The Forest Fire Dynamic Change Influencing Factors and the Impacts on Gross Primary Productivity in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Data Processing
2.2. Burned Area Monitoring Methods
2.3. Causes and Impacts of Forest Fire Analysis Methods
3. Results
3.1. Sensitive Bands Selection of Forest Fire
3.2. NDFI Validity and Burned Area Recognition in China
3.3. Causes of the Forest Fire
3.4. Effects of the Forest Fire on Ecosystem Carbon Cycle
4. Discussion
4.1. Burned Area Distribution and Causes of Forest Fire
4.2. Practical Implications of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, H.P.; Pokhrel, N.P.; Thapa, P.; Paudel, N.S.; Maraseni, T.N. Status and Practical Implications of Forest Fire Management in Nepal. J. For. Livelihood 2022, 21, 32–45. [Google Scholar]
- Payra, S.; Sharma, A.; Verma, S. Application of remote sensing to study forest fires. In Atmospheric Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2023; pp. 239–260. [Google Scholar]
- Yang, W.; Zhang, S.; Tang, J.; Bu, K.; Yang, J.; Chang, L. A MODIS time series data based algorithm for mapping forest fire burned area. Chin. Geogr. Sci. 2013, 23, 344–352. [Google Scholar] [CrossRef]
- Cadena-Zamudio, D.A.; Flores-Garnica, J.G.; Lomelí-Zavala, M.E.; Flores-Rodriguez, A.G. Does the severity of a forest fire modify the composition, diversity and structure of temperate forests in Jalisco? Rev. Chapingo Ser. Cienc. For. 2022, 28, 461–478. [Google Scholar] [CrossRef]
- Goetz, S.J.; Fiske, G.J.; Bunn, A.G. Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sens. Environ. 2006, 101, 352–365. [Google Scholar] [CrossRef]
- Fischer, R. The long-term consequences of forest fires on the carbon fluxes of a tropical forest in Africa. Appl. Sci. 2021, 11, 4696. [Google Scholar] [CrossRef]
- Donohue, I.; Hillebrand, H.; Montoya, J.M.; Petchey, O.L.; Pimm, S.L.; Fowler, M.S.; Healy, K.; Jackson, A.L.; Lurgi, M.; McClean, D.; et al. Navigating the complexity of ecological stability. Ecol. Lett. 2016, 19, 1172–1185. [Google Scholar] [CrossRef] [Green Version]
- White, H.J.; Gaul, W.; Sadykova, D.; León-Sánchez, L.; Caplat, P.; Emmerson, M.C.; Yearsley, J.M. Quantifying large-scale ecosystem stability with remote sensing data. Remote Sens. Ecol. Conserv. 2020, 6, 354–365. [Google Scholar] [CrossRef] [Green Version]
- Fornacca, D.; Ren, G.; Xiao, W. Performance of three MODIS fire products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a mountainous area of Northwest Yunnan, China, characterized by frequent small fires. Remote Sens. 2017, 9, 1131. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zheng, Y.; Dalponte, M.; Tong, X. A novel fire index-based burned area change detection approach using Landsat-8 OLI data. Eur. J. Remote Sens. 2020, 53, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Di, Z.; Li, M.; Yao, Y. Satellite-Derived Variation in Burned Area in China from 2001 to 2018 and Its Response to Climatic Factors. Remote Sens. 2021, 13, 1287. [Google Scholar] [CrossRef]
- Liu, W.; Wang, L.; Zhou, Y.; Wang, S.; Zhu, J.; Wang, F. A comparison of forest fire burned area indices based on HJ satellite data. Nat. Hazards 2016, 81, 971–980. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Dutra, A.C.; Arai, E.; Duarte, V.; Cassol, H.L.G.; Pereira, G.; Cardozo, F.D.S. Mapping burned areas of Mato Grosso state Brazilian Amazon using multisensor datasets. Remote Sens. 2020, 12, 3827. [Google Scholar] [CrossRef]
- Ba, R.; Song, W.; Li, X.; Xie, Z.; Lo, S. Integration of multiple spectral indices and a neural network for burned area mapping based on MODIS data. Remote Sens. 2019, 11, 326. [Google Scholar] [CrossRef] [Green Version]
- Rasul, A.; Ibrahim, G.R.F.; Hameed, H.M.; Tansey, K. A trend of increasing burned areas in Iraq from 2001 to 2019. Environment, Dev. Sustain. 2021, 23, 5739–5755. [Google Scholar] [CrossRef]
- Chen, D.; Shevade, V.; Baer, A.; Loboda, T.V. Missing burns in the high northern latitudes: The case for regionally focused burned area products. Remote Sens. 2021, 13, 4145. [Google Scholar] [CrossRef]
- Chang, Y.; Zhu, Z.; Bu, R.; Chen, H.; Feng, Y.; Li, Y.; Hu, Y.; Wang, Z. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landsc. Ecol. 2013, 28, 1989–2004. [Google Scholar] [CrossRef]
- Preisler, H.K.; Westerling, A.L. Statistical model for forecasting monthly large wildfire events in western United States. J. Appl. Meteorol. Climatol. 2007, 46, 1020–1030. [Google Scholar] [CrossRef] [Green Version]
- Marcos, E.; García-Llamas, P.; Belcher, C.; Elliott, A.; Vega, J.A.; Fernández, C.; Calvo, L. Response of ecosystems to rainfall events in burned areas: Bases for short-term restoration. In Precipitation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 459–480. [Google Scholar]
- Pausas, J.G. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean Basin). Clim. Chang. 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, C.E.; Anderson, T.M.; Sankaran, M.; Higgins, S.I.; Archibald, S.; Hoffmann, W.A.; Hanan, N.P.; Williams, R.J.; Fensham, R.J.; Felfili, J.; et al. Savanna vegetation-fire-climate relationships differ among continents. Science 2014, 343, 548–552. [Google Scholar] [CrossRef]
- Wu, Z.; He, H.S.; Yang, J.; Liu, Z.; Liang, Y. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Sci. Total Environ. 2014, 493, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, L.; Ren, Y.; Wang, J.; Liu, Z.; Yan, H. How fire safety management attended during the urbanization process in China? J. Clean. Prod. 2019, 236, 117686. [Google Scholar] [CrossRef]
- Cha, S.; Kim, C.B.; Kim, J.; Lee, A.L.; Park, K.H.; Koo, N.; Kim, Y.S. Land-use changes and practical application of the land degradation neutrality (LDN) indicators: A case study in the subalpine forest ecosystems, Republic of Korea. For. Sci. Technol. 2020, 16, 8–17. [Google Scholar] [CrossRef]
- Satendra, K.A.D. Forest Fire Disaster Management; National Institute of Disaster Management, Ministry of Home Affairs: New Delhi, India, 2014. [Google Scholar]
- Gatti, L.V.; Gloor, M.; Miller, J.B.; Doughty, C.E.; Malhi, Y.; Domingues, L.G.; Basso, L.S.; Martinewski, A.; Correia, C.S.C.; Borges, V.F.; et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 2014, 506, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.; Collatz, G.J.; Masek, J.; Goward, S.N. Carbon consequences of forest disturbance and recovery across the conterminous United States. Glob. Biogeochem. Cycles 2012, 26, GB1005. [Google Scholar] [CrossRef]
- Luo, Y.; Weng, E. Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol. Evol. 2011, 26, 96–104. [Google Scholar] [CrossRef]
- Feng, L.; Jia, Z.; Li, Q. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China. Sci. Rep. 2016, 6, 39563. [Google Scholar] [CrossRef] [Green Version]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.H.; Deyle, E.; Fogarty, M.; Munch, S. Detecting causality in complex ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef]
- Clark, A.T.; Ye, H.; Isbell, F.; Deyle, E.R.; Cowles, J.; Tilman, G.D.; Sugihara, G. Spatial convergent cross mapping to detect causal relationships from short time series. Ecology 2015, 96, 1174–1181. [Google Scholar] [CrossRef] [Green Version]
- Zha, Y.; Gao, J.; Jiang, J.; Lu, H.; Huang, J. Normalized difference haze index: A new spectral index for monitoring urban air pollution. Int. J. Remote Sens. 2012, 33, 309–321. [Google Scholar] [CrossRef]
- Li, M.; Kang, X.; Fan, W. Burned area extraction in Huzhong forests based on remote sensing and the spatial analysis of the burned severity. Sci. Silvae Sin. 2017, 53, 163–174. [Google Scholar]
- Zheng, Q.; Weng, Q.; Zhou, Y.; Dong, B. Impact of temporal compositing on nighttime light data and its applications. Remote Sens. Environ. 2022, 274, 113016. [Google Scholar] [CrossRef]
- Chen, D.; Pereira, J.M.; Masiero, A.; Pirotti, F. Mapping fire regimes in China using MODIS active fire and burned area data. Appl. Geogr. 2017, 85, 14–26. [Google Scholar] [CrossRef]
- Pang, Y.; Li, Y.; Feng, Z.; Feng, Z.; Zhao, Z.; Chen, S.; Zhang, H. Forest Fire Occurrence Prediction in China Based on Machine Learning Methods. Remote Sens. 2022, 14, 5546. [Google Scholar] [CrossRef]
- Niu, R.; Zhai, P. Study on forest fire danger over Northern China during the recent 50 years. Clim. Chang. 2012, 111, 723–736. [Google Scholar] [CrossRef]
- Shi, K.; Touge, Y. Characterization of global wildfire burned area spatiotemporal patterns and underlying climatic causes. Sci. Rep. 2022, 12, 644. [Google Scholar] [CrossRef]
- Archibald, S.; Nickless, A.; Govender, N.; Scholes, R.J.; Lehsten, V. Climate and the inter-annual variability of fire in southern Africa: A meta-analysis using long-term field data and satellite-derived burnt area data. Glob. Ecol. Biogeogr. 2010, 19, 794–809. [Google Scholar] [CrossRef]
- Aragao, L.E.O.; Malhi, Y.; Barbier, N.; Lima, A.; Shimabukuro, Y.; Anderson, L.; Saatchi, S. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1779–1785. [Google Scholar] [CrossRef]
- Archibald, S.; Roy, D.P.; van Wilgen, B.W.; Scholes, R.J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Chang. Biol. 2009, 15, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Dai, E.; Zheng, D.; Wang, Y.; Ma, L.; Tong, M. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity? Ecol. Indic. 2020, 112, 106013. [Google Scholar] [CrossRef]
- Abella, S.R.; Fornwalt, P.J. Ten years of vegetation assembly after a North American mega fire. Glob. Chang. Biol. 2015, 21, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Hollingsworth, T.N.; Johnstone, J.F.; Bernhardt, E.L.; Chapin III, F.S. Fire severity filters regeneration traits to shape community assembly in Alaska’s boreal forest. PloS ONE 2013, 8, e56033. [Google Scholar] [CrossRef] [PubMed]
- Durigan, G.; Pilon, N.A.; Abreu, R.C.; Hoffmann, W.A.; Martins, M.; Fiorillo, B.F.; Antunes, A.Z.; Carmignotto, A.P.; Maravalhas, J.B.; Vieira, J.; et al. No net loss of species diversity after prescribed fires in the Brazilian savanna. Front. For. Glob. Chang. 2020, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Hanan, N.P.; Swemmer, A.M. Savannahs store carbon despite frequent fires. Nature 2022, 603, 395–396. [Google Scholar] [CrossRef] [PubMed]
- Brhane, K.W.; Gebru, M.G.; Ahmad, A.G. Mathematical model for the dynamics of Savanna ecosystem considering fire disturbances. J. Theor. Biol. 2021, 509, 110515. [Google Scholar] [CrossRef] [PubMed]
- Correa, D.B.; Alcântara, E.; Libonati, R.; Massi, K.G.; Park, E. Increased burned area in the Pantanal over the past two decades. Sci. Total Environ. 2022, 835, 155386. [Google Scholar] [CrossRef] [PubMed]
Random Point | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 |
---|---|---|---|---|---|---|
1 | 9523 | 10,286 | 10,777 | 13,353 | 15,720 | 12,999 |
2 | 9273 | 9832 | 10,101 | 13,024 | 14,135 | 11,495 |
3 | 9371 | 9797 | 9937 | 12,098 | 13,297 | 10,896 |
4 | 9315 | 9653 | 9812 | 12,420 | 13,729 | 11,055 |
5 | 9107 | 9449 | 9924 | 12,278 | 14,689 | 12,111 |
6 | 9530 | 9806 | 10,217 | 12,858 | 13,811 | 11,191 |
7 | 9506 | 9790 | 10,209 | 12,862 | 14,642 | 11,785 |
8 | 9139 | 9579 | 9758 | 12,133 | 13,045 | 10,932 |
9 | 9056 | 9626 | 9932 | 12,123 | 14,164 | 11,810 |
10 | 9542 | 10,130 | 10,634 | 14,231 | 15,157 | 12,229 |
11 | 9281 | 9948 | 10,490 | 14,294 | 14,701 | 11,821 |
12 | 9772 | 10,295 | 10,500 | 12,253 | 11,543 | 10,157 |
13 | 9462 | 9597 | 10,049 | 12,715 | 14,345 | 11,793 |
14 | 9134 | 9630 | 9794 | 12,574 | 13,009 | 10,909 |
15 | 9225 | 9751 | 10,464 | 13,177 | 16,109 | 12,983 |
16 | 9813 | 9998 | 10,236 | 11,943 | 11,844 | 10,152 |
17 | 9676 | 10,004 | 9966 | 12,698 | 12,870 | 10,739 |
18 | 10,016 | 10,465 | 11,052 | 13,461 | 15,553 | 12,366 |
19 | 9375 | 9845 | 10,106 | 12,861 | 12,574 | 10,748 |
20 | 9293 | 9682 | 9967 | 13,162 | 13,088 | 10,895 |
Random Point | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 |
---|---|---|---|---|---|---|
1 | 9120 | 9162 | 9267 | 9566 | 12,734 | 13,833 |
2 | 7500 | 7953 | 8252 | 8762 | 11,776 | 13,059 |
3 | 8710 | 8912 | 8853 | 9353 | 11,454 | 12,371 |
4 | 7546 | 7988 | 8120 | 8777 | 10,736 | 12,030 |
5 | 6882 | 7460 | 7844 | 8366 | 11,578 | 12,349 |
6 | 8623 | 8746 | 8845 | 9049 | 10,583 | 11,413 |
7 | 8615 | 8897 | 8840 | 9196 | 11,455 | 12,237 |
8 | 7082 | 7577 | 7943 | 8679 | 11,062 | 12,219 |
9 | 6759 | 7437 | 7826 | 8530 | 10,744 | 11,471 |
10 | 8594 | 8808 | 8917 | 9541 | 12,381 | 13,710 |
11 | 7890 | 8342 | 8555 | 9183 | 11,761 | 13,455 |
12 | 8413 | 8684 | 8668 | 9091 | 10,794 | 11,323 |
13 | 8293 | 8394 | 8422 | 8803 | 10,787 | 11,727 |
14 | 8612 | 8794 | 8615 | 9224 | 11,458 | 12,647 |
15 | 8172 | 8632 | 8630 | 9068 | 11,781 | 13,281 |
16 | 8707 | 8851 | 8917 | 9093 | 10,578 | 11,123 |
17 | 8717 | 8905 | 8840 | 9194 | 10,972 | 11,142 |
18 | 8440 | 8761 | 8849 | 9498 | 12,521 | 12,650 |
19 | 8541 | 8943 | 8734 | 9432 | 10,866 | 11,653 |
20 | 8440 | 8775 | 8978 | 9134 | 11,250 | 12,199 |
Random Point | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 |
---|---|---|---|---|---|---|
1 | 8297 | 8494 | 8370 | 9084 | 12,537 | 13,511 |
2 | 8275 | 8643 | 8776 | 9545 | 13,318 | 13,510 |
3 | 8284 | 8348 | 8243 | 8864 | 10,654 | 10,566 |
4 | 8366 | 8654 | 8785 | 9395 | 13,509 | 14,057 |
5 | 8464 | 8829 | 9068 | 10,166 | 14,288 | 14,329 |
6 | 8491 | 8648 | 8896 | 9606 | 12,488 | 13,162 |
7 | 8418 | 8800 | 8632 | 9008 | 10,751 | 11,524 |
8 | 8477 | 8512 | 8795 | 9707 | 13,315 | 13,919 |
9 | 8323 | 8676 | 8800 | 9557 | 13,604 | 14,465 |
10 | 8599 | 8765 | 8732 | 9437 | 12,791 | 13,455 |
11 | 8807 | 9059 | 9386 | 10,340 | 14,468 | 15,411 |
12 | 8643 | 8644 | 8759 | 9302 | 11,915 | 12,622 |
13 | 8850 | 9005 | 9196 | 10,216 | 15,731 | 16,260 |
14 | 8398 | 8578 | 8712 | 9279 | 12,027 | 12,510 |
15 | 8738 | 8876 | 9471 | 10,809 | 14,190 | 12,859 |
16 | 8493 | 8734 | 8839 | 9723 | 12,312 | 12,368 |
17 | 8416 | 8735 | 8707 | 9423 | 12,408 | 13,052 |
18 | 8550 | 8568 | 8429 | 9114 | 11,535 | 12,782 |
19 | 8729 | 8810 | 8901 | 10,207 | 14,624 | 14,952 |
20 | 8635 | 8797 | 9024 | 9904 | 13,662 | 14,272 |
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | |
---|---|---|---|---|---|---|
Band 1 | —— | 0.993081 | 0.991975 | 0.992561 | 0.908178 | −0.63607 |
Band 2 | 0.993081 | —— | 0.999959 | 0.999991 | 0.85274 | −0.72228 |
Band 3 | 0.991975 | 0.999959 | —— | 0.999989 | 0.847965 | −0.72853 |
Band 4 | 0.992561 | 0.999991 | 0.999989 | —— | 0.850461 | −0.72528 |
Band 5 | 0.908178 | 0.85274 | 0.847965 | 0.850461 | —— | −0.25467 |
Band 7 | −0.63607 | −0.72228 | −0.72853 | −0.72528 | −0.25467 | —— |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Zhou, W. The Forest Fire Dynamic Change Influencing Factors and the Impacts on Gross Primary Productivity in China. Remote Sens. 2023, 15, 1364. https://doi.org/10.3390/rs15051364
Feng L, Zhou W. The Forest Fire Dynamic Change Influencing Factors and the Impacts on Gross Primary Productivity in China. Remote Sensing. 2023; 15(5):1364. https://doi.org/10.3390/rs15051364
Chicago/Turabian StyleFeng, Lili, and Wenneng Zhou. 2023. "The Forest Fire Dynamic Change Influencing Factors and the Impacts on Gross Primary Productivity in China" Remote Sensing 15, no. 5: 1364. https://doi.org/10.3390/rs15051364
APA StyleFeng, L., & Zhou, W. (2023). The Forest Fire Dynamic Change Influencing Factors and the Impacts on Gross Primary Productivity in China. Remote Sensing, 15(5), 1364. https://doi.org/10.3390/rs15051364