Estimation of Urban Evapotranspiration at High Spatiotemporal Resolution and Considering Flux Footprints
Abstract
:1. Introduction
2. Data and Methods
2.1. Development of the PT-Urban Model
2.2. PT-JPL ET Model
2.3. Identification of Flux Footprint
2.4. Influences of Urban Morphology on Net Radiation Estimation
2.5. Energy Closure Correction at Footprints Scale
2.6. Flux Data for Model Validation
2.7. High-Resolution Land Cover Data of the Study Site
2.8. Model Calibration and Evaluation
3. Results
3.1. Urban Surface Energy Balance at Footprint Scale
3.2. Performance of the Proposed PT-Urban Model
3.3. Impacts of Footprints and Shadings on Urban ET Estimation
4. Discussion
4.1. Key Factors on Urban Surface Energy Balance
4.2. Influences of Urban Morphology on Urban LE Estimation
4.3. Importance of Dynamic Footprint for Half-Hourly Urban LE Estimation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Department of Economic and Social Affairs Population Division. World Urbanization Prospects: The Revision of 2018; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Chen, Z.; Gong, Z.; Yang, S.; Ma, Q.; Kan, C. Impact of Extreme Weather Events on Urban Human Flow: A Perspective from Location-Based Service Data. Comput. Environ. Urban Syst. 2020, 83, 101520. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Z.; Sun, Q.; Erb, A.M.; Li, Z.; Schaaf, C.B.; Zhang, X.; Román, M.O.; Scott, R.L.; Zhang, Q.; et al. Evaluation of the VIIRS BRDF, Albedo and NBAR Products Suite and an Assessment of Continuity with the Long Term MODIS Record. Remote Sens. Environ. 2017, 201, 256–274. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, Z.; Shah, D.; Fischer, H.; Solís, P.; Wentz, E. Understanding the Interaction between Human Activities and Physical Health under Extreme Heat Environment in Phoenix, Arizona. Health Place 2023, 79, 102691. [Google Scholar] [CrossRef] [PubMed]
- Benton, G.S.; Blackburn, R.T.; Snead, V.O. The Role of the Atmosphere in the Hydrologic Cycle. Trans. Am. Geophys. Union 1950, 31, 61. [Google Scholar] [CrossRef]
- Gentine, P.; Massmann, A.; Lintner, B.R.; Hamed Alemohammad, S.; Fu, R.; Green, J.K.; Kennedy, D.; Vilà-Guerau de Arellano, J. Land–Atmosphere Interactions in the Tropics—A Review. Hydrol. Earth Syst. Sci. 2019, 23, 4171–4197. [Google Scholar] [CrossRef] [Green Version]
- Oki, T.; Kanae, S.; Musiake, K. Global Hydrological Cycle and World Water Resources. Science 2003, 28, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, Y.; Chen, A.; Gao, M.; Slette, I.J.; Piao, S. The Impact of the 2009/2010 Drought on Vegetation Growth and Terrestrial Carbon Balance in Southwest China. Agric. For. Meteorol. 2019, 269–270, 239–248. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Ding, N.; Qin, K.; Yang, X. Simulating the Impact of Urban Surface Evapotranspiration on the Urban Heat Island Effect Using the Modified RS-PM Model: A Case Study of Xuzhou, China. Remote Sens. 2020, 12, 578. [Google Scholar] [CrossRef] [Green Version]
- Litvak, E.; McCarthy, H.R.; Pataki, D.E. A Method for Estimating Transpiration of Irrigated Urban Trees in California. Landsc. Urban Plan. 2017, 158, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Noori, B.; Nouri, H. Estimation of Urban Evapotranspiration through Vegetation Indices Using WorldView2 Satellite Remote Sensing Images. In Proceedings of the International Conference on Sustainable Development, Strategies and Challenges with a Focus on Agriculture, Natural Resources, Environment and Tourism, Tabriz, Iran, 25 February 2015. [Google Scholar]
- Nouri, H.; Stokvis, B.; Galindo, A.; Blatchford, M.; Hoekstra, A.Y. Water Scarcity Alleviation through Water Footprint Reduction in Agriculture: The Effect of Soil Mulching and Drip Irrigation. Sci. Total Environ. 2019, 653, 241–252. [Google Scholar] [CrossRef]
- Nouri, H.; Beecham, S.; Kazemi, F.; Hassanli, A.M. A Review of ET Measurement Techniques for Estimating the Water Requirements of Urban Landscape Vegetation. Urban Water J. 2013, 10, 247–259. [Google Scholar] [CrossRef]
- Saher, R.; Stephen, H.; Ahmad, S. Urban Evapotranspiration of Green Spaces in Arid Regions through Two Established Approaches: A Review of Key Drivers, Advancements, Limitations, and Potential Opportunities. Urban Water J. 2021, 18, 115–127. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Pataki, D.E.; McCarthy, H.R.; Litvak, E.; Pincetl, S. Transpiration of Urban Forests in the Los Angeles Metropolitan Area. Ecol. Appl. 2011, 21, 661–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y. Application of Different Remote Sensing Evapotranspiration Estimate Models in Urban Agglomeration Areas. In Proceedings of the American Geophysical Union, Fall Meeting, Washington, DC, USA, 10–14 December 2018; p. H33I-2204. [Google Scholar]
- Monteith, J.I.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Boegh, E.; Poulsen, R.N.; Butts, M.; Abrahamsen, P.; Dellwik, E.; Hansen, S.; Hasager, C.B.; Ibrom, A.; Loerup, J.-K.; Pilegaard, K.; et al. Remote Sensing Based Evapotranspiration and Runoff Modeling of Agricultural, Forest and Urban Flux Sites in Denmark: From Field to Macro-Scale. J. Hydrol. 2009, 377, 300–316. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global Estimates of the Land–Atmosphere Water Flux Based on Monthly AVHRR and ISLSCP-II Data, Validated at 16 FLUXNET Sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-Based Land Evaporation and Root-Zone Soil Moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Guo, M.; Bai, P.; Li, J. Different Vegetation Information Inputs Significantly Affect the Evapotranspiration Simulations of the PT-JPL Model. Remote Sens. 2022, 14, 2573. [Google Scholar] [CrossRef]
- Shao, R.; Zhang, B.; Su, T.; Biao, L.; Cheng, L.; Xue, Y.; Yang, W. Estimating the Increase in Regional Evaporative Water Consumption as a Result of Vegetation Restoration Over the Loess Plateau, China. J. Geophys. Res.-Atmos. 2019, 124, 11783–11802. [Google Scholar] [CrossRef]
- Cheng, S.; Cheng, L.; Qin, S.; Zhang, L.; Liu, P.; Liu, L.; Xu, Z.; Wang, Q. Improved Understanding of How Catchment Properties Control Hydrological Partitioning Through Machine Learning. Water Resour. Res. 2022, 58, e2021WR031412. [Google Scholar] [CrossRef]
- Oke, T.R. The Urban Energy Balance. Prog. Phys. Geogr. Earth Environ. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Cheng, S.; Cheng, L.; Liu, P.; Qin, S.; Zhang, L.; Xu, C.-Y.; Xiong, L.; Liu, L.; Xia, J. An Analytical Baseflow Coefficient Curve for Depicting the Spatial Variability of Mean Annual Catchment Baseflow. Water Resour. Res. 2021, 57, e2020WR029529. [Google Scholar] [CrossRef]
- Leuning, R.; van Gorsel, E.; Massman, W.J.; Isaac, P.R. Reflections on the Surface Energy Imbalance Problem. Agric. For. Meteorol. 2012, 156, 65–74. [Google Scholar] [CrossRef]
- Foken, T. The Energy Balance Closure Problem: An Overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef]
- Lipson, M.; Grimmond, S.; Best, M.; Chow, W.T.L.; Christen, A.; Chrysoulakis, N.; Coutts, A.; Crawford, B.; Earl, S.; Evans, J.; et al. Harmonized Gap-Filled Datasets from 20 Urban Flux Tower Sites. Earth Syst. Sci. Data 2022, 14, 5157–5178. [Google Scholar] [CrossRef]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting Eddy-Covariance Flux Underestimates over a Grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef] [Green Version]
- Schmid, H. Experimental Design for Flux Measurements: Matching Scales of Observations and Fluxes. Agric. For. Meteorol. 1997, 87, 179–200. [Google Scholar] [CrossRef]
- Chen, H.; Huang, J.J.; Dash, S.S.; Lan, Z.; Gao, J.; McBean, E.; Singh, V.P. Development of a Three-Source Remote Sensing Model for Estimation of Urban Evapotranspiration. Adv. Water Resour. 2022, 161, 104126. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. An Evapotranspiration-Interception Model for Urban Areas. Water Resour. Res. 1991, 27, 1739–1755. [Google Scholar] [CrossRef]
- Vulova, S.; Meier, F.; Rocha, A.D.; Quanz, J.; Nouri, H.; Kleinschmit, B. Modeling Urban Evapotranspiration Using Remote Sensing, Flux Footprints, and Artificial Intelligence. Sci. Total Environ. 2021, 786, 147293. [Google Scholar] [CrossRef] [PubMed]
- Oke, T.R.; Cleugh, H.A. Urban Heat Storage Derived as Energy Balance Residuals. Bound.-Layer Meteorol. 1987, 39, 233–245. [Google Scholar] [CrossRef]
- Ruffieux, D.; Wolfe, D.E.; Russell, C. The Effect of Building Shadows on the Vertical Temperature Structure of the Lower Atmosphere in Downtown Denver. J. Appl. Meteorol. Climatol. 1990, 29, 1221–1231. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, G.; Zhang, H.; Yang, Y.; Zhang, Y.; Wang, Q.; Zhao, W.; Jia, L.; Ji, X.; Xiong, Y.; et al. Shifting from Homogeneous to Heterogeneous Surfaces in Estimating Terrestrial Evapotranspiration: Review and Perspectives. Sci. China Earth Sci. 2022, 65, 197–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, L.; Zhang, L.; Qin, S.; Liu, L.; Liu, P.; Liu, Y. Does Non-Stationarity Induced by Multiyear Drought Invalidate the Paired-Catchment Method? Hydrol. Earth Syst. Sci. 2022, 26, 6379–6397. [Google Scholar] [CrossRef]
- Beer, A. Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann. Phys. Chem. 1852, 162, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Denmead, O.T.; Millar, B.D. Field Studies of the Conductance of Wheat Leaves and Transpiration. Agron. J. 1976, 68, 307–311. [Google Scholar] [CrossRef]
- Impens, I.; Lemeur, R. Extinction of Net Radiation in Different Crop Canopies. Arch. Für Meteorol. Geophys. Bioklimatol. Ser. B 1969, 17, 403–412. [Google Scholar] [CrossRef]
- Ross, J. Radiative Transfer in Plant Communities. Veg. Atmos. 1975, 1, 13–55. [Google Scholar]
- Kormann, R.; Meixner, F.X. An Analytical Footprint Model For Non-Neutral Stratification. Bound.-Layer Meteorol. 2001, 99, 207–224. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B.; Gabey, A.; Huang, B.; Kent, C.W.; Sun, T.; Theeuwes, N.E.; Järvi, L.; Ward, H.C.; Capel-Timms, I.; et al. Urban Multi-Scale Environmental Predictor (UMEP): An Integrated Tool for City-Based Climate Services. Environ. Model. Softw. 2018, 99, 70–87. [Google Scholar] [CrossRef]
- Kanda, M.; Inagaki, A.; Miyamoto, T.; Gryschka, M.; Raasch, S. A New Aerodynamic Parametrization for Real Urban Surfaces. Bound.-Layer Meteorol. 2013, 148, 357–377. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A Simple Two-Dimensional Parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Su, Z.; Ma, Y.; Yang, K.; Wang, B. Estimation of Surface Energy Fluxes under Complex Terrain of Mt. Qomolangma over the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2013, 17, 1607–1618. [Google Scholar] [CrossRef] [Green Version]
- Running, S.W.; Coughlan, J.C. A General Model of Forest Ecosystem Processes for regional applications I. Hydrologic Balance, Canopy Gas Exchange and Primary Production Processes. Ecol. Model. 1988, 42, 125–154. [Google Scholar] [CrossRef]
- Sakakibara, Y. A Numerical Study of the Effect of Urban Geometry upon the Surface Energy Budget. Atmos. Environ. 1996, 30, 487–496. [Google Scholar] [CrossRef]
- Humes, K.S.; Kustas, W.P.; Moran, M.S.; Nichols, W.D.; Weltz, M.A. Variability of Emissivity and Surface Temperature over a Sparsely Vegetated Surface. Water Resour. Res. 1994, 30, 1299–1310. [Google Scholar] [CrossRef]
- Lindberg, F.; Jonsson, P.; Honjo, T.; Wästberg, D. Solar Energy on Building Envelopes—3D Modelling in a 2D Environment. Sol. Energy 2015, 115, 369–378. [Google Scholar] [CrossRef]
- Jonsson, P.; Eliasson, I.; Holmer, B.; Grimmond, C.S.B. Longwave Incoming Radiation in the Tropics: Results from Field Work in Three African Cities. Theor. Appl. Climatol. 2006, 85, 185–201. [Google Scholar] [CrossRef]
- Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0—Modelling Spatial Variations of 3D Radiant Fluxes and Mean Radiant Temperature in Complex Urban Settings. Int. J. Biometeorol. 2008, 52, 697–713. [Google Scholar] [CrossRef] [PubMed]
- Reindl, D.T.; Beckman, W.A.; Duffie, J.A. Diffuse Fraction Correlations. Sol. Energy 1990, 45, 1–7. [Google Scholar] [CrossRef]
- Bogren, J.; Gustavsson, T.; Karlsson, M.; Postgård, U. The Impact of Screening on Road Surface Temperature. Meteorol. Appl. 2000, 7, 97–104. [Google Scholar] [CrossRef]
- Gan, R.; Zhang, Y.; Shi, H.; Yang, Y.; Eamus, D.; Cheng, L.; Chiew, F.H.S.; Yu, Q. Use of Satellite Leaf Area Index Estimating Evapotranspiration and Gross Assimilation for Australian Ecosystems: Coupled Estimates of ET and GPP. Ecohydrology 2018, 11, e1974. [Google Scholar] [CrossRef]
- Dorman, M.; Erell, E.; Vulkan, A.; Kloog, I. Shadow: R Package for Geometric Shadow Calculations in an Urban Environment. R J. 2019, 11, 287. [Google Scholar] [CrossRef] [Green Version]
- Spronken-Smith, R.; Oke, T.; Lowry, W. Advection and the Surface Energy Balance across an Irrigated Urban Park. Int. J. Climatol. 2000, 20, 1033–1047. [Google Scholar] [CrossRef]
- Camuffo, D.; Bernardi, A. An Observational Study of Heat Fluxes and Their Relationships with Net Radiation. Bound.-Layer Meteorol. 1982, 23, 359–368. [Google Scholar] [CrossRef]
- Santanello, J.A.; Friedl, M.A. Diurnal Covariation in Soil Heat Flux and Net Radiation. J. Appl. Meteorol. 2003, 42, 851–862. [Google Scholar] [CrossRef]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer Science & Business Media: Berlin, Germany, 2012; ISBN 978-94-007-2350-4. [Google Scholar]
- Dabberdt, W.F.; Lenschow, D.H.; Horst, T.W.; Zimmerman, P.R.; Oncley, S.P.; Delany, A.C. Atmosphere-Surface Exchange Measurements. Science 1993, 260, 1472–1481. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Li, S.; Cheng, L.; Zhang, L.; Qiu, R.; Liu, P.; Xi, H. Partitioning Evapotranspiration in Partially Mulched Interplanted Croplands by Improving the Shuttleworth-Wallace Model. Agric. Water Manag. 2023, 276, 108040. [Google Scholar] [CrossRef]
- Järvi, L.; Hannuniemi, H.; Hussein, T.; Junninen, H.; Aalto, P.; Keronen, P.; Kulmala, M.; Keronen, P.; Hillamo, R.; Mäkelä, T.; et al. The urban Measurement Station SMEAR III: Continuous Monitoring of Air Pollution and Surface-Atmosphere Interactions in Helsinki, Finland. Boreal Environ. Res. 2009, 14 (Suppl. A), 86–109. [Google Scholar]
- Duarte Rocha, A.; Vulova, S.; van der Tol, C.; Förster, M.; Kleinschmit, B. Modelling Hourly Evapotranspiration in Urban Environments with SCOPE Using Open Remote Sensing and Meteorological Data. Hydrol. Earth Syst. Sci. 2022, 26, 1111–1129. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable Classification with Limited Sample: Transferring a 30-m Resolution Sample set Collected in 2015 to Mapping 10-m Resolution Global Land Cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Ma, J.; Gaofeng, Z.; Ma, T.; Han, T.; Feng, L. Parameter Sensitivity Analysis and Optimization for a Satellite-Based Evapotranspiration Model across Multiple Sites Using MODIS and Flux Data. J. Geophys. Res. Atmospheres 2016, 122, 230–245. [Google Scholar] [CrossRef]
- Grefenstette, J. Optimization of Control Parameters for Genetic Algorithms. IEEE Trans. Syst. Man Cybern. 1986, 16, 122–128. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Rwasoka, D.T.; Gumindoga, W.; Gwenzi, J. Estimation of Actual Evapotranspiration Using the Surface Energy Balance System (SEBS) Algorithm in the Upper Manyame Catchment in Zimbabwe. Phys. Chem. Earth Parts ABC 2011, 36, 736–746. [Google Scholar] [CrossRef]
- Kleissl, J.; Hong, S.-H.; Hendrickx, J.M. New Mexico Scintillometer Network: Supporting Remote Sensing and Hydrologic and Meteorological Models. Bull. Am. Meteorol. Soc. 2009, 90, 207–218. [Google Scholar] [CrossRef]
- Yu, B.; Liu, H.; Wu, J.; Lin, W.-M. Investigating Impacts of Urban Morphology on Spatio-Temporal Variations of Solar Radiation with Airborne LIDAR Data and a Solar Flux Model: A Case Study of Downtown Houston. Int. J. Remote Sens. 2009, 30, 4359–4385. [Google Scholar] [CrossRef]
- Lai, A.; Maing, M.; Ng, E. Observational Studies of Mean Radiant Temperature across Different Outdoor Spaces under Shaded Conditions in Densely Built Environment. Build. Environ. 2017, 114, 397–409. [Google Scholar] [CrossRef]
- Litvak, E.; Bijoor, N.S.; Pataki, D.E. Adding Trees to Irrigated Turfgrass Lawns May Be a Water-Saving Measure in Semi-Arid Environments. Ecohydrology 2013, 7, 1314–1330. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical Study on the Effects of Aspect Ratio and Orientation of an Urban Street Canyon on Outdoor Thermal Comfort in Hot and Dry Climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Qiu, G.; Tan, S.; Wang, Y.; Yu, X.; Yan, C. Characteristics of Evapotranspiration of Urban Lawns in a Sub-Tropical Megacity and Its Measurement by the ‘Three Temperature Model + Infrared Remote Sensing’ Method. Remote Sens. 2017, 9, 502. [Google Scholar] [CrossRef] [Green Version]
- Shashua-Bar, L.; Hoffman, M.E. The Green CTTC Model for Predicting the Air Temperature in Small Urban Wooded Sites. Build. Environ. 2002, 37, 1279–1288. [Google Scholar] [CrossRef]
- Gusson, C.S.; Duarte, D.H.S. Effects of Built Density and Urban Morphology on Urban Microclimate—Calibration of the Model ENVI-Met V4 for the Subtropical Sao Paulo, Brazil. Procedia Eng. 2016, 169, 2–10. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic Properties of Urban Areas Derived, from Analysis of Surface Form. J. Appl. Meteorol. Climatol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Kent, C.W.; Grimmond, S.; Barlow, J.; Gatey, D.; Kotthaus, S.; Lindberg, F.; Halios, C.H. Evaluation of Urban Local-Scale Aerodynamic Parameters: Implications for the Vertical Profile of Wind Speed and for Source Areas. Bound.-Layer Meteorol. 2017, 164, 183–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, E.B.; Hiller, R.V.; McFadden, J.P. Seasonal Contributions of Vegetation Types to Suburban Evapotranspiration. J. Geophys. Res. Biogeosciences 2011, 116. [Google Scholar] [CrossRef]
- Martens, B.; Waegeman, W.; Dorigo, W.A.; Verhoest, N.E.C.; Miralles, D.G. Terrestrial Evaporation Response to Modes of Climate Variability. Clim. Atmos. Sci. 2018, 1, 43. [Google Scholar] [CrossRef] [Green Version]
- Vergara, J.; de la Fuente, A. Intraday evaporation and heat fluxes variation at air-water interface of extremely shallow lakes in Chilean Andean Plateau. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 17–22 April 2016. EPSC2016-8300. [Google Scholar]
Sample | Shading | Source Area | RMSE (W m−2) | R2 | Bias (%) |
---|---|---|---|---|---|
total | yes | dynamic footprint | 14.67 | 0.59 | −4.5 |
calibration | yes | dynamic footprint | 14.65 | 0.59 | −0.7 |
validation | yes | dynamic footprint | 14.70 | 0.58 | −11.1 |
total | yes | historical footprint | 16.25 | 0.07 | 3.6 |
total | yes | 1.5 km circle area | 70.48 | 0.11 | 184.3 |
total | no | dynamic footprint | 28.34 | 0.35 | 38.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Cheng, L.; Qin, S.; Mai, Y.; Lu, M. Estimation of Urban Evapotranspiration at High Spatiotemporal Resolution and Considering Flux Footprints. Remote Sens. 2023, 15, 1327. https://doi.org/10.3390/rs15051327
Zhou L, Cheng L, Qin S, Mai Y, Lu M. Estimation of Urban Evapotranspiration at High Spatiotemporal Resolution and Considering Flux Footprints. Remote Sensing. 2023; 15(5):1327. https://doi.org/10.3390/rs15051327
Chicago/Turabian StyleZhou, Lihao, Lei Cheng, Shujing Qin, Yiyi Mai, and Mingshen Lu. 2023. "Estimation of Urban Evapotranspiration at High Spatiotemporal Resolution and Considering Flux Footprints" Remote Sensing 15, no. 5: 1327. https://doi.org/10.3390/rs15051327
APA StyleZhou, L., Cheng, L., Qin, S., Mai, Y., & Lu, M. (2023). Estimation of Urban Evapotranspiration at High Spatiotemporal Resolution and Considering Flux Footprints. Remote Sensing, 15(5), 1327. https://doi.org/10.3390/rs15051327