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Abstract: Forest fire as a common disturbance has an important role in the terrestrial ecosystem
carbon cycling. However, the causes and impacts of longtime burned areas on carbon cycling need
further exploration. In this study, we exploit Thematic Mapper (TM) and Moderate Resolution
Imaging Spectroradiometer (MODIS) data to develop a quick and efficient method for large-scale
forest fire dynamic monitoring in China. Band 2, band 4, band 6, and band 7 of MOD09A1 were
selected as the most sensitive bands for calculating the Normalized Difference Fire Index (NDFI) to
effectively estimate fire burned area. The Convergent Cross Mapping (CCM) algorithm was used
to analyze the causes of the forest fire. A trend analysis was used to explore the impacts of forest
fire on Gross Primary Productivity (GPP). The results show that the burned area has an increased
tendency from 2009 to 2018. Forest fire is greatly influenced by natural factors compared with human
factors in China. But only 30% of the forest fire causes GPP loss. The loss is mainly concentrated
in the northeast forest region. The results of this study have important theoretical significance for
vegetation restoration of the burned area.
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1. Introduction

Forest fire occurs globally on various scales every year, causing economic, social,
ecological, and environmental damage [1]. It is caused by natural phenomena as well
as anthropogenic activities. It results in severe damage to wildlife, fertile forest floors,
timber, human property, and certain rare plant species [2]. As a result of the pervasive
harmful effects due to forest fires, they have received increasing recognition in past recent
years. Therefore, precise mapping and monitoring of the location and temporal distribution
of wildfires are important. In addition, forest fire as one of the most significant natural
disturbance processes would also modify the structure and the composition of the vege-
tation [3,4]. It is closely related to the carbon cycling and greenhouse gas emissions [5,6].
The forest fire can burn away dead or decaying vegetation, facilitating the growth of new
trees and burned trees or the soil surface, releasing large amounts of carbon. Forest fire
disturbances have an important impact on ecosystem stability and renewal, and succession
of forest ecosystems. [7,8]. The effects of forest fires on ecosystems are not clear for a long
time. Long-time burned area mapping is a critical factor to investigate the causes of the
forest fire and the impacts of forest fires on Gross Primary Productivity (GPP). This research
provides theoretical support for intelligent management and prediction of forest fires to
achieve carbon neutrality in China.
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Traditionally, a field survey was used to monitor forest fires. But this method is
time-consuming and laborious and lacks spatial information. To overcome this problem,
remote sensing is one of the most efficient and cost-effective techniques for fire detection
and mapping. At present, there are so many forest fire remote sensing monitoring products
that provide fire data sources, but these data have their limitations in terms of both spatial
and temporal resolution. Fornacca et al. (2017) compared four common fire products such
as MCD45A1, MCD64A1, MCD14ML, and Fire_CCI [9]. Each product has its limitations
in terms of accuracy in different fire ranges. Therefore, the timely and accurate mapping
of burned areas is essential for fire management and climate change. The remote sensing
technique provides a labor-efficient method to quickly locate the burned area distribution
and detect the impacts and causes of forest fires [10,11]. In the past decades, extensive
studies have been carried out on the detection of burned areas by remote sensing [3,10,12].
Medium-resolution satellites such as the Landsat series are widely utilized to identify the
burned area. However, they cannot accurately depict the burned area change because of
the limitations of the temporal resolution. Combining information from different sensors
can fill the gaps between high temporal resolution and medium spatial resolution [13].
High temporal resolution satellite images such as MODIS and AVHRR greatly improve
the capability to detect the long-time burned area [14–16]. Accurate forest fire distribution
provides the basis for subsequent studies. It is significant to acquire the long-time fire
distribution for studying its causes and effects.

Forest fire occurs every year in China, especially during the dry season. These fires are
due to various factors such as dry weather, flammable materials, and human action [13].
The natural factor is the main determinant of natural forest fire [17]. Climate change
affects the occurrences and dynamics of fire by changing meteorological factors such as air
temperature, precipitation, and humidity [18]. The two possible main factors associated
with climatic change are temperature and precipitation [19]. Pausas et al. (2004) found that
the temperature and precipitation were significantly correlated with the burned areas [20].
Westerling et al. (2006) found that the forest fire was caused by reduced winter precipitation
together with earlier spring snowmelt [21]. Lehmann et al. (2014) found that burned areas
in Australia had a strong correlation with the average precipitation [22]. Wu et al. (2014)
found that climate was the primary factor compared with human activity [23]. To sum
up the above, the mechanisms and interactions leading to forest fires in China are poorly
understood. The causes of forest fires need further exploration.

Forest ecosystem carbon cycling is an important component of the entire terrestrial
ecosystem. The most significant impact of a forest fire can be seen in vegetation. Forest
fire disturbances have a significant impact on ecosystem stability and sustainability [7,24].
On the one hand, plants usually die instantly due to considerably severe forest fires.
Frequent and high-intensity fires will lead to permanent changes in ecosystems and their
components [25]. On the other hand, forest fires have been an important mechanism for
generating ecological succession by acting as an environmental filter, selecting species, and
shaping ecosystem communities [26]. Forest fire contributes significantly to climate change,
consuming and transferring carbon to the atmosphere [27]. However, carbon change is
usually ignored after a forest fire. Observational data suggest that vegetation growth and
soil carbon content gradually recover over the following years [28]. If ecosystems can be
restored to their pre-disturbance state, the terrestrial ecosystem carbon cycling remains in
long-term dynamic equilibrium [29]. The effects of forest fire disturbance on ecosystems
are not clear for a long time.

The study proposes a new method to map burned areas using multisensor remote
sensing data by taking advantage of the high temporal resolution of Moderate-Resolution
Imaging Spectroradiometer (MODIS) and the medium spatial resolution of Thematic
Mapper (TM). In this study, a new spectral index called Normalized Difference Fire Index
(NDFI) was derived from MODIS surface reflectance data to timely and accurately acquire
the forest fire distribution and its dynamic change. The objectives of this study are as
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follows: (1) to accurately obtain the spatiotemporal variations of fire distribution by NDFI;
(2) to identify the causes of forest fires; and (3) to explore the impacts of forest fire on GPP.

2. Materials and Methods
2.1. Data and Data Processing

MOD09A1 data were downloaded from the National Aeronautics and Space Adminis-
tration (NASA) (http://earthdata.nasa.gov/, accessed on 30 December 2020). It provides
8-days composite with 500 m spatial resolution data.

TM data with a spatial resolution of 30 m and a return cycle of 16 d were downloaded
from the Institute of Remote Sensing and Digital Earth (http://ids.ceode.ac.cn/, accessed
on 30 December 2020) and used to validate the forest fire distribution.

Meteorological data of temperature and precipitation datasets with 1 km spatial
resolution were downloaded from the National Ecosystem Science Data Center (NESDC).
The dataset is interpolated by the data from the National Meteorological Information
Center (NMIC) of the China Meteorological Administration and the Daily Global Historical
Climatology Network-Daily (GHCN-D).

Gross Primary Productivity (GPP) and nighttime-light data from 2009 to 2018 were
downloaded from National Tibetan Plateau Data Center. The Advanced Very High-
Resolution Radiometer (AVHRR) data of remote sensing and hundreds of flux stations
around the world were used to generate the global high-resolution long-time series GPP.
The unit of this data is gcm−2 with a spatial resolution of 0.05 degrees. The nighttime-light
data were produced by the convolutional Long Short-Term Memory network method.

2.2. Burned Area Monitoring Methods

Remote sensing is a more appropriate approach for large-scale and long-time studies.
The monitoring method was developed by Feng. The methodology used to estimate the
forest fire distribution from 2009 to 2018 was based on the approach proposed by Feng et al.
(2016) [30]. This method is beneficial to the dynamic monitoring of long-time series over
large areas. The most sensitive bands were used to construct the NDFI to effectively
estimate the burned area distribution in this study [30]. The main processes include (1)
Band 2, Band 4, Band 6, and Band 7 of MOD09A1 were selected as the most sensitive
bands to forest fire; (2) the sensitive bands were selected to calculate NDFI for monitoring
the burned area; (3) Convergent Cross Mapping (CCM) algorithm was used to analyze
the causes of forest fires; and (4) trend analysis was used to explore impacts of forest fire
on GPP.

In order to effectively monitor burned area distribution, TM2, TM4, TM5, and TM7 of
TM or MODIS2, MODIS4, MODIS6, MODIS7 of MODIS were selected to calculate NDFI
using the following equation:

NDFI =
|TM7 − TM5|
TM4 + TM2

(1)

NDFI =
|MODIS7 − MODIS6|
MODIS4 + MODIS2

(2)

where NDFI is the Normalized Difference Fire Index; TM7 is band 7 of TM; TM5 is band 5
of TM; TM4 is band 4 of TM; TM2 is band 2 of TM. MODIS7 is band 7 of MODIS; MODIS6
is band 6 of MODIS; MODIS4 is band 4 of MODIS; MODIS2 is band 2 of MODIS.

2.3. Causes and Impacts of Forest Fire Analysis Methods

CCM algorithm proposed by Sugihara et al. was initially applied to detect the causality
of variables in complex ecosystems. It is a powerful new methodological approach that can
help distinguish causality from spurious correlation in time series from dynamic systems.
The technique is based on the idea that causation can be established if states of the causal
variable can be recovered from the time series of the affected variable [31]. It uses Takens’

http://earthdata.nasa.gov/
http://ids.ceode.ac.cn/


Remote Sens. 2023, 15, 1364 4 of 13

idea to detect if two variables belong to the same dynamical system. It is designed for
causal discovery between coupled time series for which Granger’s method for detecting
causality is shown to be unreliable. CCM is based on an algorithm that compares the ability
of lagged components of one process to estimate the dynamics of another. In ecology,
these processes might represent time series observations of environmental data, such as
temperature, or of species data, such as population abundance [32]. In this study, we did
not replace causality with correlation. CCM algorithm was used to analyze the causes of
the forest fire. The forest fire, temperature, precipitation, and nighttime-light time series
data were used to derive the causality.

A slope map was calculated at pixel scales to evaluate the spatial change of burned
area and GPP using the following equation:

slope =
n ∑n

j=1 jy−∑n
j=1 j ∑n

j=1 y

∑n
j=1 j2 − (∑n

j=1 j)2 (3)

where n is the number of years, here n = 10; y is the burned area (GPP) in the jth year; the
slope is the fitted slope of n years. The slope map indicates the variation in trend and range.

3. Results
3.1. Sensitive Bands Selection of Forest Fire

In this study, the huge forest fire that originated in China’s Daxinganling Mountains
in 1987 was selected as the reference area which obviously reduces the influence of mixed
pixel. Twenty random points were generated in the burned area (Figure 1). The DN
values (data value range: 0~65,535) of these points in different bands of TM in different
seasons are shown in Tables 1–3. During these three months, forest changes can be very
pronounced in the event of a fire. Therefore, these three months are the basic months for
the occurrence of fires. The total correlation index(r) value of all types between band 5
and band 7 is the lowest; band 5 and band 7 exhibit a small disparity in their spectral
responses to different land covers. The total correlation index(r) value of all types between
band 2 and band 4 is the largest; band 2 and band 4 exhibit a large disparity in their
spectral responses to different land covers (Table 4). Therefore, these four bands are used
to derive the Normalized Difference Fire Index (NDFI) in this study [33]. A lower NDFI
value indicated a greater possibility of fire distribution.

Figure 1. Twenty selected random points in the burned area.
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Table 1. Twenty selected random points values of TM in April.

Random Point Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

1 9523 10,286 10,777 13,353 15,720 12,999
2 9273 9832 10,101 13,024 14,135 11,495
3 9371 9797 9937 12,098 13,297 10,896
4 9315 9653 9812 12,420 13,729 11,055
5 9107 9449 9924 12,278 14,689 12,111
6 9530 9806 10,217 12,858 13,811 11,191
7 9506 9790 10,209 12,862 14,642 11,785
8 9139 9579 9758 12,133 13,045 10,932
9 9056 9626 9932 12,123 14,164 11,810

10 9542 10,130 10,634 14,231 15,157 12,229
11 9281 9948 10,490 14,294 14,701 11,821
12 9772 10,295 10,500 12,253 11,543 10,157
13 9462 9597 10,049 12,715 14,345 11,793
14 9134 9630 9794 12,574 13,009 10,909
15 9225 9751 10,464 13,177 16,109 12,983
16 9813 9998 10,236 11,943 11,844 10,152
17 9676 10,004 9966 12,698 12,870 10,739
18 10,016 10,465 11,052 13,461 15,553 12,366
19 9375 9845 10,106 12,861 12,574 10,748
20 9293 9682 9967 13,162 13,088 10,895

Table 2. Twenty selected random points values of TM in May.

Random Point Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

1 9120 9162 9267 9566 12,734 13,833
2 7500 7953 8252 8762 11,776 13,059
3 8710 8912 8853 9353 11,454 12,371
4 7546 7988 8120 8777 10,736 12,030
5 6882 7460 7844 8366 11,578 12,349
6 8623 8746 8845 9049 10,583 11,413
7 8615 8897 8840 9196 11,455 12,237
8 7082 7577 7943 8679 11,062 12,219
9 6759 7437 7826 8530 10,744 11,471

10 8594 8808 8917 9541 12,381 13,710
11 7890 8342 8555 9183 11,761 13,455
12 8413 8684 8668 9091 10,794 11,323
13 8293 8394 8422 8803 10,787 11,727
14 8612 8794 8615 9224 11,458 12,647
15 8172 8632 8630 9068 11,781 13,281
16 8707 8851 8917 9093 10,578 11,123
17 8717 8905 8840 9194 10,972 11,142
18 8440 8761 8849 9498 12,521 12,650
19 8541 8943 8734 9432 10,866 11,653
20 8440 8775 8978 9134 11,250 12,199

Table 3. Twenty selected random points values of TM in June.

Random Point Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

1 8297 8494 8370 9084 12,537 13,511
2 8275 8643 8776 9545 13,318 13,510
3 8284 8348 8243 8864 10,654 10,566
4 8366 8654 8785 9395 13,509 14,057
5 8464 8829 9068 10,166 14,288 14,329
6 8491 8648 8896 9606 12,488 13,162
7 8418 8800 8632 9008 10,751 11,524
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Table 3. Cont.

Random Point Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

8 8477 8512 8795 9707 13,315 13,919
9 8323 8676 8800 9557 13,604 14,465

10 8599 8765 8732 9437 12,791 13,455
11 8807 9059 9386 10,340 14,468 15,411
12 8643 8644 8759 9302 11,915 12,622
13 8850 9005 9196 10,216 15,731 16,260
14 8398 8578 8712 9279 12,027 12,510
15 8738 8876 9471 10,809 14,190 12,859
16 8493 8734 8839 9723 12,312 12,368
17 8416 8735 8707 9423 12,408 13,052
18 8550 8568 8429 9114 11,535 12,782
19 8729 8810 8901 10,207 14,624 14,952
20 8635 8797 9024 9904 13,662 14,272

Table 4. Correlation coefficient (r) value between different bands.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Band 1 — — 0.993081 0.991975 0.992561 0.908178 −0.63607
Band 2 0.993081 — — 0.999959 0.999991 0.85274 −0.72228
Band 3 0.991975 0.999959 — — 0.999989 0.847965 −0.72853
Band 4 0.992561 0.999991 0.999989 — — 0.850461 −0.72528
Band 5 0.908178 0.85274 0.847965 0.850461 — — −0.25467
Band 7 −0.63607 −0.72228 −0.72853 −0.72528 −0.25467 — —

3.2. NDFI Validity and Burned Area Recognition in China

Further, the huge forest fire that originated in China’s Daxinganling Mountains in
1987 was used to validate the validity of the NDFI. Burned area in China’s Daxinganling
Mountains is shown in Figure 2. TM2, TM4, TM5, and TM7 of TM are used to calculate
the NDFI image. A lower value indicated a greater possibility of burned area. This result
is consistent with the actual situation. The MODIS data were used to calculate the NDFI
for estimating the burned area at a large scale. The possible burned area distribution in
China is shown in Figure 3. A lower value indicated a greater possibility of forest fires.
The northeast forest fire in 2010 is used to validate the burned area result obtained from
MODIS data. The validation result (Figure 4) shows that the result is consistent with the
actual forest fire distribution. Meanwhile, monitoring results are consistent with existing
studies [34].
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Figure 2. Raw TM (left) (3, 4, 2 bands) and NDFI image (right) in China’s Daxinganling Mountains.
TM2, TM4, TM5, and TM7 of TM is used to calculate the NDFI image. A lower value indicated a
greater possibility of burned area.
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Figure 4. NDFI of MODIS and raw TM in 2010.

3.3. Causes of the Forest Fire

CCM of the fire with temperature, precipitation and nighttime-light time series data
was shown in Figure 5. Pearson’s correlation coefficient at the point of convergence for
“B causes A” is greater than that for “A causes B”, where A represents forest fire changes
and B represents the temperature, precipitation, and nighttime-light changes, respectively
(Figure 5a–c). That means all these three factors can drive the forest fire. The temperature
and precipitation represent natural factors. The nighttime-light represents the human
factor [35]. Results for this CCM analysis suggest that forest fire is significantly affected by
temperature and precipitation (Figure 5a,b). However, there is no obvious forcing for the
burned area and nighttime-light (Figure 5c). This result indicates that forest fire is greatly
influenced by natural factors compared with human factors.

Figure 5. Convergent Cross Mapping of burned area with the possible influencing factors. (a) Pear-
son’s correlation coefficient at the point of convergence for forest fire and precipitation changes;
(b) Pearson’s correlation coefficient at the point of convergence for forest fire and temperature
changes; (c) Pearson’s correlation coefficient at the point of convergence for forest fire and nighttime-
light changes.

3.4. Effects of the Forest Fire on Ecosystem Carbon Cycle

The slope map of burned area and GPP from 2009 to 2018 is shown in Figure 6. Forest
fire has the decreased trend. The GPP loss areas caused by forest fires are the regions where
forest fire increased and the GPP decreased (Figure 7). The analysis result shows that about
30% of the forest fire causes GPP loss. The loss is mainly concentrated in the northeast
forest region. However, about 70% of the forest fire have no impact on GPP.
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Figure 6. The slope map of burned area (left) and GPP (right) change from 2009 to 2018.

Figure 7. Forest fire causes the GPP loss area.

4. Discussion
4.1. Burned Area Distribution and Causes of Forest Fire

The burned area distribution is supported by previous studies. For example, Chen et al.,
(2017) have demonstrated that the burned area is mainly distributed in eastern China, espe-
cially in the forests of Heilongjiang Province in Northeast China [36]. Pang et al., denoted
that the probability of forest fires in eastern China is higher than that in the western regions,
and the probability of forest fires in the north and south is higher than that in Central
China [37]. The results of these studies are consistent with our study. Meanwhile, forest
fire is driven by various environmental factors [36]. Climatic change and anthropogenic
factors are likely altering the fire distribution in most regions of China. The increasing
forest fire in northeastern China may have resulted from an increased temperature and
decreased precipitation and humidity [38]. In addition, longitude and latitude had the
greatest influence on the occurrence of forest fires. This result is due to the uneven distribu-
tion of forest resources and regional differences in forest resources in China. The higher
the vegetation cover the more likely they are to cause problems related to forest fires [37].
The Intergovernmental Panel on Climate Change states that “climate variability is often
the dominant factor affecting large wildfires” [39]. Archibald et al., (2010) denoted that
climate is a dominant control on fire activity, regulating vegetation productivity and fuel
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moisture [40]. Precipitation suppresses the forest fire activity and promotes flammable
material accumulation. Additionally, the temperature provides burning conditions for the
flammable materials. Human activity is now the primary source of ignition in tropical
forests, savannas, and agricultural regions [41,42]. In our study, the forest fire primarily
located in Northeast China is mainly caused by natural factors. This result is consistent with
some previous studies. However, we only discuss the temperature and precipitation as the
natural factor and the nighttime-light as the human action. More factors and quantitative
analysis methods should be discussed. Meanwhile, different data sources will bring a lot of
uncertainty to the results. Therefore, multi-source data on fire range identification and GPP
impact factor identification process will be considered in future work.

4.2. Practical Implications of This Study

The forest fire as a major environmental and social issue has attracted widespread
attention. It is significant to propose a simple and effective method to estimate the longtime
burned area on a large scale. Many fire products can be obtained from the website. However,
accurate and longtime burned area distributions are limited. It is necessary to acquire the
longtime burned area distribution to analyze the causes of the forest fire and the impacts of
forest fire on GPP. In fact, there are many factors affecting GPP, which can be divided into
natural and human factors [43]. On the one hand, forest fire as an important disaster will
bring a certain loss to GPP. On the other hand, fire as a common and natural disturbance
in forest regions plays a critical role in determining the structure and composition of
vegetation [44,45]. Many plants have acquired the adaptive ability to regenerate after a
forest fire to keep dynamic disequilibrium [29]. Fires have been found to be important in
maintaining vegetation diversity, structure, and functions in fire prone ecosystems such
as savannas. Forest fires do not necessarily bring species diversity changes [46]. A recent
study showed that savannahs store carbon despite frequent fires [47]. So not all forest fires
have a negative impact on ecosystems. In our study, during the revegetation for many years,
70% of the forest fire has no impact on GPP. The result of this study is useful to improve
the ecosystem model [48] and forest management [49]. It is significant for promoting
carbon neutrality in China. However, we only analyzed the impacts of forest fires on
GPP at a national scale ignoring spatial heterogeneity and influence factor differences in
different regions. That is the limitation of this study. We will consider these differences in
future work.

5. Conclusions

The proposed NDFI is able to obtain the forest fire distribution on a large scale and
assess the variability simply and effectively. The forest fire change has an increased tendency
from 2009 to 2018. These fires are significantly affected by temperature and precipitation
compared with nighttime-light. It indicates that forest fire is greatly influenced by natural
factors. But only 30% of the forest fire causes GPP loss. The loss is mainly concentrated
in the northeast forest region. This study provides an effective way to understand the
burned area dynamic changes, the causes of the forest fire and the impacts of forest fire
on GPP. However, there are still many challenges and uncertainty to estimating forest
fire distribution for long time series observation on large scale using remote sensing data.
Multi-source data on fire range identification should be considered and more factors and
quantitative analysis methods should be considered in further studies.
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