Object-Oriented Crop Classification Using Time Series Sentinel Images from Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.1.1. Study Area
2.1.2. Image Dataset and Preprocessing
2.1.3. Field Survey Sample
2.1.4. Other Materials
2.2. Technical Process
2.2.1. Research Process
2.2.2. SNIC Image Segmentation
2.2.3. Random Forest Classification
2.2.4. Support Vector Machine Classification
2.2.5. Validation Strategy
3. Image Feature Analysis and Study Results
3.1. Feature Selection Based on Sentinel-2 Spectral Data
3.2. Feature Optimization Based on Sentinel-1 SAR Microwave Remote Sensing Data
3.3. Comparison of the Pixel-Based Classification Results
3.4. Comparison of the Object-Oriented Classification Results
3.5. Confusion Matrix and Accuracy
No. | Method | P/O | Satellite | Kappa Coefficient | Overall Accuracy | Name of Crops | Producer’s Accuracy | User’s Accuracy |
---|---|---|---|---|---|---|---|---|
a1 | RF | Pixel Based | Sentinel-2 | 0.9602 | 96.98% | Rice | 98.34% | 97.39% |
Upland Rice | 95.15% | 94.90% | ||||||
Soya | 89.77% | 86.72% | ||||||
Corn | 98.65% | 98.39% | ||||||
Other Crops | 96.06% | 98.26% | ||||||
a2 | SVM | Pixel Based | Sentinel-2 | 0.9702 | 97.75% | Rice | 99.03% | 97.50% |
Upland Rice | 98.05% | 97.78% | ||||||
Soya | 91.18% | 88.83% | ||||||
Corn | 99.03% | 98.82% | ||||||
Other Crops | 95.87% | 98.33% | ||||||
b1 | RF | Pixel Based | Sentinel-1 Sentinel-2 | 0.9781 | 98.35% | Rice | 99.45% | 97.37% |
Upland Rice | 98.29% | 98.29% | ||||||
Soya | 96.30% | 88.27% | ||||||
Corn | 98.34% | 99.70% | ||||||
Other Crops | 97.66% | 99.50% | ||||||
b2 | SVM | Pixel Based | Sentinel-1 Sentinel-2 | 0.9775 | 98.29% | Rice | 98.61% | 98.84% |
Upland Rice | 98.53% | 97.72% | ||||||
Soya | 95.65% | 92.15% | ||||||
Corn | 98.85% | 99.32% | ||||||
Other Crops | 97.60% | 98.07% | ||||||
c1 | RF | Object Oriented | Sentinel-2 | 0.9705 | 97.77% | Rice | 98.84% | 98.50% |
Upland Rice | 96.05% | 94.98% | ||||||
Soya | 89.68% | 89.94% | ||||||
Corn | 99.31% | 99.10% | ||||||
Other Crops | 97.36% | 98.50% | ||||||
c2 | SVM | Object Oriented | Sentinel-2 | 0.9782 | 98.35% | Rice | 98.98% | 98.15% |
Upland Rice | 96.89% | 97.58% | ||||||
Soya | 95.86% | 96.39% | ||||||
Corn | 98.73% | 98.94% | ||||||
Other Crops | 98.66% | 98.61% | ||||||
d1 | RF | Object Oriented | Sentinel-1 Sentinel-2 | 0.9823 | 98.66% | Rice | 99.52% | 98.56% |
Upland Rice | 97.64% | 98.35% | ||||||
Soya | 95.18% | 92.82% | ||||||
Corn | 99.32% | 99.44% | ||||||
Other Crops | 98.33% | 99.08% | ||||||
d2 | SVM | Object Oriented | Sentinel-1 Sentinel-2 | 0.9803 | 98.51% | Rice | 99.31% | 98.01% |
Upland Rice | 97.44% | 98.15% | ||||||
Soya | 92.73% | 94.66% | ||||||
Corn | 98.85% | 99.32% | ||||||
Other Crops | 99.08% | 98.82% |
4. Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Xu, X.; Wang, J.; Wu, H.; Jin, X.; Li, C.; Bao, Y. Crop classification recognition based on time-series images from HJ satellite. Trans. Chin. Soc. Agric. Eng. 2013, 29, 9, (In Chinese with English abstract). [Google Scholar]
- Li, H.; Li, K.; Shao, Y.; Zhou, P.; Guo, X.; Liu, C.; Liu, L. Retrieval of Rice Phenology Based on Time-Series Polarimetric SAR Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4463–4466. [Google Scholar] [CrossRef]
- Abdikan, S.; Sanli, F.; Ustuner, M.; Caló, F. Land cover mapping using sentinel-1 SAR data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 757–761. [Google Scholar]
- Hao, P.; Zhan, Y.; Wang, L.; Niu, Z.; Shakir, M. Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA. Remote Sens. 2015, 7, 5347–5369. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, D.; Zhu, D.; Zhang, L.; Zan, X.; Tong, L. Research progress and prospect of fine recognition and automatic mapping of crops by remote sensing. Trans. Chin. Soc. Agric. Mach. 2018, 49, 1–12. (In Chinese) [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 2013, 101, 652–675. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Walter, V. Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm. Remote Sens. 2004, 58, 225–238. [Google Scholar] [CrossRef]
- Baatz, M.; Hoffmann, C.; Willhauck, G. Progressing from Object-Based to Object-Oriented Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Blaschke, T., Lang, S., Hay, G.J., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2008; pp. 29–42. [Google Scholar] [CrossRef]
- Geneletti, D.; Gorte, B.G.H. A method for object-oriented land cover classification combining Landsat TM data and aerial photographs. Int. J. Remote Sens. 2003, 24, 1273–1286. [Google Scholar] [CrossRef]
- Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing object-based and pixel-based classifications for mapping savannas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 884–893. [Google Scholar] [CrossRef]
- Yan, G.; Mas, J.-F.; Maathuis, B.H.P.; Xiangmin, Z.; Van Dijk, P.M. Comparison of pixel-based and object-oriented image classification approaches—A case study in a coal fire area, Wuda, Inner Mongolia, China. Int. J. Remote Sens. 2006, 27, 4039–4055. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, Y.; Zhang, Y.; Miao, R.; Yang, Y. Area extraction and growth monitoring of winter wheat with GEE support in Henan Province. Sci. Agric. Sin. 2021, 54, 2302–2318. [Google Scholar] [CrossRef]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, X.; Li, Q.; Zhang, M.; Zheng, X. Research on Crop Identification Using Multi-Temporal NDVI HJ Images. Remote Sens. Technol. Appl. 2015, 30, 304–311. [Google Scholar] [CrossRef]
- Du, B.; Zhang, J.; Wang, Z.; Mao, D.; Zhang, M.; Wu, B. Crop Mapping Based on Sentinel-2A NDVI Time Series Using Object-Oriented Classification and Decision Tree Model. J. Geo-Inf. Sci. 2019, 21, 740–751, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Luo, C.; Qi, B.; Liu, H.; Guo, D.; Lu, L.; Fu, Q.; Shao, Y. Using Time Series Sentinel-1 Images for Object-Oriented Crop Classification in Google Earth Engine. Remote Sens. 2021, 13, 561. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B., III. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plank, S. Rapid Damage Assessment by Means of Multi-Temporal SAR—A Comprehensive Review and Outlook to Sentinel-1. Remote Sens. 2014, 6, 4870–4906. [Google Scholar] [CrossRef] [Green Version]
- Oreti, L.; Giuliarelli, D.; Tomao, A.; Barbati, A. Object Oriented Classification for Mapping Mixed and Pure Forest Stands Using Very-High Resolution Imagery. Remote Sens. 2021, 13, 2508. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, J.; Sun, Y. Remote Sensing Image Change Detection Using Superpixel Cosegmentation. Information 2021, 12, 94. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Abubakar, G.; Huang, J. High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images. Remote Sens. 2021, 13, 1148. [Google Scholar] [CrossRef]
- Ren, X.; Malik, J. Learning a classification model for segmentation. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; Volume 1, pp. 10–17. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Zou, H.; Li, M.; Cheng, F.; He, S. Superpixel segmentation algorithm based on SNIC for dual-phase SAR image. Syst. Eng. Electron. 2021, 43, 1198–1209, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Achanta, R.; Süsstrunk, S. Superpixels and Polygons Using Simple Non-iterative Clustering. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4895–4904. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: Abingdon-on-Thames, UK, 2017. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Ali, S.; Smith-Miles, K.A. Improved Support Vector Machine Generalization Using Normalized Input Space. In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Perth, WA, Australia, 5–8 December 2006; pp. 362–371. [Google Scholar]
- Graf, A.B.; Borer, S. Normalization in Support Vector Machines. In Joint Pattern Recognition Symposium; Springer: Berlin/Heidelberg, Germany, 2001; pp. 277–282. [Google Scholar] [CrossRef]
- Gonzalez-Abril, L.; Velasco, F.; Angulo, C.; Ortega, J. A study on output normalization in multiclass SVMs. Pattern Recognit. Lett. 2013, 34, 344–348. [Google Scholar] [CrossRef]
- Graf, A.; Smola, A.; Borer, S. Classification in a normalized feature space using support vector machines. IEEE Trans. Neural Netw. 2003, 14, 597–605. [Google Scholar] [CrossRef]
- Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput. Electron. Agric. 2002, 37, 127–139. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Miao, C.; Jiang, N.; Peng, S.; Lv, H.; Li, Y.; Zhang, Y.; Wang, N.; Li, J. Remote sensing monitoring and analysis of rice planting area based on NDVI time series data: A case study in Jiangsu Province. Geo-Inf. Sci. 2011, 13, 273–280, (In Chinese with English abstract). [Google Scholar]
- Fang, C.; Wang, L.; Xu, H. A Comparative Study of Different Red Edge Indices for Remote Sensing Detection of Urban Grassland Health Status. J. Geo-Inf. Sci. 2017, 19, 1382–1392. [Google Scholar]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Li, L.; Zhang, J.; Liang, S.; Zhu, X.; Sulla-Menashe, D. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sens. Environ. 2012, 119, 232–242. [Google Scholar] [CrossRef]
- Tian, M.; Shan, J.; Lu, B.; Huang, X. Rice planting area extraction based on MODIS-EVI time series and phenological characteristics. Trans. Chin. Soc. Agric. Mach. 2022, 53, 196–202, (In Chinese with English abstract). [Google Scholar]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Sun, Z.; Tian, T.; Zheng, Y.; Wang, D. Research on the role of Sentinel-2 red-edge band in rice identification: A case study in Deqing County, Zhejiang Province. J. China Agric. Resour. Reg. Plan. 2021, 42, 144–153, (In Chinese with English abstract). [Google Scholar]
- Joshi, A.; Boyat, A.K.; Joshi, B.K. Impact of Wavelet Transform and Median Filtering on removal of Salt and Pepper Noise in Digital Images. In Proceedings of the 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India, 7–8 February 2014; pp. 838–843. [Google Scholar] [CrossRef]
- Zhang, G.; Jia, X.; Kwok, N.M. Super pixel based remote sensing image classification with histogram descriptors on spectral and spatial data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4335–4338. [Google Scholar] [CrossRef]
- Deng, X.; Ma, Y.; Dong, M. A new adaptive filtering method for removing salt and pepper noise based on multilayered PCNN. Pattern Recognit. Lett. 2016, 79, 8–17. [Google Scholar] [CrossRef]
- Zhang, P.; Li, F. A New Adaptive Weighted Mean Filter for Removing Salt-and-Pepper Noise. IEEE Signal Process. Lett. 2014, 21, 1280–1283. [Google Scholar] [CrossRef]
- Chan, R.; Wa, C.; Nikolova, M. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 2005, 14, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
Name | May | June | July | August | September | October | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E | M | L | E | M | L | E | M | L | E | M | L | E | M | L | E | |
Rice | Sowing | Tillering | Heading | Filling | Maturity | |||||||||||
Upland Rice | Sowing | Tillering | Heading | Filling | Maturity | |||||||||||
Soya | Sowing | Seeding | Flowering | Podding | Filling | Maturity | ||||||||||
Corn | Sowing | Seeding | Jointing | Tasseling | Filling | Maturity |
Num | Sensor | Date | Quantity |
---|---|---|---|
1 | S1GRD | 5 June 2021 | 1 |
2 | S1GRD | 12 June 2021 | 2 |
3 | S1GRD | 17 June 2021 | 1 |
4 | S1GRD | 24 June 2021 | 2 |
5 | S1GRD | 29 June 2021 | 1 |
6 | S1GRD | 6 July 2021 | 2 |
7 | S1GRD | 11 July 2021 | 1 |
8 | S1GRD | 18 July 2021 | 2 |
9 | S1GRD | 23 July 2021 | 1 |
10 | S1GRD | 3 July 2021 | 2 |
11 | S1GRD | 4 August 2021 | 1 |
12 | S1GRD | 11 August 2021 | 2 |
13 | S1GRD | 16 August 2021 | 1 |
14 | S1GRD | 23 August 2021 | 2 |
15 | S1GRD | 28 August 2021 | 1 |
16 | S1GRD | 2 September 2021 | 2 |
17 | S2 | 21 May 2021 | 1 |
18 | S2 | 10 June 2021 | 1 |
19 | S2 | 25 June 2021 | 1 |
Index | Formula | Sentinel-2 Bands |
---|---|---|
NDVI [39,40,41] | B5, B4 | |
IRECI [42,43] | B7, B4, B5, B6 | |
EVI [44,45] | B8, B4, B2 | |
NDWI [46] | B3, B5 |
No. | Corn | Rice | Upland Rice | Soya |
---|---|---|---|---|
1_0_ndvi | 0.121498 | 0.08301 | 0.080807 | 0.114307 |
1_1_ndvi | 0.248013 | 0.185438 | 0.258356 | 0.208938 |
1_2_ndvi | 0.54536 | 0.459322 | 0.387443 | 0.381946 |
1_0_ndwi | -0.19292 | -0.06164 | -0.11398 | -0.18346 |
1_1_ndwi | -0.27006 | -0.10635 | -0.23438 | -0.26069 |
1_2_ndwi | -0.46459 | -0.31861 | -0.32598 | -0.35796 |
1_0_evi | 0.081029 | 0.040263 | 0.070725 | 0.07949 |
1_1_evi | 0.152158 | 0.076131 | 0.142682 | 0.133734 |
1_2_evi | 0.397538 | 0.253147 | 0.265957 | 0.308605 |
1_0_ireci | 0.048656 | 0.026142 | 0.029841 | 0.040791 |
1_1_ireci | 0.104199 | 0.04836 | 0.107089 | 0.093804 |
1_2_ireci | 0.527251 | 0.255397 | 0.229979 | 0.251112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, H.; Xu, X.; Zhu, Q.; Yang, G.; Long, H.; Li, H.; Yang, X.; Zhang, J.; Yang, Y.; Xu, S.; et al. Object-Oriented Crop Classification Using Time Series Sentinel Images from Google Earth Engine. Remote Sens. 2023, 15, 1353. https://doi.org/10.3390/rs15051353
Xue H, Xu X, Zhu Q, Yang G, Long H, Li H, Yang X, Zhang J, Yang Y, Xu S, et al. Object-Oriented Crop Classification Using Time Series Sentinel Images from Google Earth Engine. Remote Sensing. 2023; 15(5):1353. https://doi.org/10.3390/rs15051353
Chicago/Turabian StyleXue, Hanyu, Xingang Xu, Qingzhen Zhu, Guijun Yang, Huiling Long, Heli Li, Xiaodong Yang, Jianmin Zhang, Yongan Yang, Sizhe Xu, and et al. 2023. "Object-Oriented Crop Classification Using Time Series Sentinel Images from Google Earth Engine" Remote Sensing 15, no. 5: 1353. https://doi.org/10.3390/rs15051353
APA StyleXue, H., Xu, X., Zhu, Q., Yang, G., Long, H., Li, H., Yang, X., Zhang, J., Yang, Y., Xu, S., Yang, M., & Li, Y. (2023). Object-Oriented Crop Classification Using Time Series Sentinel Images from Google Earth Engine. Remote Sensing, 15(5), 1353. https://doi.org/10.3390/rs15051353