Unveiling the Subsurface of Late Amazonian Lava Flows at Echus Chasma, on Mars
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Lava Fan and Potential Reflectors
3.2. Lava Fan Age
3.3. Depth and Permittivity of Subsurface Layers
3.4. Northward Terrains: Subsurface Layers and a Volcanic Pit Chain
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Product_Id | Orbit_Number | Start_Time | Stop_Time | Min_Lat | Max_Lat | Min_Lon | Max_Lon |
---|---|---|---|---|---|---|---|
S_00410001 | 4100 | 11-6-07 23:03 | 11-6-07 23:10 | −2.9203 | 19.8318 | 279.0911 | 281.9278 |
S_01666601 | 16666 | 15-2-10 3:49 | 15-2-10 3:56 | −1.8656 | 20.3096 | 279.4862 | 282.2436 |
S_01822902 | 18229 | 16-6-10 22:00 | 16-6-10 22:07 | −3.3982 | 19.6182 | 278.2445 | 281.1048 |
S_01836702 | 18367 | 27-6-10 16:56 | 27-6-10 17:03 | −2.8902 | 19.8162 | 278.958 | 281.7788 |
S_01844001 | 18440 | 3-7-10 8:35 | 3-7-10 8:43 | −2.9821 | 19.7163 | 277.6721 | 280.4944 |
S_02658202 | 26582 | 28-3-12 19:49 | 28-3-12 19:58 | 1.571 | 31.3288 | 280.0101 | 283.8356 |
S_02679301 | 26793 | 14-4-12 6:24 | 14-4-12 6:34 | −1.017 | 31.3151 | 279.3546 | 283.4961 |
S_02700402 | 27004 | 30-4-12 16:58 | 30-4-12 17:08 | −0.9893 | 31.3583 | 279.1326 | 283.2766 |
S_02742601 | 27426 | 2-6-12 14:06 | 2-6-12 14:15 | 1.5615 | 29.6277 | 279.3886 | 282.9802 |
S_02763702 | 27637 | 19-6-12 0:38 | 19-6-12 0:47 | 1.5327 | 31.3059 | 279.5775 | 283.4053 |
S_03543701 | 35437 | 16-2-14 18:57 | 16-2-14 19:09 | −19.8196 | 19.7662 | 278.6106 | 283.5576 |
S_03564801 | 35648 | 5-3-14 5:37 | 5-3-14 5:44 | −2.9793 | 19.7798 | 278.1862 | 281.0312 |
S_03607001 | 36070 | 7-4-14 2:41 | 7-4-14 3:02 | −19.7852 | 49.6769 | 273.3545 | 282.8225 |
S_03628101 | 36281 | 23-4-14 13:14 | 23-4-14 13:36 | −19.7785 | 49.6844 | 273.4422 | 282.9112 |
S_03649201 | 36492 | 9-5-14 23:48 | 10-5-14 0:00 | −19.799 | 19.7861 | 277.974 | 282.9227 |
S_03684801 | 36848 | 6-6-14 17:38 | 6-6-14 17:50 | −19.8186 | 19.7668 | 277.7591 | 282.7086 |
S_03699302 | 36993 | 18-6-14 0:55 | 18-6-14 1:02 | −3.016 | 19.7426 | 278.8105 | 281.6553 |
S_03762601 | 37626 | 6-8-14 8:35 | 6-8-14 8:47 | −19.8187 | 19.7657 | 277.7287 | 282.6791 |
S_03783701 | 37837 | 22-8-14 19:08 | 22-8-14 19:21 | −19.8313 | 19.7534 | 277.848 | 282.7982 |
S_03797501 | 37975 | 2-9-14 14:01 | 2-9-14 14:12 | 5.2137 | 39.3474 | 280.1568 | 284.7314 |
S_03804802 | 38048 | 8-9-14 5:40 | 8-9-14 5:53 | −21.7875 | 19.7817 | 278.1784 | 283.3845 |
S_03922201 | 39222 | 8-12-14 16:26 | 8-12-14 16:46 | −14.4381 | 49.6829 | 273.8819 | 282.598 |
S_06627401 | 66274 | 15-9-20 14:14 | 15-9-20 14:27 | −12.8326 | 29.7481 | 277.1595 | 282.6131 |
S_06682802 | 66828 | 28-10-20 17:55 | 28-10-20 18:04 | 0.0274 | 29.7475 | 279.9733 | 283.8164 |
S_06689402 | 66894 | 2-11-20 21:17 | 2-11-20 21:27 | 0.0246 | 29.7443 | 278.9569 | 282.8028 |
S_06938802 | 69388 | 16-5-21 2:10 | 16-5-21 2:20 | 0.036 | 29.7556 | 279.9379 | 283.7863 |
S_07187401 | 71874 | 25-11-21 18:10 | 25-11-21 18:15 | −3.9506 | 13.7761 | 278.9445 | 281.1334 |
References
- Carr, M.H. The Fluvial History of Mars. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2012, 370, 2193–2215. [Google Scholar] [CrossRef]
- Cassanelli, J.P.; Head, J.W. Glaciovolcanism in the Tharsis Volcanic Province of Mars: Implications for Regional Geology and Hydrology. Planet. Space Sci. 2019, 169, 45–69. [Google Scholar] [CrossRef]
- Hepburn, A.J.; Ng, F.S.L.; Holt, T.O.; Hubbard, B. Late Amazonian Ice Survival in Kasei Valles, Mars. J. Geophys. Res. Planets 2020, 125, e2020JE006531. [Google Scholar] [CrossRef]
- Chapman, M.G.; Neukum, G.; Dumke, A.; Michael, G.; van Gasselt, S.; Kneissl, T.; Zuschneid, W.; Hauber, E.; Mangold, N. Amazonian Geologic History of the Echus Chasma and Kasei Valles System on Mars: New Data and Interpretations. Earth Planet. Sci. Lett. 2010, 294, 238–255. [Google Scholar] [CrossRef]
- Chapman, M.G.; Neukum, G.; Dumke, A.; Michael, G.; van Gasselt, S.; Kneissl, T.; Zuschneid, W.; Hauber, E.; Ansan, V.; Mangold, N.; et al. Noachian–Hesperian Geologic History of the Echus Chasma and Kasei Valles System on Mars: New Data and Interpretations. Earth Planet. Sci. Lett. 2010, 294, 256–271. [Google Scholar] [CrossRef]
- Plaut, J.J.; Safaeinili, A.; Holt, J.W.; Phillips, R.J.; Head, J.W.; Seu, R.; Putzig, N.E.; Frigeri, A. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars: RADAR EVIDENCE FOR MID-LATITUDE MARS ICE. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Dundas, C.M.; Cushing, G.E.; Keszthelyi, L.P. The Flood Lavas of Kasei Valles, Mars. Icarus 2019, 321, 346–357. [Google Scholar] [CrossRef]
- Richardson, J.A.; Wilson, J.A.; Connor, C.B.; Bleacher, J.E.; Kiyosugi, K. Recurrence Rate and Magma Effusion Rate for the Latest Volcanism on Arsia Mons, Mars. Earth Planet. Sci. Lett. 2017, 458, 170–178. [Google Scholar] [CrossRef]
- Mouginis-Mark, P.J.; Rowland, S.K. Lava Flows at Arsia Mons, Mars: Insights from a Graben Imaged by HiRISE. Icarus 2008, 198, 27–36. [Google Scholar] [CrossRef]
- Hiesinger, H.; Head, J.W.; Neukum, G. Young Lava Flows on the Eastern Flank of Ascraeus Mons: Rheological Properties Derived from High Resolution Stereo Camera (HRSC) Images and Mars Orbiter Laser Altimeter (MOLA) Data. J. Geophys. Res. 2007, 112, E05011. [Google Scholar] [CrossRef]
- Carter, L.M.; Campbell, B.A.; Holt, J.W.; Phillips, R.J.; Putzig, N.E.; Mattei, S.; Seu, R.; Okubo, C.H.; Egan, A.F. Dielectric Properties of Lava Flows West of Ascraeus Mons, Mars. Geophys. Res. Lett. 2009, 36, L23204. [Google Scholar] [CrossRef]
- Shoemaker, E.S.; Carter, L.M.; Garry, W.B.; Morgan, G.A.; Plaut, J.J. New Insights Into Subsurface Stratigraphy Northwest of Ascraeus Mons, Mars, Using the SHARAD and MARSIS Radar Sounders. J. Geophys. Res. Planets 2022, 127, e2022JE007210. [Google Scholar] [CrossRef]
- Rust, A.C.; Russell, J.K.; Knight, R.J. Dielectric Constant as a Predictor of Porosity in Dry Volcanic Rocks. J. Volcanol. Geotherm. Res. 1999, 91, 79–96. [Google Scholar] [CrossRef]
- Cushing, G. Mars Global Cave Candidate Catalog Archive Bundle. US Geol. Surv. Retrieved Astrogeology Usgs GovsearchmapMarsMarsCaveCatalogmarscavecatalog Zip. 2017. Available online: https://doi.org/10.17189/1519222 (accessed on 10 November 2022).
- Pavlov, A.A.; McLain, H.L.; Glavin, D.P.; Roussel, A.; Dwork2in, J.P.; Elsila, J.E.; Yocum, K.M. Rapid Radiolytic Degradation of Amino Acids in the Martian Shallow Subsurface: Implications for the Search for Extinct Life. Astrobiology 2022, 22, 1099–1115. [Google Scholar] [CrossRef] [PubMed]
- Rummel, J.D. Special Regions in Mars Exploration: Problems and Potential. Acta Astronaut. 2009, 64, 1293–1297. [Google Scholar] [CrossRef]
- Sauro, F.; Pozzobon, R.; Massironi, M.; De Berardinis, P.; Santagata, T.; De Waele, J. Lava Tubes on Earth, Moon and Mars: A Review on Their Size and Morphology Revealed by Comparative Planetology. Earth-Sci. Rev. 2020, 209, 103288. [Google Scholar] [CrossRef]
- Lemoine, F.G.; Smith, D.E.; Rowlands, D.D.; Zuber, M.T.; Neumann, G.A.; Chinn, D.S.; Pavlis, D.E. An Improved Solution of the Gravity Field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res. Planets 2001, 106, 23359–23376. [Google Scholar] [CrossRef]
- Neukum, G.; Jaumann, R. HRSC: The High Resolution Stereo Camera of Mars Express. In Mars Express: The Scientific Payload; ESA Publications Division, ESTEC: Noordwijk, The Netherlands, 2004; Volume 1240, pp. 17–35. ISBN 92-9092-556-6. [Google Scholar]
- Malin, M.C.; Bell, J.F.; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B.; et al. Context Camera Investigation on Board the Mars Reconnaissance Orbiter. J. Geophys. Res. 2007, 112, E05S04. [Google Scholar] [CrossRef]
- Edwards, C.S.; Nowicki, K.J.; Christensen, P.R.; Hill, J.; Gorelick, N.; Murray, K. Mosaicking of Global Planetary Image Datasets: 1. Techniques and Data Processing for Thermal Emission Imaging System (THEMIS) Multi-Spectral Data. J. Geophys. Res. 2011, 116, E10008. [Google Scholar] [CrossRef]
- QGIS.org, 2022. QGIS Geographic Information System. QGIS Association. Available online: http://www.qgis.org (accessed on 10 November 2022).
- Christensen, P.R.; Engle, E.; Anwar, S.; Dickenshied, S.; Noss, D.; Gorelick, N.; Weiss-Malik, M. JMARS—A Planetary GIS. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 14–18 December 2009; Volume 2009, p. IN22A-06. [Google Scholar]
- Seu, R.; Biccari, D.; Orosei, R.; Lorenzoni, L.V.; Phillips, R.J.; Marinangeli, L.; Picardi, G.; Masdea, A.; Zampolini, E. SHARAD: The MRO 2005 Shallow Radar. Planet. Space Sci. 2004, 52, 157–166. [Google Scholar] [CrossRef]
- Wilson, A. Mars Express: The Scientific Payload; ESA SP; ESA Publications Division: Noordwijk, The Netherlands, 2004; ISBN 978-92-9092-556-9. [Google Scholar]
- Holt, J.W.; Peters, M.E.; Kempf, S.D.; Morse, D.L.; Blankenship, D.D. Echo Source Discrimination in Single-Pass Airborne Radar Sounding Data from the Dry Valleys, Antarctica: Implications for Orbital Sounding of Mars. J. Geophys. Res. 2006, 111, E06S24. [Google Scholar] [CrossRef]
- Choudhary, P.; Holt, J.W.; Kempf, S.D. Surface Clutter and Echo Location Analysis for the Interpretation of SHARAD Data From Mars. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1285–1289. [Google Scholar] [CrossRef]
- Mansilla, F.; Zorzano, M.P.; Giannakis, I.; Ruiz, J. No evidence of reflectors on Jezero radargrams. In Proceedings of the Europlanet Science Congress 2022, Granada, Spain, 18–23 September 2022. EPSC2022-460. [Google Scholar] [CrossRef]
- Putzig, N.E.; Phillips, R.J.; Campbell, B.A.; Plaut, J.J.; Holt, J.W.; Bernardini, F.; Egan, A.F.; Smith, I.B. Custom SHARAD Processing via the CO-SHARPS Processing Boutique. In Proceedings of the 47th Lunar and Planetary Science Conference, Woodlands, TA, USA, 21–25 March 2016; p. 3010. [Google Scholar]
- Campbell, B. MRO MARS SHARAD 5 RADARGRAM V2.0. Available online: https://doi.org/10.17189/YB1W-F075 (accessed on 28 December 2022).
- Christoffersen, M.S.; Holt, J.W.; Kempf, S.D.; O’Connell, J.D. MRO SHARAD Clutter Simulations Bundle. Available online: https://doi.org/10.17189/NBDH-2K53 (accessed on 28 December 2022).
- Hartmann, W.K.; Neukum, G. Cratering Chronology and the Evolution of Mars. Space Sci. Rev. 2001, 96, 165–194. [Google Scholar] [CrossRef]
- Michael, G.G.; Neukum, G. Planetary Surface Dating from Crater Size–Frequency Distribution Measurements: Partial Resurfacing Events and Statistical Age Uncertainty. Earth Planet. Sci. Lett. 2010, 294, 223–229. [Google Scholar] [CrossRef]
- Michael, G.G.; Platz, T.; Kneissl, T.; Schmedemann, N. Planetary Surface Dating from Crater Size–Frequency Distribution Measurements: Spatial Randomness and Clustering. Icarus 2012, 218, 169–177. [Google Scholar] [CrossRef]
- Michael, G.G. Planetary Surface Dating from Crater Size–Frequency Distribution Measurements: Multiple Resurfacing Episodes and Differential Isochron Fitting. Icarus 2013, 226, 885–890. [Google Scholar] [CrossRef]
- Riedel, C.; Michael, G.; Kneissl, T.; Orgel, C.; Hiesinger, H.; van der Bogert, C.H. A New Tool to Account for Crater Obliteration Effects in Crater Size-Frequency Distribution Measurements. Earth Space Sci. 2018, 5, 258–267. [Google Scholar] [CrossRef]
- Hartmann, W.K.; Daubar, I.J. Martian Cratering 11. Utilizing Decameter Scale Crater Populations to Study Martian History. Meteorit. Planet. Sci. 2017, 52, 493–510. [Google Scholar] [CrossRef]
- Carrier, I.W.D.; Olhoeft, G.R.; Mendell, W. Physical Properties of the Lunar Surface. In Lunar Sourcebook, A User’s Guide to the Moon; Heiken, G.H., Vaniman, D.T., French, B.M., Eds.; Cambridge University Press: Cambridge, UK; Port Chester, NY, USA, 1991; pp. 475–594. ISBN 978-0-521-33444-0. [Google Scholar]
- Heiken, G.; Vaniman, D.; French, B.M. Lunar Sourcebook: A User’s Guide to the Moon; Cambridge University Press: Cambridge, UK; Port Chester, NY, USA, 1991; ISBN 978-0-521-33444-0. [Google Scholar]
- Malakhov, A.V.; Mitrofanov, I.G.; Golovin, D.V.; Litvak, M.L.; Sanin, A.B.; Djachkova, M.V.; Lukyanov, N.V. High Resolution Map of Water in the Martian Regolith Observed by FREND Neutron Telescope Onboard ExoMars TGO. J. Geophys. Res. Planets 2022, 127, e2022JE007258. [Google Scholar] [CrossRef]
- Williams, R.M.E. Evidence for Late Stage Fluvial Activity in Kasei Valles, Mars. J. Geophys. Res. 2004, 109, E06001. [Google Scholar] [CrossRef]
- Neukum, G. Meteoritenbombardement und Datierung Planetarer Oberflächen. Habilitation Dissertation for Faculty Membership; Ludwig-Maximilians Universität: München, Germany, 1983. [Google Scholar]
- Stillman, D.E.; Grimm, R.E. Radar Penetrates Only the Youngest Geological Units on Mars. J. Geophys. Res. 2011, 116, E03001. [Google Scholar] [CrossRef]
- Edwards, B.; Magnússon, E.; Thordarson, T.; Guđmundsson, M.T.; Höskuldsson, A.; Oddsson, B.; Haklar, J. Interactions between Lava and Snow/Ice during the 2010 Fimmvörðuháls Eruption, South-Central Iceland: 2010 FIMMVÖRÐUHÁLS LAVA-SNOW. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
Maximum Depths SWT (Single Wave Travel Time) at Echus Chasma Eastern Fan | |||||
---|---|---|---|---|---|
Longitude (Deg. E) | Latitude (Deg. N) | Δt (ns) | Lower Bound ε Estimated Depth (m) ε = 6.2 (Carter et al., 2009) | Upper Bound ε Estimated Depth (m) ε = 17.3 (Carter et al., 2009) | |
3607001 | −80.36 | 5.79 | 637.50 | 77 | 46 |
3628101 | −80.22 | 5.43 | 656.25 | 79 | 47 |
3649201 | −80.37 | 5.61 | 693.75 | 84 | 50 |
3783701 | −80.37 | 5.63 | 656.25 | 79 | 47 |
6689402 | −80.34 | 5.71 | 600.00 | 72 | 43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansilla, F.; Zorzano, M.-P.; Giannakis, I.; Ruiz, J. Unveiling the Subsurface of Late Amazonian Lava Flows at Echus Chasma, on Mars. Remote Sens. 2023, 15, 1357. https://doi.org/10.3390/rs15051357
Mansilla F, Zorzano M-P, Giannakis I, Ruiz J. Unveiling the Subsurface of Late Amazonian Lava Flows at Echus Chasma, on Mars. Remote Sensing. 2023; 15(5):1357. https://doi.org/10.3390/rs15051357
Chicago/Turabian StyleMansilla, Federico, María-Paz Zorzano, Iraklis Giannakis, and Javier Ruiz. 2023. "Unveiling the Subsurface of Late Amazonian Lava Flows at Echus Chasma, on Mars" Remote Sensing 15, no. 5: 1357. https://doi.org/10.3390/rs15051357
APA StyleMansilla, F., Zorzano, M.-P., Giannakis, I., & Ruiz, J. (2023). Unveiling the Subsurface of Late Amazonian Lava Flows at Echus Chasma, on Mars. Remote Sensing, 15(5), 1357. https://doi.org/10.3390/rs15051357