Rapid Growth of Tropical Cyclone Outer Size over the Western North Pacific
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Definition of RG
3.2. Spatial and Temporal Distributions of RG
3.3. Environmental Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weinkle, J.; Landsea, C.; Collins, D.; Musulin, R.; Crompton, R.P.; Klotzbach, P.J.; Pielke, R. Normalized hurricane damage in the continental United States 1900–2017. Nat. Sustain. 2018, 1, 808–813. [Google Scholar] [CrossRef]
- Powell, M.D.; Reinhold, T.A. Tropical Cyclone Destructive Potential by Integrated Kinetic Energy. Bull. Am. Meteorol. Soc. 2007, 88, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Zhai, A.R.; Jiang, J.H. Dependence of US hurricane economic loss on maximum wind speed and storm size. Environ. Res. Lett. 2014, 9, 064019. [Google Scholar] [CrossRef]
- Wang, S.; Toumi, R. On the relationship between hurricane cost and the integrated wind profile. Environ. Res. Lett. 2016, 11, 114005. [Google Scholar] [CrossRef]
- Lee, C.Y.; Tippett, M.K.; Sobel, A.H.; Camargo, S.J. Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun. 2016, 7, 10625. [Google Scholar] [CrossRef] [Green Version]
- Phillipson, L.; Li, Y.; Toumi, R. Strongly coupled assimilation of a hypothetical ocean current observing network within a regional ocean–atmosphere Coupled Model: An OSSE case study of Typhoon Hato. Mon. Weather Rev. 2021, 149, 1317–1336. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Y.; Wang, S. Rapid Growth of Outer Size of Tropical Cyclones: A New Perspective on Their Destructive Potential. Geophys. Res. Lett. 2022, 49. [Google Scholar] [CrossRef]
- Balaguru, K.; Foltz, G.R.; Leung, L.R.; Emanuel, K.A. Global warming-induced upper-ocean freshening and the intensification of super typhoons. Nat. Commun. 2016, 7, 13670. [Google Scholar] [CrossRef] [Green Version]
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Chang. 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Kimball, S.K.; Mulekar, M.S. A 15-Year Climatology of North Atlantic Tropical Cyclones. Part I: Size Parameters. J. Clim. 2004, 17, 3555–3575. [Google Scholar] [CrossRef]
- Merrill, R.T. A Comparison of Large and Small Tropical Cyclones. Mon. Weather Rev. 1984, 112, 1408–1418. [Google Scholar] [CrossRef]
- Wang, S.; Toumi, R. An analytic model of the tropical cyclone outer size. Npj Clim. Atmos. Sci. 2022, 5, 46. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y. Sensitivity of the Simulated Tropical Cyclone Inner-Core Size to the Initial Vortex Size. Mon. Weather Rev. 2010, 138, 4135–4157. [Google Scholar] [CrossRef]
- Chan, K.T.F.; Chan, J.C.L. Size and Strength of Tropical Cyclones as Inferred from QuikSCAT Data. Mon. Weather Rev. 2012, 140, 811–824. [Google Scholar] [CrossRef]
- Knaff, J.A.; Sampson, C.R.; DeMaria, M.; Marchok, T.P.; Gross, J.M.; McAdie, C.J. Statistical Tropical Cyclone Wind Radii Prediction Using Climatology and Persistence. Weather Forecast. 2007, 22, 781–791. [Google Scholar] [CrossRef]
- Knaff, J.A.; Sampson, C.R.; Chirokova, G. A Global Statistical–Dynamical Tropical Cyclone Wind Radii Forecast Scheme. Weather Forecast. 2017, 32, 629–644. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Tian, W.; Liu, Q.; Cao, J.; Knaff, J.A. Implications of the Observed Relationship between Tropical Cyclone Size and Intensity over the Western North Pacific. J. Clim. 2015, 28, 9501–9506. [Google Scholar] [CrossRef]
- Knaff, J.A.; Sampson, C.R. After a Decade Are Atlantic Tropical Cyclone Gale Force Wind Radii Forecasts Now Skillful? Weather Forecast. 2015, 30, 702–709. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation-Based Anomaly Detection. ACM Trans. Knowl. Discov. Data 2012, 6, 1–39. [Google Scholar] [CrossRef]
- Kaplan, J.; DeMaria, M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather Forecast. 2003, 18, 1093–1108. [Google Scholar] [CrossRef]
- Wang, S.; Toumi, R. Impact of Dry Midlevel Air on the Tropical Cyclone Outer Circulation. J. Atmos. Sci. 2019, 76, 1809–1826. [Google Scholar] [CrossRef]
- Chan, K.T.F.; Chan, J.C.L. Angular Momentum Transports and Synoptic Flow Patterns Associated with Tropical Cyclone Size Change. Mon. Weather Rev. 2013, 141, 3985–4007. [Google Scholar] [CrossRef]
- Evans, C.; Wood, K.M.; Aberson, S.D.; Archambault, H.M.; Milrad, S.M.; Bosart, L.F.; Corbosiero, K.L.; Davis, C.A.; Dias Pinto, J.R.; Doyle, J.; et al. The Extratropical Transition of Tropical Cyclones. Part I: Cyclone Evolution and Direct Impacts. Mon. Weather Rev. 2017, 145, 4317–4344. [Google Scholar] [CrossRef] [Green Version]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Fei, J.; Huang, X. A Definition of Rapid Weakening for Tropical Cyclones Over the Western North Pacific. Geophys. Res. Lett. 2019, 46, 11471–11478. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Emanuel, K.A. The power of a hurricane: An example of reckless driving on the information superhighway. Weather 1999, 54, 107–108. [Google Scholar] [CrossRef]
- Wang, S.; Toumi, R. A historical analysis of the mature stage of tropical cyclones: Tropical Cyclone Mature Stage. Int. J. Climatol. 2018, 38, 2490–2505. [Google Scholar] [CrossRef] [Green Version]
- Holland, G.J.; Belanger, J.I.; Fritz, A. A Revised Model for Radial Profiles of Hurricane Winds. Mon. Weather Rev. 2010, 138, 4393–4401. [Google Scholar] [CrossRef]
- Chavas, D.R.; Lin, N. A Model for the Complete Radial Structure of the Tropical Cyclone Wind Field. Part II: Wind Field Variability. J. Atmos. Sci. 2016, 73, 3093–3113. [Google Scholar] [CrossRef]
- Ruan, Z.; Wu, Q. Relationship Between Size and Intensity in North Atlantic Tropical Cyclones with Steady Radii of Maximum Wind. Geophys. Res. Lett. 2022, 49, e2021GL095632. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Lin, Y.; Wang, X. Why does rapid contraction of the radius of maximum wind precede rapid intensification in tropical cyclones? J. Atmos. Sci. 2021, 78, 3441–3453. [Google Scholar] [CrossRef]
- Emanuel, K. A Statistical Analysis of Tropical Cyclone Intensity. Mon. Weather Rev. 2000, 128, 1139–1152. [Google Scholar] [CrossRef]
- Wang, S.; Rashid, T.; Throp, H.; Toumi, R. A shortening of the life cycle of major tropical cyclones. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Hill, K.A.; Lackmann, G.M. Influence of Environmental Humidity on Tropical Cyclone Size. Mon. Weather Rev. 2009, 137, 3294–3315. [Google Scholar] [CrossRef]
- Hart, R.E.; Evans, J.L. A Climatology of the Extratropical Transition of Atlantic Tropical Cyclones. J. Clim. 2001, 14, 546–564. [Google Scholar] [CrossRef]
- Kaplan, J.; Rozoff, C.M.; DeMaria, M.; Sampson, C.R.; Kossin, J.P.; Velden, C.S.; Cione, J.J.; Dunion, J.P.; Knaff, J.A.; Zhang, J.A.; et al. Evaluating Environmental Impacts on Tropical Cyclone Rapid Intensification Predictability Utilizing Statistical Models. Weather Forecast. 2015, 30, 1374–1396. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Tan, Z.M. How Frequently Does Rapid Intensification Occur after Rapid Contraction of the Radius of Maximum Wind in Tropical Cyclones over the North Atlantic and Eastern North Pacific? Mon. Weather Rev. 2022, 150, 1747–1760. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Y.; Toumi, R.; Wang, S. Revisiting the Definition of Rapid Intensification of Tropical Cyclones by Clustering the Initial Intensity and Inner-Core Size. J. Geophys. Res. Atmos. 2022, 127. [Google Scholar] [CrossRef]
- Landsea, C.W.; Franklin, J.L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weather Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Sampson, C.R.; Fukada, E.M.; Knaff, J.A.; Strahl, B.R.; Brennan, M.J.; Marchok, T. Tropical Cyclone Gale Wind Radii Estimates for the Western North Pacific. Weather Forecast. 2017, 32, 1029–1040. [Google Scholar] [CrossRef]
- Hendricks, E.A.; Peng, M.S.; Fu, B.; Li, T. Quantifying Environmental Control on Tropical Cyclone Intensity Change. Mon. Weather Rev. 2010, 138, 3243–3271. [Google Scholar] [CrossRef] [Green Version]
- Wood, K.M.; Ritchie, E.A. A definition for rapid weakening of North Atlantic and eastern North Pacific tropical cyclones. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- Molinari, J.; Romps, D.M.; Vollaro, D.; Nguyen, L. CAPE in Tropical Cyclones. J. Atmos. Sci. 2012, 69, 2452–2463. [Google Scholar] [CrossRef]
Count of All TCs | Threshold of RG | Count of RG TCs | Threshold of RI | Count of RI TCs | |
---|---|---|---|---|---|
North Atlantic | 107 | 75 km/24 h | 50 | 30 kt/24 h | 51 |
Western North Pacific | 252 | 84 km/24 h | 162 | 30 kt/24 h | 171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Tang, Y.; Wang, S.; Li, X. Rapid Growth of Tropical Cyclone Outer Size over the Western North Pacific. Remote Sens. 2023, 15, 486. https://doi.org/10.3390/rs15020486
Li Y, Tang Y, Wang S, Li X. Rapid Growth of Tropical Cyclone Outer Size over the Western North Pacific. Remote Sensing. 2023; 15(2):486. https://doi.org/10.3390/rs15020486
Chicago/Turabian StyleLi, Yi, Youmin Tang, Shuai Wang, and Xiaojing Li. 2023. "Rapid Growth of Tropical Cyclone Outer Size over the Western North Pacific" Remote Sensing 15, no. 2: 486. https://doi.org/10.3390/rs15020486
APA StyleLi, Y., Tang, Y., Wang, S., & Li, X. (2023). Rapid Growth of Tropical Cyclone Outer Size over the Western North Pacific. Remote Sensing, 15(2), 486. https://doi.org/10.3390/rs15020486