. 2015, 67, 1750–1761. [Google Scholar] [CrossRef]
- Barlow, R.G.; Lamont, T.; Britz, K.; Sessions, H. Mechanisms of phytoplankton adaptation to environmental variability in a shelf ecosystem. Estuar. Coast. Shelf Sci. 2013, 133, 45–57. [Google Scholar] [CrossRef]
- Lamont, T.; Barlow, R.G. Environmental influence on phytoplankton production during summer on the KwaZulu-Natal shelf of the Agulhas ecosystem. Afr. J. Mar. Sci. 2015, 37, 485–501. [Google Scholar] [CrossRef]
- Pretorius, M.; Huggett, J.A.; Gibbons, M.J. Summer and winter differences in zooplankton biomass, distribution and size composition in the KwaZulu-Natal Bight, South Africa. Afr. J. Mar. Sci. 2016, 38, S155–S168. [Google Scholar] [CrossRef]
- Scharler, U.M.; VanBallegooyen, R.C.; Ayers, M.J. A system-level modelling perspective of the KwaZulu-Natal Bight ecosystem, eastern South Africa. Afr. J. Mar. Sci. 2016, 38, S205–S216. [Google Scholar] [CrossRef]
- Roberts, M.J.; VanDerLingen, C.D.; Whittle, C.; VanDenBerg, M. Shelf currents, lee-trapped and transient eddies on the inshore boundary of the Agulhas Current, South Africa: Their relevance to the KwaZulu-Natal sardine run. Afr. J. Mar. Sci. 2010, 32, 423–447. [Google Scholar] [CrossRef]
- Roberts, M.J.; Nieuwenhuys, C.; Guastella, L.A. Circulation of shelf waters in the KwaZulu-Natal Bight, South Africa. Afr. J. Mar. Sci. 2016, 38, S7–S21. [Google Scholar] [CrossRef]
- Scharler, U.M.; Ayers, M.J.; DeLecea, A.M.; Pretorius, M.; Fennessy, S.T.; Huggett, J.A.; Mackay, C.F. Riverine influence determines nearshore heterogeneity of nutrient (C, N, P) content and stoichiometry in the KwaZulu-Natal Bight, South Africa. Afr. J. Mar. Sci. 2016, 38, S193–S203. [Google Scholar] [CrossRef]
- Beckley, L.E. The Agulhas Current ecosystem with particular reference to dispersal of fish larvae. In Status and Future of Large Marine Ecosystems of the Indian Ocean: A Report of the International Symposium and Workshop; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 1995; pp. 255–276. [Google Scholar]
- Bakun, A.; Roy, C.; Lluch-Cota, S. Coastal Upwelling and Other Processes Regulating Ecosystem Productivity and Fish Production in the Western Indian Ocean; Blackwell Science: Malden, MA, USA, 1998; pp. 103–141. [Google Scholar]
- Pauly, D.; Watson, R. Background and interpretation of the Marine Tropic Index as a measure of biodiversity. Phil. Trans. R. Soc. Biol. Sci. 2005, 360, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Beckley, L.E.; Fennessy, S.T.; Everett, B.I. Few fish but many fishers: A case study of shore-based recreational angling in a major South African estuarine port. Afr. J. Mar. Sci. 2008, 30, 11–24. [Google Scholar] [CrossRef]
- Pradervand, P.; VanDerElst, R.P. Assessment of the charter-boat fishery in KwaZulu-Natal, South Africa. Afr. J. Mar. Sci. 2008, 30, 101–112. [Google Scholar] [CrossRef]
- Fréon, P.; Coetzee, J.; VanDerLingen, C.D.; Connell, A.D.; O’Donoghue, S.H.; Roberts, M.J.; Demarcq, H.; Attwood, C.G.; Lamberth, S.J.; Hutchings, L. A review and tests of hypotheses about causes of the KwaZulu-Natal sardine run. Afr. J. Mar. Sci. 2010, 32, 449–479. [Google Scholar] [CrossRef]
- Jacquet, J.; Fox, H.; Motta, H.; Ngusaru, A.; Zeller, D. Few data but many fish: Marine small-scale fisheries catches for Mozambique. Afr. J. Mar. Sci. 2010, 32, 197–206. [Google Scholar] [CrossRef]
- Jury, M.R. Environmental influences on Agulhas fish catch. Intl. J. Mar. Sci. 2013, 3, 79–90. [Google Scholar] [CrossRef]
- Jury, M.R. Environmental controls on marine productivity near Cape St Francis, South Africa. Ocean. Sci. 2019, 15, 1579–1592. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.A.; Smedstad, O.M. Variational data assimilation for the global ocean. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol II); Park, S.K., Xu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 303–343. [Google Scholar]
- Metzger, E.J.; Smedstad, O.M.; Thoppil, P.G.; Hurlburt, H.E.; Cummings, J.A.; Wallcraft, A.J.; Zamudio, L.; Franklin, D.S.; Posey, P.G.; Phelps, M.W.; et al. US Navy operational global ocean and Arctic ice prediction systems. Oceanography 2014, 27, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Hurlburt, H.E.; Brassington, G.; Yann, D.; Masafumi, K.; Mounir, B.; Romain, B.-B.; Chassignet, E.; Jacobs, G.; LeGalloudec, O.; Jean-Michel, L.; et al. High resolution global and basin-scale ocean analyses and forecasts. Oceanography 2009, 22, 110–127. [Google Scholar] [CrossRef] [Green Version]
- Chassignet, E.P.; Hurlburt, H.E.; Metzger, E.J.; Smedstad, O.M.; Cummings, J.; Halliwell, G.R.; Bleck, R.; Baraille, R.; Wallcraft, A.J.; Lozano, C.; et al. U.S. GODAE: Global ocean prediction with the Hybrid Coordinate Ocean Model (HYCOM). Oceanography 2009, 22, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Hogan, T.F.; Liu, M.; Ridout, J.A.; Peng, M.S.; Whitcomb, T.R.; Ruston, B.C.; Reynolds, C.A.; Eckermann, S.D.; Moskaitis, J.R.; Baker, N.L.; et al. The Navy Global Environmental Model. Oceanography 2014, 27, 116–125. [Google Scholar] [CrossRef]
- Kara, A.B.; Rochford, P.A.; Hurlburt, H.E. An optimal definition for ocean mixed layer depth. J. Geophys. Res. 2000, 105, 16803–16821. [Google Scholar] [CrossRef]
- Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. A multi-scale high-resolution analysis of global sea surface temperature. Remote Sens. Environ. 2017, 200, 154–169. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Gower, J. On the use of satellite-measured chlorophyll fluorescence for monitoring coastal waters. Int. J. Remote Sens. 2016, 37, 2077–2086. [Google Scholar] [CrossRef]
- Houskeeper, H.F.; Kudela, R.M. Behind the Masks in Coastal Ocean Color. Ocean Optics Conference. 2017. Available online: https://2018.oceanopticsconference.org/extended/Houskeeper_Henry.pdf (accessed on 5 March 2022).
- Ouillon, S.; Douillet, P.; Petrenko, A.; Neveux, J.; Dupouy, C.; Froidefond, J.-M.; Andréfouët, S.; Muñoz-Caravaca, A. Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters. Sensors 2008, 8, 4165–4185. [Google Scholar] [CrossRef] [PubMed]
- Dogliotti, A.I.; Ruddick, K.G.; Nechad, B.; Doxaran, D.; Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 2015, 156, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP Climate Forecast System version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Qtr. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications (FLDAS). Sci. Data 2017, 4, 170012. [Google Scholar] [CrossRef] [Green Version]
- Harrigan, S.; Zsoter, E.; Alfieri, L.; Prudhomme, C.; Salamon, P.; Wetterhall, F.; Barnard, C.; Cloke, H.; Pappenberger, F. GloFAS-ERA5 operational global river discharge reanalysis 1979–present. Earth Syst. Sci. Data 2020, 12, 2043–2060. [Google Scholar] [CrossRef]
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH-III Version 2.22.; NCEP Techical Note; National Weather Servic: Washington, DC, USA, 2002; 139p. [Google Scholar]
- Charles, M.E.; Colle, B.A. Verification of extratropical cyclones within the NCEP operational models. Part I: Analysis errors and short-term NAM and GFS forecasts. Weather Forecast. 2009, 24, 1173–1190. [Google Scholar] [CrossRef]
- Chawla, A.; Tolman, H.L.; Gerald, V.; Spindler, D.; Spindler, T.; Alves, J.H.G.M.; Cao, D.; Hanson, J.L.; DeValiere, E.M. A multigrid wave forecasting model: A new paradigm in operational wave forecasting. Weather Forecast. 2013, 28, 1057–1078. [Google Scholar] [CrossRef]
- Jury, M.R. Meteorological controls on big waves south of Africa. Reg. Stud. Mar. Sci. 2019, 27, 100538. [Google Scholar] [CrossRef]
- Carton, J.A.; Chepurin, G.A.; Chen, L. SODA3 a new ocean climate reanalysis. J. Clim. 2018, 31, 6967–6983. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.-M. Global ship accidents and ocean swell-related sea states. Nat. Hazards Earth Sys. Sci. 2017, 17, 2041–2051. [Google Scholar] [CrossRef] [Green Version]
- Hunter, I. South African Coastal Lows, Busters and Atmospheric Gravity Waves. 2008. Available online: www.eumetsat.int/south-african-coastal-lows-busters-gravity-waves (accessed on 5 March 2022).
- Mellor, G.L. The three-dimensional current and surface wave equations. J. Phys. Oceanogr. 2003, 33, 1978–1989. [Google Scholar] [CrossRef]
- Gao, G.D.; Wang, X.H.; Song, D.; Bao, X.; Yin, B.S.; Yang, D.Z.; Ding, Y.; Li, H.; Hou, F.; Ren, Z. Effects of wave–current interactions on suspended-sediment dynamics during strong wave events in Jiaozhou Bay China. J. Phys. Oceanogr. 2018, 48, 1053–1078. [Google Scholar] [CrossRef]
- VanRijn, L.C. Unified view of sediment transport by currents and waves, part II: Suspended transport. J. Hydraul. Eng. 2007, 133, 668–689. [Google Scholar] [CrossRef]
- Trowbridge, J.; Elgar, S. Turbulence measurements in the surf zone. J. Phys. Oceanogr. 2001, 31, 2403–2417. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Y.P.; Gao, S.; Du, J.; Yang, Y.; Tang, J.; Gao, J. On estimation of coastal wave parameters and wave-induced shear stresses. Limn. Oceanogr. Methods 2018, 16, 594–606. [Google Scholar] [CrossRef]
- Scully, M.E.; Trowbridge, J.H.; Sherwood, C.R.; Jones, K.R.; Traykovski, P. Direct measurements of mean Reynolds stress and ripple roughness in the presence of energetic forcing by surface waves. J. Geophys. Res. Ocean. 2018, 123, 2494–2512. [Google Scholar] [CrossRef] [Green Version]
- Storto, A.; Alvera-Azcárate, A.; Balmaseda, M.A.; Barth, A.; Chevallier, M.; Counillon, F.; Domingues, C.M.; Drevillon, M.; Drillet, Y.; Forget, G.; et al. Ocean reanalyses: Recent advances and unsolved challenges. Front. Mar. Sci. 2019, 6, 418. [Google Scholar] [CrossRef] [Green Version]
Acronym | Name and Variables | Resolution |
---|---|---|
CFS2 | Coupled forecast system reanalysis v2 Wind, current, salinity, MLD | 30 km daily |
ECMWF5 | European Community reanalysis v5 Temp, wind, heat flux, discharge, etc. | 25 km daily |
FLDAS | FEWS Land Data Assimilation System Rainfall, runoff | 10 km daily |
HYCOM3 | Hybrid coupled ocean model v3 Sea temp, current, salinity, MLD, etc. | 10 km daily |
MODIS | Moderate Imaging Sensor (satellite) ocean color: green- and red-band 667 nm | 4 km weekly |
NASA | National Aeron. Space Admin. GPM rain, heat flux | 10 km daily |
NOAA | National Oceanic and Atmospheric Admin. satellite SST, net OLR, GODAS rean. | 25 km weekly |
SADCO | South African Data Centre for Oceanography | station, ship |
SODA3 | Simple Ocean Data Assimilation v3 Current, vertical motion, salinity, MLD | 25 km monthly |
VIIRS | Visible Infrared Imaging Radiometer Suite satellite ocean color: red-band 671 nm | 4 km weekly |
W3 | Wavewatch ocean reanalysis v3 wave height, period, direction | 25 km daily |
Parameter | Green | Red | SST |
---|---|---|---|
Red-reflectance | 0.36 | ||
SST | −0.18 | −0.41 | |
Salinity | 0.07 | 0.04 | −0.09 |
M.L.Depth | 0.17 | 0.47 | −0.84 |
River disch. | −0.17 | −0.27 | 0.65 |
Precipitation | −0.11 | −0.30 | 0.47 |
Wind-vorticity | −0.13 | −0.39 | 0.70 |
Net heat | −0.14 | −0.54 | 0.46 |
Vwind > 5 | 0.05 | 0.22 | −0.22 |
Vwind < −5 | −0.21 | −0.24 | 0.61 |
Vi current | −0.03 | 0.18 | 0.04 |
Wave > 2.5 | 0.19 | 0.51 | −0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jury, M.R. Modulation of the Marine Environment in the Natal Bight. Remote Sens. 2023, 15, 1434. https://doi.org/10.3390/rs15051434
Jury MR. Modulation of the Marine Environment in the Natal Bight. Remote Sensing. 2023; 15(5):1434. https://doi.org/10.3390/rs15051434
Chicago/Turabian StyleJury, Mark R. 2023. "Modulation of the Marine Environment in the Natal Bight" Remote Sensing 15, no. 5: 1434. https://doi.org/10.3390/rs15051434
APA StyleJury, M. R. (2023). Modulation of the Marine Environment in the Natal Bight. Remote Sensing, 15(5), 1434. https://doi.org/10.3390/rs15051434