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Abstract: The resulting maps of land use classification obtained by pixel-based methods often have
salt-and-pepper noise, which usually shows a certain degree of cluttered distribution of classifica-
tion image elements within the region. This paper carries out a study on crop classification and
identification based on time series Sentinel images and object-oriented methods and takes the crop
recognition and classification of the National Modern Agricultural Industrial Park in Jalaid Banner,
Inner Mongolia, as the research object. It uses the Google Earth Engine (GEE) cloud platform to
extract time series Sentinel satellite radar and optical remote sensing images combined with simple
noniterative clustering (SNIC) multiscale segmentation with random forest (RF) and support vector
machine (SVM) classification algorithms to classify and identify major regional crops based on radar
and spectral features. Compared with the pixel-based method, the combination of SNIC multiscale
segmentation and random forest classification based on time series radar and optical remote sensing
images can effectively reduce the salt-and-pepper phenomenon in classification and improve crop
classification accuracy with the highest accuracy of 98.66 and a kappa coefficient of 0.9823. This study
provides a reference for large-scale crop identification and classification work.

Keywords: Sentinel images; object-oriented; SNIC algorithm; random forest classification; support
vector machine classification; Google Earth Engine

1. Introduction

The timely and effective acquisition of regional crop cultivation distribution informa-
tion is of great significance to a country in formulating food policies and guaranteeing
national food security, etc. Satellite remote sensing technology has the characteristics of
a wide monitoring range, strong periodicity, and diverse spectral information. With the
development of satellite remote sensing technology and the improvement of the temporal
and spatial resolutions of remote sensing images, carrying out large-scale crop classification
identification, area extraction, and planting structure change analysis based on remote
sensing image resolution technology has become an important element of agricultural
remote sensing yield estimation applications.

Currently, crop classification and identification methods using time series images
using image-oriented are widely applied [1–5]. HJ-CCD time series optical remote sensing
images were used to construct a decision-tree-based classification model with the spectral
vegetation index time series variation characteristics of crops for the effective classification
and identification of multiple crop plantings [1]. Multitemporal RADARSAT-2 fully polar-
ized SAR time series images were used to achieve the efficient extraction of the phenological
period of rice based on the time series curve variation characteristics of the polarization
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feature parameters of rice [2]. Phan Thanh Noi et al. [6] used Sentinel-2 image data to
compare the performance of classifiers, such as RF, kNN, and SVM, for land use cover
classification. The above multitemporal and multifeature classification methods based
on pixels often carry out crop classification and recognition by extracting the temporal
optical (or microwave) features of image elements. They used several methods and tested
them to determine the best. Although they achieve high classification accuracy, to a certain
extent, they usually ignore the spatial correlation between adjacent image elements [7],
which is prone to salt-and-pepper noise [8]. Salt-and-pepper noise exists in most pixel-
based classifications with high-resolution images. The essence of this phenomenon is the
misclassification of pixels affected for various reasons. The object-oriented classification
method based on remote sensing images can reduce the salt-and-pepper noise to a certain
extent [9,10]. D. Geneletti et al. [11] used a maximum likelihood classifier and additional
empirical rules to classify TM images and then segmented the orthoimages. Then, they
used the previously classified TM images as a reference to perform the classification of
the segmented images. It has been shown that the object-oriented approach has some im-
provements in classification accuracy compared to the image element-based classification
methods [12,13]. In recent years, Google Earth Engine (GEE), as an open cloud platform
with powerful data processing, analysis, storage, and visualization capabilities, has been
widely used in the field of remote sensing research and plays an active role in research on
remote sensing identification and extraction methods for crop classification. Some scientific
researchers in the field of remote sensing have conducted many classification studies based
on the GEE cloud platform. K. Zhou et al. [14] extracted several winter wheat NDVI
features based on the GEE cloud platform and calculated the winter wheat planting area
using the random forest classification method. T. N. Phan et al. [15] used Landsat 8 surface
reflectance (L8sr) data with eight different combination strategies to produce and evaluate
land cover maps for a study area in Mongolia, implementing the experiment on the GEE
platform with a widely applied algorithm, the random forest (RF) classifier, to analyze the
effect of different composition methods, as well as different input images, on the resulting
maps. H. Zhang et al. [16] used multitemporal environmental star HJ-1A/BCCD data and
its multiperiod smoothed and reconstructed NDVI time series curve features to classify
crops at the object scale using a decision tree algorithm. B. Du et al. [17] used Sentinel-2A
NDVI time series features and combined object-oriented classification and support vec-
tor machine (SVM) classification based on the Google Earth Engine (GEE) platform. C.
Luo et al. [18] segmented the composite images with simple noniterative clustering (SNIC)
according to different sizes and input the training samples and processed images into a
random forest classifier for crop classification.

The above studies show that current studies have used object-oriented methods to
improve crop classification accuracy to some extent, but most of them tend to use a single
type of remote sensing image, such as time series visible–near–infrared optical images or
microwave radar image features, with less consideration of the complementary advantages
between different types of images.

Google Earth Engine (GEE) is a tool developed by Google that stores publicly available
remote sensing image data based on its millions of servers around the world and state-
of-the-art cloud computing and storage capability, enabling GEE users to easily extract,
call, and analyze massive remote sensing big data resources, providing huge potential for
large-scale and long-term remote sensing analysis [19,20].

In this paper, based on Google Earth Engine cloud computing technology, an SNIC
object-oriented multiscale segmentation algorithm was used to carry out large-scale object-
oriented crop classification application research using classification methods such as ran-
dom forest (RF) and support vector machine (SVM) and integrating the feature of Sentinel-1
SAR microwave radar and Sentinel-2 optical remote sensing images.
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2. Materials and Methods
2.1. Study Area and Data Source
2.1.1. Study Area

The study area is located in the eastern part of Jalaid Banner, Hinggan League, Inner
Mongolia Autonomous Region, at the junction of Heilongjiang, Jilin, and Inner Mongolia
provinces. The terrain is gentle and mostly plain, with elevations ranging from 150 to
250 m. The four seasons are distinct, with a temperate continental climate and concentrated
precipitation, with the greatest amount of precipitation in summer, accounting for more
than 70% of the average annual precipitation. The study area has a well-developed water
system, with the second largest river in Inner Mongolia, the Chol River, in the north, nu-
merous streams and artificial water channels in the study area, and abundant groundwater
resources. The study area is very suitable for agricultural activities because of its abundant
light and water resources. Figure 1 shows the location and topography of the study area, as
well as sample distribution.
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Figure 1. Topographic map of the Modern Agricultural Industrial Park in Jalaid Banner. The
geographical location and topographic information of Jalaid Banner are displayed, as well as the
location of the park and the distribution of the sample points.

The study area mainly grows four kinds of crops, which are rice, upland rice, soya,
and corn. Table 1 lists the growth period information of the four major crops in the study
area. The main growth period of these crops is from early May to early September.
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Table 1. The growth period of major crops in the study area. E means the early 10 days of a month,
M is the middle 10 days, and L represents the later 10 days.

Name
May June July August September October

E M L E M L E M L E M L E M L E

Rice Sowing Tillering Heading Filling Maturity
Upland

Rice Sowing Tillering Heading Filling Maturity

Soya Sowing Seeding Flowering Podding Filling Maturity
Corn Sowing Seeding Jointing Tasseling Filling Maturity

2.1.2. Image Dataset and Preprocessing

This study used Sentinel-2 spectral remote sensing data and Sentinel-1 SAR remote
sensing data to extract different crop-growing areas. Their different bands have different
resolutions up to 10 m. The revisit period of a single satellite is 10 days, and the two
satellites complement each other, so the revisit period is 5 days. Given that its spectral,
spatial, and temporal resolutions meet the basic requirements of this classification study,
Sentinel-2 images were first selected as the basic spectral image data for the classification.
The study area mainly grows corn, rice, and upland rice crops, so the remote sensing
image data should also be selected within the fertility period of these major crops. At
the same time, special attention should be paid to the quality of the images themselves.
From early May to late July, the study area is in the rainy season, with high cloudiness
and high coverage of the ground spectral information. based on the image quality, three-
view spectral remote sensing images were selected for this study on 21 May, 10 June, and
25 June 2021.

In June and July, the cloudiness in Jalaid Banner, Hinggan League, Inner Mongolia,
was high, and its coverage of the ground spectral information was large. The Google Earth
Engine (GEE) cloud platform integrates zenith reflectance (TOA) and atmospherically cor-
rected surface reflectance (SR) products, which do not require geometric and atmospheric
corrections again. This is one of the advantages of the GEE cloud platform. Subsequently,
the part covered by the cloud must be removed.

The Sentinel-1 SAR satellite, consisting of two satellites, A and B, with a minimum
revisit period of 6 days, is based on C-band (microwave) remote sensing imaging with
four imaging modes (stripmap (SM), interferometric wide swath (IW), extra wide swath
(EW), and wave (WV)). The satellite image width is 400 km, which has the advantages of
multipolarization and a short revisit period. Meanwhile, based on the characteristics of
microwave remote sensing itself, it has a strong penetration of clouds, so it is especially
suitable for the requirements of cloudy and rainy climates in this study area. The multiple
Sentinel-2 spectral remote sensing images with large clouds and relatively poor quality
during the crop fertility period in the National Modern Agricultural Industrial Park in Jalaid
Banner, Inner Mongolia, cannot be utilized for input into the classifier. The inclusion of
Sentinel-1 SAR remote sensing images is making up for the deficiency of Sentinel-2 spectral
remote sensing images, and this will also make the input image data more diversified, thus
achieving the purpose of improving the classification accuracy. Microwave remote sensing
images from 5 June to 2 September 2021 were used for the study. Table 2 shows all of the
images used in the study.

Sentinel-1 SAR microwave remote sensing data has strong penetration of the atmo-
sphere, and it is sensitive to the texture features of the ground [21]. However, due to the
fact of its imaging method and characteristics, the topography of the target study area
will interfere with the imaging, and when there are higher ground objects, such as trees
and houses, some shadows will be generated next to these features, which will interfere
with the analysis of remote sensing images. At the same time, the imaging process is
also affected by noise, the source of which may be both the surrounding features, the
atmosphere, and the remote sensor itself. Therefore, the preprocessing of Sentinel-1 SAR
images needs to address the above issues. Digital elevation models (DEMs) can represent
the elevation changes of regional topography, and a large number of topographic factors
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can also be extracted based on such data to provide an analysis and reference basis for
the study. This study utilized SRTM DEM 30 m data for terrain correction and shadow
removal of Sentinel-1 SAR data in the study area. The study calculated the shadow areas
and removed them based on the local incidence angle, solar altitude angle, and slope of
the target image element location. Then, the multiview images of the same area in a short
period were averaged to reduce the errors caused by noise. Finally, this data source was
used to calculate the polarized VV and VH values and form a complete image.

Table 2. Sentinel images used in this study.

Num Sensor Date Quantity

1 S1GRD 5 June 2021 1
2 S1GRD 12 June 2021 2
3 S1GRD 17 June 2021 1
4 S1GRD 24 June 2021 2
5 S1GRD 29 June 2021 1
6 S1GRD 6 July 2021 2
7 S1GRD 11 July 2021 1
8 S1GRD 18 July 2021 2
9 S1GRD 23 July 2021 1
10 S1GRD 3 July 2021 2
11 S1GRD 4 August 2021 1
12 S1GRD 11 August 2021 2
13 S1GRD 16 August 2021 1
14 S1GRD 23 August 2021 2
15 S1GRD 28 August 2021 1
16 S1GRD 2 September 2021 2
17 S2 21 May 2021 1
18 S2 10 June 2021 1
19 S2 25 June 2021 1

2.1.3. Field Survey Sample

The samples for this study were field survey data, and the sample points covered the
entire study area. The person in charge of the park acted as a guide to ensure a complete
sample of major crops and a rich sample of other crops, as well as to ensure a uniform
spatial distribution of the major crops.

In addition, the discrimination of crop types based on spectral features is one of the
main ways of crop remote sensing classification identification and extraction research at
present. Using Sentinel-2 spectral features of different crops, crops can be effectively distin-
guished from other features. Therefore, this study used the standard false-color composite
method and the method of combining different bands to form false-color composite images
to assist in verifying the accuracy of the crop samples.

The spectral identification of corn, one of the main crops grown in the study area, was
used as an example. As shown in Figure 2, the study distinguished vegetation from other
features by standard false color composite (B8, B4, and B3). The B8, B11, and B12 bands of
Sentinel-2 were also used. The B8 band is the near-infrared band with a central wavelength
of 0.842 µm; B11 and B2 bands are short-wave infrared bands with central wavelengths of
1.610 and 2.190 µm, respectively. B8, B11, and B12 were put into the RGB band to obtain
the B8, B11, and B12 false color composites. Rice is also grown in a considerable area in
the study area. The study used B11, B8, and B4 (red band) for the false color composite of
images in the study area.
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The method of false color composites using different bands of Sentinel-2 makes the
sample testing easier, and adding, deleting, and adjusting the samples before they are
entered improves the accuracy of the samples and the classification. It also provides realistic
and feasible technical support for adding samples in the absence of field survey samples.

2.1.4. Other Materials

The planting of major crops in the study area is characterized by a large area, concen-
trated distribution, and obvious boundaries. Therefore, according to the characteristics
of the study area and the actual needs, the study used crop plot boundary data within
the modern agricultural industrial park of Jalaid Banner instead of the commonly used
complete study area boundary data. The advantage of this approach is that it eliminates a
variety of irrelevant land use types in the study area, reduces the complexity of classification
due to the input of other irrelevant features such as residential houses, roads, trees, and
water systems, and then the crop types in the study area are classified with higher accuracy.

2.2. Technical Process
2.2.1. Research Process

Based on Sentinel-2 Sentinel-1 SAR image data from the GEE cloud platform, the study
uses the SNIC image segmentation algorithm to segment the images. Then, the crops in
the study area were extracted using the random forest method or support vector machine
method for classification. The steps are as follows: (1) obtain Sentinel-2 and Sentinel-1 SAR
datasets from the platform and perform preprocessing operations, such as screening and
declouding; (2) construct vegetation index time series curves based on spectral features and
VV and VH time series curves based on backscattering and extract the most optimal feature
set by combining the pseudo-color composite map of the study area; (3) use the SNIC
image segmentation algorithm to segment images and form an image dataset; (4) combine
the image dataset with the sample dataset as input and train the classifier; (5) use the
random forest method with support vector machine to classify; (6) accuracy verification.
The specific experimental process is illustrated in Figure 3.
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2.2.2. SNIC Image Segmentation

The traditional pixel-based classification method suffers from misclassification, omis-
sion, and salt-and-pepper noise; especially for Sentinel-1 SAR remote sensing data, the
salt-and-pepper noise is very serious. Usually, to ensure the final classification effect, a de-
noising step is needed again for the classified images. Object-oriented algorithms solve this
problem at the source by considering the neighborhood information of a given pixel and
dividing the image into some fixed “regions” or “targets” according to certain parameters
or forming many superpixels [22–24].

The concept of superpixel is an image segmentation technique proposed and devel-
oped by Xiaofeng Ren in 2003 [25], which refers to an irregular block of pixels with certain
visual significance composed of neighboring pixels with a similar texture, color, luminance,
and other characteristics.

Rather than continuing the microscopic subdivision based on ordinary pixels, super-
pixels are a collection of pixels. These pixels have similar color, texture, and other features,
and they aggregate similarly located pixels with similar features into a locally uniformly
connected region.

Superpixel segmentation can simplify an image from millions of pixels to approxi-
mately two orders of magnitude fewer superpixels, which can effectively reduce redundant
image information and speed up subsequent change detection processing, and because
the local spatial neighborhood information of the image is considered, superpixels have
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a certain noise suppression capability [26]. One of the more commonly used methods is
SLIC, with its improved version—SNIC.

The SNIC algorithm [27] is a version of the SLIC algorithm [28] after being improved
by ACHANTA et al. in 2017. SNIC initializes the clustering centers in the same way as SLIC.
The affinity of a pixel to a clustering center is measured as a distance in a five-dimensional
space of color and spatial coordinates. The SNIC algorithm uses the same distance metric
as SLIC. This distance combines the normalized spatial distance and the color distance.
When the spatial location x = [x, y]T and CIELAB color c = [l, a, b]T, the distance from the
k-th superpixel clustering center C[k] to the i-th candidate pixel is:

di,k =

√
xi − xk

2
2

s
+

ci − ck
2
2

m
(1)

For an image with N pixels, each K superpixel is expected to contain N/K pixels.
Assuming that the superpixels are square, the value of superpixel edge length s is set to√

N/K. Another parameter value, m, is called the compactness factor and is provided by
the user. A higher value of m leads to a more compact and regular superpixel at the cost of
poorer boundary attachment and vice versa.

The SNIC algorithm uses a priority queue, Q, to select the next pixel to be added to the
superpixel to ensure that strong connectivity is achieved at the beginning of the algorithm.
The algorithm is as follows:

First, initialize K seeds C[K] = {xk, ck} and use these seeds to create K elements
ei = {xi, ci, ki, di,k}, From the above, i represents the element node, xi represents the spa-
tial location of this pixel point, ci represents the color information of this pixel, k represents
the label ordinal number of each superpixel from 1 to k, di,k as in the above equation
represents the distance from the k-th superpixel clustering center C[k] to the i-th candidate
pixel, and the initial value is set to 0. Arrange these elements according to the distance
di,k between element ei and the k-th superpixel, and the smaller the distance, the higher
the priority.

When queue Q is nonempty, the element with the highest priority is popped. When
the element is not tagged at the corresponding position in the tagging graph, it is tagged
with a superpixel tag. In addition, calculate its 4 or 8 neighborhood pixels that have not
been tagged yet, create a new element with the tag set to k, calculate the distance to the
center of that tagged superpixel, and put it into queue Q by priority. Iterate over it until
queue Q is empty.

The settings of the parameters need to be considered when using the SNIC algorithm
in GEE. ”Size” is the pixel-based spacing of the superpixel seed positions, i.e., the segmen-
tation size, which is set according to the study area. “Compactness” indicates the degree
of compactness. The higher the value, the closer the segmentation result is to a square.
However, since most of the plots in the study area are rectangular, the “compactness” is set
to 0. “Connectivity” stands for connectivity, which is set to 8 in this study. The “seed” refers
to the number of image elements that are the center of the segmentation [18]. Since the
spacing has been set before, the “seed” parameter is not set again. The biggest influence on
the classification effect is the “size” parameter. It should be noted that the larger or smaller
this value, the better the classification effect. The image collection of all Sentinel images
was put in. According to the correlation between the pixels, the images were segmented by
the SNIC algorithm.

2.2.3. Random Forest Classification

In machine learning, a random forest [29] is a classifier that contains multiple deci-
sion trees. As an excellent machine learning method, it has been successfully applied to
many fields. Not only can random forests solve classification and regression problems, but
they have also attracted increasing attention in the field of feature selection. In the 1980s,
Breiman et al. invented the decision tree algorithm [30], which can reduce the compu-
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tational effort by repeatedly dichotomizing data for classification or regression. In 2001,
Breiman et al. combined the decision trees to form a random forest [31].

The training sample set is the basis for training the classifier, and the quality of the
sample set directly affects that of the resulting maps. To establish a high-quality training
set, there are generally three requirements. First, the classification category is uniform;
second, all kinds of samples have high representativeness; and, third, all kinds of samples
should be evenly distributed in the study area. Based on the above requirements, the
sample training set is built first, and it is necessary to satisfy that each class of samples
is distributed in the study area and as uniformly as possible while also ensuring sample
diversity and completeness. Next, the classifier can be trained by entering all samples
from the root node into a tree; a splitting criterion is included at the root node and each
intermediate node, splitting the samples in that node into two child nodes. The training
process of the decision tree is based on attribute value testing splitting the input training
set into subsets and repeating the splitting in a recursive manner in each split into subsets
until it stops when all elements in the subset at a node have the same value or when the
attribute values are exhausted or other given stopping conditions.

The GEE cloud platform integrates the random forest algorithm, which can be called
directly in the process of remote sensing information extraction. In addition, the number of
feature variables, m, and the number of decision trees, n, are the main factors that affect
the classification accuracy of the random forest algorithm under the condition of certain
training samples. For the random forest method, there were 88 features in the feature
collection and 500 trees in the forest. Using the GEE cloud platform for random forest
classification is easy to operate and fast to process.

2.2.4. Support Vector Machine Classification

Support vector machine (SVM) [32] is a machine learning method based on the sta-
tistical theory that was developed in the mid-1990s. It was first proposed by Vapnik in
1995 [33]. It finds a hyperplane (or hypersurface) of the data in a high-dimensional space by
some sum function that maximizes the distance from the nearest point to this surface. The
support vector machine approach to classification then builds on this by partitioning the
dataset to be classified into multiple discrete categories that are consistent with the form of
the training samples, maximizing the distance between the categories.

SVM was originally proposed to solve binary classification problems, but when dealing
with multiclass problems, it is necessary to build a suitable multiclassifier. Currently, there
are two methods: “one-versus-rest” and “one-versus-one”. The one-versus-rest method
(OVR SVMs) classifies the samples of one class into one class and the remaining samples
into another class so that k SVMs are constructed for k classes of samples, and the unknown
samples are classified into the class with the largest classification function value. The
one-versus-one method (OVO SVMs, or pairwise) is used to design an SVM between any
two classes of samples so that n(n − 1)/2 SVMs are designed for n classes of samples. The
result is that the one with the most votes is the result of this classification. The libsvm
method used in the GEE is the one-to-one method.

The commonly used kernel functions in SVM include linear kernel function (linear),
polynomial function (poly), sigmoid function (sigmoid), and radial basis function (RBF).
Among them, RBF is widely used for its good performance in processing nonlinear data.
Therefore, the libsvm method of the RBF kernel was used for the classification experiments.

In this study, the overall accuracy of the classification obtained after the image dataset
was input into the SVM classifier was below 90%. To improve the classification accuracy
and increase the classification efficiency, the input image data need to be normalized
first before the SVM method is classified [34–38]. The results show that the classification
accuracy of the input classifier training after normalizing the image data has been greatly
improved. Meanwhile, because of the high feature dimensionality of the image data, this
study conducted a principal component analysis on the input normalized image dataset.
The feature dimensionality was reduced to improve the classification speed. For the
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support vector machine method, the libsvm method with the RBF kernel was used for the
classification experiments. The “gamma” was set to 0.1, and “cost” was set to 100 in the
RBF kernel.

2.2.5. Validation Strategy

The cross-validation was used in the study. Some samples were selected in the training
set to test the model. A part of the training set data was retained as the test set, and the
parameters generated by the training set were tested to determine the degree of conformity
of these parameters to the data outside the training set relatively objectively. The whole
dataset was fixed into a training set and a test set. The samples were randomly selected in
the proportion of 7:3 in this study. That is, 70% of all samples were used for the training set
and 30% for the test set. After all classifications were completed, a confusion matrix was
used to analyze the accuracy, and the kappa coefficient was used to test the consistency.
Finally, producer accuracy, user accuracy, and overall accuracy were calculated in this study.

Kappa =
po − pe

1− pe
(2)

po =
∑n

i=1 ann

N
(3)

pe =
∑n

i=1 ai+ ∗ a+i

N2 (4)

3. Image Feature Analysis and Study Results
3.1. Feature Selection Based on Sentinel-2 Spectral Data

Different crops possess different spectral characteristics. The spectral data were used to
distinguish different crops by their specific spectral features. In this chapter, the Sentinel-2
spectral data were used to classify the crops in the National Modern Agricultural Industrial
Park in Jalaid Banner, Inner Mongolia, according to their growth cycles and phenologi-
cal stages.

For the classification work using remote sensing images, it is difficult to accurately
classify the features and crops in the study area by only using NDVI data of one view image
as the input data. If only NDVI data from one image is used for classification, it will lead
to serious misclassification and omission and, eventually, lead to very low classification
accuracy. According to the research trend in recent years, it is a good choice to use NDVI
time series data. However, after initial attempts, it was found that the classification results
obtained by using NDVI time series data of the whole crop reproductive period in the study
area as the input data were still unsatisfactory. After repeated checks and verifications,
it was found that the main reason for the unsatisfactory classification results was that
the study area was mostly covered by clouds during the crop reproductive period, and
its wide coverage and thickness caused great interference with the spectral image data
quality. Therefore, this study was changed to use NDVI data from Sentinel-2 spectral
remote sensing images with better quality of three views during the crop reproductive
period for classification. To further improve the classification accuracy, the other three
indices shown in Table 3 were also used in the study.

Table 3. A few indices used in this study.

Index Formula Sentinel-2 Bands

NDVI [39–41] NDVI = (ρNIR−ρR)
(ρNIR+ρR)

B5, B4

IRECI [42,43] IRECI = (ρ783−ρR)
(ρNIR/ρ740) B7, B4, B5, B6

EVI [44,45] EVI = 2.5∗(ρNIR−ρR)
(ρNIR+0.6∗ρR−0.75∗ρB)+1 B8, B4, B2

NDWI [46] NDWI = (ρGREEN−ρNIR)
(ρGREEN+ρNIR)

B3, B5
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The red-edge band is a sensitive band indicating the growth status of green plants.
The red edge is closely related to various physicochemical parameters of vegetation and is
an important indicator band describing the pigmentation status and health of plants, so
a red edge is an ideal tool for remote sensing investigation of vegetation status. Zhang
Ying et al. [47] identified rice based on the difference of rice in the Sentinel-2 red-edge
band. Vegetation cover and leaf area index are related; the higher the vegetation cover, the
larger the leaf area index, the larger the red-edge slope, and the better the corresponding
vegetation growth status. Previous studies proved that the red-edge feature can be used
as a spectral feature reflecting vegetation, and the study incorporated the novel inverted
red-edge chlorophyll index.

Since there are natural water systems and artificial diversion channels distributed in
the study area, adding the NDWI index can better extract the scattered distributed water
bodies in the plot and improve the classification accuracy. At the same time, water bodies
have strong absorption of short-wave infrared (SWIR), and it is sometimes necessary to
use SWIR data in agricultural remote sensing monitoring to analyze and study vegetation
moisture or regional drought conditions. There are large areas of rice and upland rice
planted in the park that needs to be distinguished. Therefore, based on the sensitive
characteristics of the short-wave infrared (SWIR) band to vegetation moisture content, the
study added Sentinel-2 SWIR (B11) band as input data and added training.

So far, this study utilized the B2~B8 bands and the B11 band of Sentinel-2 data.
Compared to utilizing only a single band or only NDVI (B4, B5) bands, more features
were input, which had a positive impact on the study classification and improves the
classification accuracy.

3.2. Feature Optimization Based on Sentinel-1 SAR Microwave Remote Sensing Data

In terms of spectral features, the use of NDVI data combined with the unique pheno-
logical characteristics of the crops in the park has been able to better classify the crops from
other unrelated plots. In addition, this study added multiband features of different time
windows in the park to improve the classification accuracy. However, it was found that the
classification of water bodies and rice, rice and upland rice, and corn and trees were still
highly confusing. Especially in some areas of the park, the rice and upland rice plots were
adjacent to each other, and the wood and corn plots were interspersed, which reduced the
spectral separability among these vegetations and caused difficulty in crop information
extraction based on spectral features. Although the color display of the different crop
samples differed after parameter adjustment using Sentinel-2 spectral data with multiple
false color syntheses, the distinction was not very obvious. The study was conducted for
all samples of the four major crops in the park. The spectral features are shown in Table 4
and Figure 4.

Table 4. Time series statistics of the spectral features.

No. Corn Rice Upland Rice Soya

1_0_ndvi 0.121498 0.08301 0.080807 0.114307
1_1_ndvi 0.248013 0.185438 0.258356 0.208938
1_2_ndvi 0.54536 0.459322 0.387443 0.381946
1_0_ndwi -0.19292 -0.06164 -0.11398 -0.18346
1_1_ndwi -0.27006 -0.10635 -0.23438 -0.26069
1_2_ndwi -0.46459 -0.31861 -0.32598 -0.35796
1_0_evi 0.081029 0.040263 0.070725 0.07949
1_1_evi 0.152158 0.076131 0.142682 0.133734
1_2_evi 0.397538 0.253147 0.265957 0.308605

1_0_ireci 0.048656 0.026142 0.029841 0.040791
1_1_ireci 0.104199 0.04836 0.107089 0.093804
1_2_ireci 0.527251 0.255397 0.229979 0.251112
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As shown in the above graph, although the NDVI index had a good effect in distin-
guishing vegetation and other features, it was less obvious for distinguishing different plant
(crop) types. For the NDWI index, rice and corn could be distinguished more accurately
according to their water-sensitive characteristics, but the distinction between upland rice
and soya was not very obvious. Similarly, the IRECI index was effective in classifying corn,
but the differentiation was not obvious for the remaining three major crops of the park.
Thus, although the study used as many bands as possible to classify the different crops by
converting them into index features for the multiband feature of Sentinel-2, it was not able
to effectively distinguish all crops, and the accuracy of the classification of the crops in the
study area was not guaranteed by using spectral features alone.

Therefore, it was necessary to use other features to distinguish the different crops to
improve the classification accuracy.

According to the analysis above, the classification of the crops in the park by spectral
features was generally effective, and there were more misclassifications, which required
the study to find other features to distinguish different crops. Based on this need, the study
incorporated Sentinel-1 SAR microwave remote sensing data.

Sentinel-1 SAR data were chosen for two reasons. First, microwave remote sensing
has better penetration of water vapor and clouds. To address the problem of not being able
to use the time series data of the spectral features of the complete reproductive period due
to the high precipitation and large cloud cover during the reproductive period of the crop
in the study area, the study could be supplemented with Sentinel-1 SAR time series data to
enrich the input features and, at the same time, improve the discrimination of time effects
on crop growth. Second, microwave data are more sensitive to information on water bodies,
soil moisture, canopy moisture, and texture. These data can be distinguished according to
the morphological differences of different crops at different times.

This study used VH and VV, two polarization methods commonly used In Sentinel-1
SAR satellite images, to form VH and VV polarization images of the study area. The VH
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and VV polarization characteristics of all samples using the four major crops in the park
were counted to make the following statistical line graph.

As shown in Figure 5, although there are more obvious differences in the microwave
characteristics of the four crops in the study area when analyzed in these three sets of
images from 5 June to 17 June, in general, the microwave timing characteristics of these four
major crops are roughly divided into two groups. Corn and soybean had similar curves
and formed one group; rice and upland rice had similar curves and formed the second
group. The differences between the two groups are obvious, but the differences between
the crops within one group are smaller.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 23 
 

 

According to the analysis above, the classification of the crops in the park by spectral 
features was generally effective, and there were more misclassifications, which required 
the study to find other features to distinguish different crops. Based on this need, the 
study incorporated Sentinel-1 SAR microwave remote sensing data. 

Sentinel-1 SAR data were chosen for two reasons. First, microwave remote sensing 
has better penetration of water vapor and clouds. To address the problem of not being 
able to use the time series data of the spectral features of the complete reproductive period 
due to the high precipitation and large cloud cover during the reproductive period of the 
crop in the study area, the study could be supplemented with Sentinel-1 SAR time series 
data to enrich the input features and, at the same time, improve the discrimination of time 
effects on crop growth. Second, microwave data are more sensitive to information on 
water bodies, soil moisture, canopy moisture, and texture. These data can be 
distinguished according to the morphological differences of different crops at different 
times. 

This study used VH and VV, two polarization methods commonly used In Sentinel-
1 SAR satellite images, to form VH and VV polarization images of the study area. The VH 
and VV polarization characteristics of all samples using the four major crops in the park 
were counted to make the following statistical line graph. 

As shown in Figure 5, although there are more obvious differences in the microwave 
characteristics of the four crops in the study area when analyzed in these three sets of 
images from 5 June to 17 June, in general, the microwave timing characteristics of these 
four major crops are roughly divided into two groups. Corn and soybean had similar 
curves and formed one group; rice and upland rice had similar curves and formed the 
second group. The differences between the two groups are obvious, but the differences 
between the crops within one group are smaller. 

 
Figure 5. Time series broken line statistics of microwave features. Two images of similar time were 
averaged to form a new image. They were placed on the x-axis in the order of 1–8. 

3.3. Comparison of the Pixel-Based Classification Results 
As shown in the figure, the misclassification of the RF classification using Sentinel-2 

images alone is more obvious. In the south and northeast of the study area, for example, 
the classification of rice and corn was poor in these two regions, the boundaries between 
them could not be clearly distinguished, and many crop plots were misclassified. As 
shown in Figure 6, the classification errors were significantly better when using Sentinel-
2 versus Sentinel-1 SAR images for classification. However, due to the imaging 
characteristics of radar images, there is very serious salt-and-pepper noise and blank 
image element noise in the classification area of the rice plots (as shown in Figure 6(b2-
detail)). At the same time, the boundaries between the different crops still did not achieve 
the desired effect. Although the existing image element-based denoising or filtering 
methods can be used to remove part of the salt-and-pepper noise, and the interpolation 
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3.3. Comparison of the Pixel-Based Classification Results

As shown in the figure, the misclassification of the RF classification using Sentinel-2
images alone is more obvious. In the south and northeast of the study area, for example,
the classification of rice and corn was poor in these two regions, the boundaries between
them could not be clearly distinguished, and many crop plots were misclassified. As shown
in Figure 6, the classification errors were significantly better when using Sentinel-2 versus
Sentinel-1 SAR images for classification. However, due to the imaging characteristics of
radar images, there is very serious salt-and-pepper noise and blank image element noise
in the classification area of the rice plots (as shown in Figure 6(b2-detail)). At the same
time, the boundaries between the different crops still did not achieve the desired effect.
Although the existing image element-based denoising or filtering methods can be used
to remove part of the salt-and-pepper noise, and the interpolation method can be used to
supplement part of the blank image element points, the problem of indistinguishable plot
boundaries still cannot be well solved.

3.4. Comparison of the Object-Oriented Classification Results

The SNIC method solves both of these problems well by weighting the color and
spatial proximity relationships, reducing an image to a small group of interconnected
superpixels while providing control over the compactness of the superpixels. This makes it
possible to segment not only in color but also in grayscale. The resulting method generates
compact and neat superpixels with a more realistic presentation in terms of details and
more distinct boundary features.



Remote Sens. 2023, 15, 1353 14 of 22

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 23 
 

 

method can be used to supplement part of the blank image element points, the problem 
of indistinguishable plot boundaries still cannot be well solved. 

 
Figure 6. Pixel-based classification results. Only Sentinel-2 images were used in (a1,a2), Sentinel-1 
SAR and Sentinel-2 images were used in (b1,b2), the RF method was used in (a1,b1), and the SVM 
method was used in (a2,b2). The number of each figure corresponds to that in Table 5. 

  

(a1-detail) 

(a2-detail) 

(b1-detail) 

(b2-detail) 

(a1) 

(a2) 

(b1) 

(b2) 

Figure 6. Pixel-based classification results. Only Sentinel-2 images were used in (a1,a2), Sentinel-1
SAR and Sentinel-2 images were used in (b1,b2), the RF method was used in (a1,b1), and the SVM
method was used in (a2,b2). The number of each figure corresponds to that in Table 5.

In the Figure 7 comparison, the RF classification method is more sensitive for rice, and
the SVM classification method is more sensitive for soya and other crops, except for the
four major crops.
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Figure 7. Object-oriented classification results. Pixel-based classification results. Only Sentinel-2
images were used in (c1,c2), Sentinel-1 SAR and Sentinel-2 images were used in (d1,d2), the RF
method was used in (c1,d1), and the SVM method was used in (c2,d2). The number of each figure
corresponds to that in Table 5.

3.5. Confusion Matrix and Accuracy

Table·5 and Figure 8 show the accuracy of the classification results using different methods.
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Table 5. Summary of the accuracy.

No. Method P/O Satellite Kappa
Coefficient

Overall
Accuracy

Name of
Crops

Producer’s
Accuracy

User’s
Accuracy

a1 RF Pixel Based Sentinel-2 0.9602 96.98%

Rice 98.34% 97.39%

Upland Rice 95.15% 94.90%

Soya 89.77% 86.72%

Corn 98.65% 98.39%

Other Crops 96.06% 98.26%

a2 SVM Pixel Based Sentinel-2 0.9702 97.75%

Rice 99.03% 97.50%

Upland Rice 98.05% 97.78%

Soya 91.18% 88.83%

Corn 99.03% 98.82%

Other Crops 95.87% 98.33%

b1 RF Pixel Based Sentinel-1
Sentinel-2

0.9781 98.35%

Rice 99.45% 97.37%

Upland Rice 98.29% 98.29%

Soya 96.30% 88.27%

Corn 98.34% 99.70%

Other Crops 97.66% 99.50%

b2 SVM Pixel Based Sentinel-1
Sentinel-2

0.9775 98.29%

Rice 98.61% 98.84%

Upland Rice 98.53% 97.72%

Soya 95.65% 92.15%

Corn 98.85% 99.32%

Other Crops 97.60% 98.07%

c1 RF Object
Oriented Sentinel-2 0.9705 97.77%

Rice 98.84% 98.50%

Upland Rice 96.05% 94.98%

Soya 89.68% 89.94%

Corn 99.31% 99.10%

Other Crops 97.36% 98.50%

c2 SVM Object
Oriented Sentinel-2 0.9782 98.35%

Rice 98.98% 98.15%

Upland Rice 96.89% 97.58%

Soya 95.86% 96.39%

Corn 98.73% 98.94%

Other Crops 98.66% 98.61%

d1 RF Object
Oriented

Sentinel-1
Sentinel-2

0.9823 98.66%

Rice 99.52% 98.56%

Upland Rice 97.64% 98.35%

Soya 95.18% 92.82%

Corn 99.32% 99.44%

Other Crops 98.33% 99.08%

d2 SVM Object
Oriented

Sentinel-1
Sentinel-2

0.9803 98.51%

Rice 99.31% 98.01%

Upland Rice 97.44% 98.15%

Soya 92.73% 94.66%

Corn 98.85% 99.32%

Other Crops 99.08% 98.82%
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4. Analysis and Discussion

Based on the current land use situation and the size and distribution of the crop plots
in the Modern Agricultural Industrial Park in Jalaid Banner, Inner Mongolia, a suitable
SNIC clustering size needs to be selected, and the SNIC images formed by using different
“size” values were studied.

The “size” value used in this segmentation method needs to be flexibly selected
according to the size of the study area, the spatial resolution of the remote sensor image,
and the topography of the study area. After the spatial resolution of the remote sensing
image is determined, the size value should be reduced appropriately for the study area
with smaller plots and more dispersed crop planting distribution. For the study area with
larger plots and a more concentrated spatial distribution, the size value should be increased
appropriately. At the same time, the spatial resolution of the remote sensing images can be
changed by image fusion and resampling, which may further enhance the segmentation
effect and improve classification accuracy. When the size value is set small, the superpixels
formed by the segmentation will be small, which makes misclassification occur within the
parcel; when the size value is set large, the superpixels formed by the segmentation will
be large, which may eventually form different parcels into one parcel for classification by
mistake. Both of these cases inevitably lead to a reduction in the classification accuracy.

The following figure shows the image segmentation results under different size val-
ues. Among the three segmentation methods shown in Figure 9, when segmenting by
“size = 10”, the parcel segmentation is too fragmented, and the mis-segmentation is obvious
in the mis-segmented part of the parcel. At the same time, segmentation by “size = 10”
leads to an increase in the computational effort and computational time. In the classification
results, except for soya, the accuracy of the crop classification is relatively low. This is
because soya plots are relatively small and interplanted with corn. A small segmentation
interval is beneficial to its classification. When segmented by “size = 30”, the superpixels
formed are too large, and small plots are covered and cannot be distinguished. Therefore,
in this study, the segmentation was performed in the form of “size = 20”. As shown in
Figure 9b, when the parameter “size = 20” was used, the boundaries of the segmented
superpixels overlapped more with the plot boundaries. Although, as shown in Figure 10,
the classification accuracy of soya was not as good as that of “size = 10” and “size = 30”,
the classification accuracy of the other crops and the overall classification accuracy were
better than those of the other two. Therefore, the parameter was set to “size = 20”.
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Combining the analysis of the results shown in Figures 6–8 and Table 5, for the image-
based method, the classification accuracy was improved after adding Sentinel-1 SAR radar
data with Sentinel-2 spectral data compared to using only Sentinel-2 spectral data. At
the same time, the classification accuracy using RF was higher than that using SVM. The
study selected areas with richer crop species and more regular plots to show the details,
and the salt-and-pepper noise existed in the classification details shown in Figure 6, and,
after adding Sentinel-1 SAR radar data, the salt-and-pepper noise was more obvious. After
preliminary analysis, its source is the noise formed by the anomalous values in some
Sentinel-1 SAR radar data after the Sentinel-2 spectral image is declouded. These noises
can be processed by subsequent means, such as smoothing and filtering [48–52], but the
processing time is long, while part of the boundary information may be lost.

For the object-oriented approach, the RF-based classification using Sentinel-1 SAR
radar images with Sentinel-2 spectral images showed the highest accuracy of the classifica-
tion results. Figure 7 shows the details of the classification results of the object-oriented
approach. The salt-and-pepper noise problem was solved in the results, and the boundary
information of the parcel was more complete than that of the pixel-based method. At
the same time, the classification accuracy was significantly improved compared with the
image-based classification method.

Due to the limitations of the data and methods, this study still had some shortcomings.
Firstly, for the classification work, the number and quality of the samples have a great
influence on the classification results. In this study, except for the four major crops, the
sample data quantity of the remaining types of crops was small, and it was not possible
to form a separate set of samples for each other crop into the trainer to ensure the sample
quantity and distribution requirements. Therefore, this study used the remaining several
crops as one class, which had a greater impact on the classification results. As shown in
the results of Figure 6, the two methods of RF and SVM produced some differences in the
classification of other crops. Secondly, the absence of Sentinel-2 spectral data led to the
study’s inability to extract crop spectral features using complete fertility spectral images,
and the control effect of the classification results based on Sentinel-2 spectral data was
reduced. Finally, the study area is flat, and the plots are relatively regular, which has good
conditions for the study. However, the classification of the study under this condition
could not be relocated to areas with complex topographic features. In addition, the plot
boundary data used in the study greatly reduced the influence of extraneous features, and
the applicability of the classification method described above in other areas lacking plot
boundary data needs to be further investigated.
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5. Conclusions

In all eight groups of results, the classification accuracy was higher after using Sentinel-
1 SAR data and Sentinel-2 data than after using Sentinel-2 data only. Among the four sets
of results based on the image element method, the RF-based classification method had
the highest accuracy of 98.35% with a kappa coefficient of 0.9781. For rice, upland rice,
corn, and other crops, the RF classification accuracy was slightly higher than the SVM
classification method based on the same conditions. For soya, the SVM classification
accuracy was higher than that of the RF classification method based on the same conditions,
and the accuracy improvement was greater than 2%. This shows that in most cases, the
classification using Sentinel-1 SAR radar data with Sentinel-2 spectral data was better than
the classification using Sentinel-2 spectral data only; the RF-based classification method is
better than the SVM-based classification method.
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