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Abstract: As an important energy absorption process in the Earth’s surface energy balance,
evapotranspiration (ET) from vegetation and bare soil plays an important role in regulating the
environmental temperatures. However, little research has been done to explore the cooling effect of
ET on the urban heat island (UHI) due to the lack of appropriate remote-sensing-based estimation
models for complex urban surface. Here, we apply the modified remote sensing Penman–Monteith
(RS-PM) model (also known as the urban RS-PM model), which has provided a new regional ET
estimation method with the better accuracy for the urban complex underlying surface. Focusing
on the city of Xuzhou in China, ET and land surface temperature (LST) were inversed by using 10
Landsat 8 images during 2014–2018. The impact of ET on LST was then analyzed and quantified
through statistical and spatial analyses. The results indicate that: (1) The alleviating effect of ET on
the UHI was stronger during the warmest months of the year (May–October) but not during the
colder months (November–March); (2) ET had the most significant alleviating effect on the UHI effect
in those regions with the highest ET intensities; and (3) in regions with high ET intensities and their
surrounding areas (within a radius of 150 m), variation in ET was a key factor for UHI regulation; a
10 W·m−2 increase in ET equated to 0.56 K decrease in LST. These findings provide a new perspective
for the improvement of urban thermal comfort, which can be applied to urban management, planning,
and natural design.
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1. Introduction

The urban heat island (UHI) effect describes the phenomenon through which the urban
temperatures are significantly higher than in the surrounding suburbs [1]. Urbanization is typically
accompanied by the transformation of vegetation, soil, and other surface cover types into cement,
asphalt, concrete, and other impervious surfaces [2]. Widespread changes in surface and the
emission of anthropogenic heat in urban areas not only change regional surface radiation and heat
conduction characteristics but also have a significant impact on the regional energy balance, water cycle,
and atmospheric conditions. In addition, urban population density [3–5], urban energy consumption [6],
urban climatic and meteorological conditions [5,7], and urban atmospheric pollution [8] have been
widely shown to be the main factors influencing the formation and enhancement of UHI effect.
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As the UHI effect has a negative environmental impact in urban areas, several studies have
explored the factors that mediate the UHI effect with a view to mitigating its effects [9–11]. One
common conclusion of this previous research is that vegetation and water have cooling and humidifying
functions, which are the main factors acting to alleviate the UHI effect [12–14]. In general, water bodies
in cities are often isolated and tend to be located in urban parks. Therefore, vegetation arguably plays
a more important role in alleviating the thermal environment and in improving proximate human
thermal comfort [15]. Urban vegetation has various types and functions, including vegetation in
recreational parks and gardens, allotments, and street vegetation. One approach to alleviate the heat
island effect is to use vegetation as shading on construction land to prevent direct solar heating [3,14,16].
It has been proven, for example, that the area and density of vegetation [3,10,14] can be used as indices
for the degree of UHI mitigation, as can other indices such as the normalized difference vegetation
index (NDVI) [17–19], which have also shown significant negative correlations with the UHI intensity.
In addition, a series of remote-sensing-based studies have demonstrated that vegetation characteristics
including size [14,20], shape [21], species [22], and spatial patterning [23,24] have significant impacts
on the urban cooling effect.

Another important mechanism through which vegetation can mitigate urban heat is
evapotranspiration (ET) [14,20,25], which consists of transpiration by vegetation and soil water
evaporation [26]. ET involves the phase change of liquid water to water vapor and is accompanied by
energy absorption. Therefore, ET can have a significant cooling effect on the surrounding environment,
creating thermal “oases” with temperatures up to 2–8 °C cooler than their surroundings [1]. Furthermore,
the careful selection of suitable vegetation species can effectively enhance the cooling effect of ET [14].

While the important role of ET in regulating the urban thermal environment is well known,
the spatial characteristics of ET’s cooling effect and its quantification at a regional scale are rarely
studied. This is mainly due to the challenges of measuring and modeling ET in urban areas with highly
heterogeneous surfaces [27,28].

Currently, most studies on regional-scale ET have employed remote sensing data with
corresponding surface energy balance (SEB) models or the Penman–Monteith (PM) equation [29–32],
yet these methods are mainly applied to natural surfaces that are mostly covered by vegetation and bare
soil [26]. As impervious surfaces are a major component of urban land, traditional remote-sensing-based
ET inversion models cannot, therefore, be directly applied to urban areas [33]. Based on multi-thermal
infrared remote sensing data and applying spectral mixture analysis, a modified multi-source parallel
(MMP) model [33] developed from the dual-source parallel SEB model has been proposed for inversing
urban ET. In the MMP model, the kernel parameters of component temperatures are calculated through
the least squares method. Therefore, the MMP model relies on remote sensing data with at least four
thermal infrared bands, which the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors can provide [33].
However, the short-wave infrared (SWIR) detector failure of ASTER [34] and the low spatial resolution
(1 km) of MODIS have limited the application of the MMP model [35].

The other commonly used regional ET estimation method is the remote sensing PM (RS-PM) model
proposed by Cleugh et al. [36], and Mu et al. [32] have since developed an improved RS-PM model by
including soil water evaporation. This model benefits from having a lower number of parameters and
a simpler calculation process and, as such, has been widely used for regional ET estimation [37,38].
Indeed, the upgraded version of the RS-PM model [32] has been adopted by the National Aeronautics
and Space Administration (NASA) for producing global ET products (MOD16) [39]. Furthermore,
based on Mu et al.’s work [32], Zhang et al. [35] have developed an urban RS-PM model by incorporating
spectral mixture analysis. Compared with the traditional RS-PM model, the urban RS-PM model has
three improvements: (1) Linear spectral analysis is used to extract the fractions of vegetation and bare
soil in the mixed pixel, which is applicative for urban heterogeneous surface; (2) the linear relationship
between the component ET in the mixed pixel and the ET in the corresponding pure pixel is established,
which is more comprehensive for simulating the surface energy balance; and (3) the component surface
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characteristics parameters are added in the inversion of component net radiation, which has simulated
the differences of the net radiations for various surfaces. Compared with the MMP model, the urban
RS-PM model has greatly simplified the inversion process and provides an acceptable level of accuracy
given that modeled ET values are less sensitive to variations in the component temperatures, which can
be directly estimated using empirical formula. Furthermore, the urban RS-PM model can be applied to
more types of remote sensing data, such as the Landsat series and the HJ-1 A/B satellites (manufactured
by China Aerospace Science and Technology Corporation, and launched on 6 September 2008) [35].
Therefore, the urban RS-PM model offers an appropriate tool to explore the mechanisms through which
ET mitigates the UHI at a regional scale.

2. Material and Methods

2.1. Study Area

Xuzhou is located between 117◦01′–117◦25′E and 34◦06′–34◦22′N (Figure 1) and is the
second-largest city in the northwestern province of Jiangsu, East China. According to 2018 statistics,
Xuzhou covers a total area of 11,258 km2, including a 3037-km2 urban area, with a population of 87.63
million of which 55.88 million live in urban areas [40]. Xuzhou has a warm temperate monsoon climate
with annual precipitation between 800 and 930 mm, and a rainy season that accounts for approximately
56% of the annual total precipitation. The annual average percentage of sunshine is between 52% and
57%, and the annual average temperature is approximately 15.5 ◦C (2014–2016 data). Vegetation cover
is approximately 30.3%, and the urban area coverage has reached 43.3%.
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Figure 1. Location and satellite image of study area: (a) the location of Jiangsu province in China;
(b) the location of study area in Jiangsu province; (c) the border and satellite image of study area
(Landsat 8 false color image of study area on 2 September 2016 with 7, 5, 3 bands fusion).

As a typical medium-sized city in China, Xuzhou has undergone large-scale urbanization but has
relatively good environmental (climatic and ecological) conditions due to its rich vegetation coverage
that is conducive to surface ET.
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2.2. Data

2.2.1. Satellite Data

Ten sets of Landsat 8 Operational Land Imager (OLI, 30 m resolution) and Thermal Infrared Sensor
(TIRS, 100 m resolution) images (all of the satellite datasets used in our study are listed in Table 1) for
the period 2014–2018 were selected for inversing urban surface evapotranspiration and heat island
effect in the study area. Six image sets were acquired during (or close to) summer (May–October,
classified as warm season) and four during (or close to) winter (November–March, classified as cold
season). For the Landsat 8 data, OLI bands 1–7 were used to extract the pixel component fractions and
the intermediate parameters in the ET inversion, and TIRS Band 10 was used to retrieve land surface
temperatures. Based on the acquisition date of the Landsat 8 data, four GF-1 and GF-2 high-resolution
remote sensing images were also selected to validate the accuracy of the linear spectral mixture analysis.

Table 1. Technical specifications of Landsat 8 and GF-1/GF-2 data.

Sensor Resolution Scene ID Acquisition
Date

Cold or Warm
Season

Acquisition
Time (GMT)

Landsat 8 OLI Band: 30 m
TIRS Band: 100 m

LC81210362014121LGN00 01–05–2014 Warm 02:42:29
LC81210362014297LGN00 24–10–2014 Warm 02:42:58
LC81220362015355LGN00 21–12–2015 Cold 02:49:04
LC81210362016047LGN01 16–02–2016 Cold 02:42:40
LC81220362016070LGN01 10–03–2016 Cold 02:48:47
LC81220362016246LGN00 02–09–2016 Warm 02:49:07
LC81220362016278LGN00 04–10–2016 Warm 02:49:11
LC81220362016310LGN00 05–11–2016 Cold 02:49:16
LC81220362017136LGN00 16–05–2017 Warm 02:48:22
LC81220362018123LGN00 03–05–2018 Warm 02:48:04

GF-1 PAN Band: 2 m
MS Band: 8 m

579791 24–10–2014 03:26:39
579790 24–10–2014 03:26:34

GF-2 PAN Band: 1 m
MS Band: 4 m 2872975 05–10–2016 03:25:48

2.2.2. Meteorological Observations

Based on the urban RS-PM model, it is necessary to obtain meteorological observation data
including air temperature (Tair), air relative humidity (RH), atmospheric pressure (PA), wind speed
(uz), and water vapor pressure (e) for inversing urban surface ET. All meteorological data (Table 2)
corresponding to the acquisition time of the Landsat 8 data were obtained from the meteorological
observatory at the China University of Mining and Technology (CUMT) in Xuzhou, and the time
resolution of the meteorological data is 30 min.

Table 2. Meteorological observation data of study area *.

Date Recording Time
(GMT)

Air
Temperature

(K)

Wind Speed
(m/s)

Atmospheric
Pressure

(kPa)

Air Relative
Humidity

(%)

Water Vapor
Pressure

(hPa)

01–05–2014 02:30:00 297.42 2.66 101.12 55.12 16.70
24–10–2014 02:30:00 293.59 2.51 101.62 65.59 15.80
21–12–2015 03:00:00 277.96 1.03 102.69 51.75 4.40
16–02–2016 02:30:00 276.50 2.47 102.54 33.87 2.60
10–03–2016 03:00:00 278.34 1.79 103.19 24.63 2.20
02–09–2016 03:00:00 303.92 2.54 100.24 32.16 14.30
04–10–2016 03:00:00 296.25 2.65 101.42 67.94 19.20
05–11–2016 03:00:00 291.38 1.67 101.08 65.43 13.70
16–05–2017 03:00:00 296.33 1.69 101.19 39.76 11.10
03–05–2018 03:00:00 294.96 4.77 101.69 48.00 12.50

* All meteorological data were observed at 2 m height.
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2.2.3. Flux Observations

To validate the accuracy of the ET values estimated using the urban RS-PM model, observed
latent heat flux data were also obtained from the open-path eddy covariance (EC) system set up on a
30 m-high flux tower located at the CUMT Collaborative Observation Test Site (Figure 2). According to
the aerodynamic environment around the flux tower, the height above the ground (Z) of the EC was
15 m, the average building height around the flux tower (hb) was 4.5 m, the zero displacement (d) was
0.68 m, the momentum roughness length (Zom) was 3 m, and the effective measurement height (Z− d)
was 14.32 m.

Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 22 

Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

To validate the accuracy of the ET values estimated using the urban RS-PM model, observed 
latent heat flux data were also obtained from the open-path eddy covariance (EC) system set up on a 
30 m-high flux tower located at the CUMT Collaborative Observation Test Site (Figure 2). According 
to the aerodynamic environment around the flux tower, the height above the ground (𝑍) of the EC 
was 15 m, the average building height around the flux tower (ℎ ) was 4.5 m, the zero displacement 
(𝑑) was 0.68 m, the momentum roughness length (𝑍 ) was 3 m, and the effective measurement 
height (𝑍 − 𝑑) was 14.32 m. 

 
Figure 2. The flux tower in China University of Mining and Technology (CUMT): (a) location of the 
flux tower; (b) photograph of the flux tower and the EC. 

2.3. ET Estimation Using the Urban RS-PM Model 

The urban RS-PM model [35] was developed from the surface energy balance dual-source parallel 
model [33] and the RS-PM model [26]. Mixed pixels of Landsat 8 images of urban areas are composed 
of impervious surface, vegetation, and soil components, while water generally exists in isolated 
patches and can be masked separately [41]. As an important component of the urban mixed pixels, 
impervious surface is an integral endmember in the linear spectral analysis for extracting vegetation 
and bare soil fractions. However, it cannot retain water in dry weather, which makes no contribution 
to urban evapotranspiration. Therefore, the ET from an urban mixed pixel can be estimated as the 
vegetation component transpiration and the soil component water evaporation, as follows: 𝐸𝑇 = 𝐸𝑇 + 𝐸𝑇  (1) 𝐸𝑇 = 𝑓 × 𝐸𝑇∗ (2) 𝐸𝑇 = 𝑓 × 𝐸𝑇∗ (3) 
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flux tower; (b) photograph of the flux tower and the EC.

2.3. ET Estimation Using the Urban RS-PM Model

The urban RS-PM model [35] was developed from the surface energy balance dual-source parallel
model [33] and the RS-PM model [26]. Mixed pixels of Landsat 8 images of urban areas are composed
of impervious surface, vegetation, and soil components, while water generally exists in isolated patches
and can be masked separately [41]. As an important component of the urban mixed pixels, impervious
surface is an integral endmember in the linear spectral analysis for extracting vegetation and bare
soil fractions. However, it cannot retain water in dry weather, which makes no contribution to urban
evapotranspiration. Therefore, the ET from an urban mixed pixel can be estimated as the vegetation
component transpiration and the soil component water evaporation, as follows:

ET = ETv + ETs (1)
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ETv = fv × ET∗v (2)

ETs = fs × ET∗s (3)

where ETv and ETs are the vegetation component transpiration and soil component evaporation in
an urban mixed pixel, respectively; fv and fs are the vegetation and soil fractions in the mixed pixel,
respectively; ET∗v is transpiration in a pure vegetation pixel; and ET∗s is evaporation in a pure soil pixel.
A detailed explanation for Equations (1) to (3) is shown in Figure 3.
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Figure 3. Evapotranspiration estimation for an urban mixed pixel based on the urban remote sensing
Penman–Monteith RS-PM model: (a) estimation for transpiration of vegetation component ETv,P2 (P2
refers to a mixed urban pixel, and P1 refers to a pure vegetation pixel with the same environmental and
meteorological conditions as the vegetation component in P2); (b) estimation for water evaporation of
soil component ETs,P4 (P4 refers to a mixed urban pixel, and P3 refers to a pure soil pixel with the same
environmental and meteorological conditions as the soil component in P4).

Considering the heterogeneity of pixel components, the urban RS-PM model used a re-derived
Penman–Monteith algorithm that incorporates the surface energy balance dual-source parallel model.
As such, the vegetation component transpiration and soil water evaporation (ETv and ETs) in an urban
mixed pixel can be estimated as follows [35]:

ETv =
fv
λ

∆R∗n,v + ρCp(es − ea)/rah,v

∆ + γ
(
1 + rs,v

rah,v

)
 (4)

ETs =
fs
λ


∆
(
R∗n,s −G∗s

)
+ ρCp(es − ea)/rah,s

∆ + γ
(
1 + rtot

rah,s

) ×

(RH
100

)(es−ea)/100

 (5)

where λ (J·kg−1) is the latent heat of vaporization; ∆ is the slope of the relationship between saturated
water vapor pressure (es, Pa) and temperature; R∗n,v and R∗n,s (W·m−2) are the net radiation in a pure
vegetation pixel and a pure soil pixel, respectively; G∗s (W·m−2) is the soil heat flux in a pure soil pixel;
ρ (kg·m−3), Cp (J·kg−1

·K−1), and ea (Pa) are the air density, air specific heat capacity, and actual water
vapor pressure, respectively; rah,v and rah,s (s·m−1) are the aerodynamic resistance to heat transfer of
vegetation and soil, respectively; γ is the psychrometric constant; rs,v (Pa·K−1) is the vegetation canopy
surface resistance; rtot (Pa·K−1) is the total aerodynamic resistance to vapor transport at the soil surface
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(including the surface resistance and aerodynamic resistance for vapor transport); and RH is the air
relative humidity.

In Equations (4) and (5), the parameters λ, ∆, ρ, Cp, es, ea, and RH can be directly obtained or
calculated from meteorological observations. The other parameters ( fv, fs, R∗n,v, R∗n,s, rah,v, rah,s, rs,v, rs,s,
and Gs) were calculated using the surface information extracted from remote sensing imagery.

2.3.1. Linear Spectral Analysis

A normalized linear spectral mixture analysis (NSMA) was applied (see Wu et al. [42]) to extract
the proportions of vegetation ( fv), soil ( fs), high-albedo impervious surface ( fimp_h), and low-albedo
impervious surface ( fimp_l) for each mixed pixel, which can be expressed as follows:

Rb =
N∑

i=1

fiRi,b + eb (6)

N∑
i=1

fi = 1, fi ≥ 0 (7)

where Rb is the normalized reflectance of band b for a pixel; fi is the fraction of each endmember
(where f1, f2, f3, and f4 refer to fv, fs, fimp_h, and fimp_l, respectively); Ri,b is the endmember normalized
reflectance of band b for the pixel; N is the total number of all endmembers; and eb is the residual.

It is necessary to use GF-1/2 high-resolution images to verify the accuracy of linear spectral
analysis. One hundred sample points were selected randomly in the Landsat 8 image, and each sample
point contained 3 × 3 pixels (90 × 90 m). Then, the GF-1/2 images were manually interpreted to extract
the true component fractions of each sample point to verify the accuracy of the inversed fv and fs.

2.3.2. Component Net Radiation Inversion

The net radiation flux was determined as the incoming net shortwave radiation and net longwave
radiation [7]. For a pure pixel of vegetation or soil, net radiation flux (R∗n,v and R∗n,s) were calculated as
follows [35,36,43]:

R∗n,v = (1− av)Sd + εairσT4
air − εvσT4

v (8)

R∗n,s = (1− as)Sd + εairσT4
air − εsσT4

s (9)

where av and as are the typical surface albedos of pure vegetation and pure soil pixels, respectively,
which can be extracted from Landsat 8 images [44]. Here, taking the average value of av = 0.18
and as = 0.28 for the study area, Sd (W·m−2) is the incoming solar radiation; εair is the atmospheric
emissivity; σ is the Stefan–Boltzmann constant (5.67 × 10−8 W·m−2

·K−4); Tair (K) is the air temperature,
which was estimated using Qin et al.’s [45] algorithm; εv and εs are the typical surface emissivity
of vegetation and soil, respectively; and Tv and Ts (K) are the component surface temperature of
vegetation and soil, respectively.
• Calculation of Sd

The incoming solar radiation Sd can be calculated by astronomical algorithms, which are been
shown as Equations (10) and (11) [46,47]:

Sd = Iscd2
m cosθτb (10)

cosθ = sinϕ sin δ+ cosϕ cos δ cosω (11)

where Isc is the solar constant with Isc = 1367 W·m−2; d2
m is the correction coefficient of Sun–Earth

distance; θ is the solar zenith angle (rad); τb is the atmospheric broadband transmissivity; ϕ is the
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study area’s central latitude (34.2◦N); δ is the solar declination (rad); and ω is the solar hour angle (rad).
d2

m, δ, and ω can be calculated by Equations (12) to (14) [48]:

d2
m = 1.000110 + 0.034221 cos β+ 0.001280 sin β+ 0.000719 cos 2β+ 0.000077 sin 2β (12)

δ = 0.006918 + 0.399912 cos β+ 0.070257 sin β+ 0.006758 cos 2β+ 0.000907 sin 2β− 0.002697 cos 3β+ 0.00148 sin 3β (13)

ω =
π
12

(ST − 12) (14)

where β and ST are the day angle (rad) and apparent solar time, which can be calculated by Equations
(15) to (17) [49]:

β = 2π
Dn − 1

365
(15)

ST = hb +
(λ∗ − λ∗s) × 4 + 229.183η

60
(16)

η = 0.000043 + 0.002061 cos β+ 0.032040 sin β+ 0.014974 cos 2β+ 0.040685 sin 2β (17)

where Dn is the daily ordinal number; hb is the Beijing time; λ∗ is the longitude of local standard time
zone (120◦E); λ∗s is the study area’s central longitude (117.3◦E); and η is the time lag (rad).

After solar zenith angle θ has been obtained, the atmospheric broadband transmissivity τb can be
estimated by Equation (18) [46]:

τb = 0.35 + 0.627exp
[
−0.00146PA

Kt cosθ
− 0.075

( w
cosθ

)]
(18)

where PA is atmospheric pressure (kPa); w is the atmospheric total perceptible water, which can be
estimated by water vapor pressure e (see Section 2.4); and Kt is the atmospheric turbidity coefficient
(0 < Kt ≤ 1), Kt = 1.0 for clean atmosphere and Kt = 0.5 for extremely turbid atmosphere.
• Calculation of εair

In cloudless weather, the atmosphere emissivity εair can be calculated by using the atmospheric
water vapor pressure e and the atmospheric average temperature Tair [50]:

εair = 1.24(e/Tair)
1/7 (19)

• Estimation of Tv and Ts

As there is only one TIR band for Landsat 8 data, an empirical formula of pixels’ component
radiation ratio [35,45,51] was used here to estimate component temperatures Tv and Ts:

Tv = Tsur × (0.9332 + 0.0585Pv)
0.25 (20)

Ts = Tsur × (0.9902 + 0.1068Pv)
0.25 (21)

Pv =
( NDVI −NDVIs

NDVIv −NDVIs

)2
(22)

The method for inversing the land surface temperature Tsur is shown in Section 2.4, and NDVIv

and NDVIs are the NDVI threshold values of pure soil and pure vegetation pixels, respectively.

2.3.3. Component Aerodynamic Resistance Inversion

The algorithm for estimating aerodynamic resistance to heat transfer was developed by Kustas
and Norman [52]. For vegetated and soil surfaces, aerodynamic resistance (rah,v and rah,s) can be
expressed as follows:

rah,i =

[
ln

(
Z− do,i

Zom,i

)
−ψm,i

][
ln

(
Z− do,i

Zoh,i

)
−ψh,i

]
/
(
k2uz

)
(23)
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where rah,i is the aerodynamic resistance, and i = 1 and i = 2 refer to vegetation and soil, respectively; k
is the von Karman constant (0.4); Z is the reference height; uz is the wind speed observed at height Z;
do,i is the zero-plane displacement; Zom,i and Zoh,i are the roughnesses for momentum and sensible heat,
respectively; and ψm and ψh are the stability correction functions for momentum and heat, respectively,
which were calculated from the Monin–Obukhov length Lm [53].
• Estimation of ψm,i

For unstable conditions (∀Z/LM < 0):

ψm,i = 2 ln
(1 + x

2

)
+ ln

(
1 + x2

2

)
− 2arctan(x) + π/2 (24)

ψh,i = 2 ln
(

1 + x2

2

)
(25)

x =

[
1−

16(Z− do,i)

LM

]0.25

(26)

For stable conditions (∀Z/LM = 0):

ψm,i = ψh,i = −5(Z− do,i)/LM (27)

• Estimation of Zom,v, do,v and Zoh,v
Brutsaert et al. [54] have proposed the algorithm for estimating Zom,v and do,v by using

vegetation height hv, which was applicable to most vegetation types [55]. Zoh,v can be estimated by
Kustas et al.’s [55] algorithm.

Zom,v = hv/8 (28)

do,v = 2hv/3 (29)

Zoh,v = Zom,ve−Skbuz |Tv−Tair | (30)

where Skb is the empirical coefficient with Skb = 0.13; uz is the wind speed (m·s−1); Tv is vegetation
component temperature (K); and Tair is atmospheric average temperature.
• Estimation of Zom,s, do,s and Zoh,s

Much of the literature has reported that the values of Zom,s and do,s are very small and were
generally taken as approximate constants [56,57]. According to Liu et al.’s [58] measurement,
taking Zom,s = 0.0058 m and do,s = 0 m, Zoh,s can be estimated by Brutsaert et al.’s [54] algorithm.

Zoh,s = Zom,se−[2.46(Re∗)
0.25
−2] (31)

Re∗ =
u∗Zom,s

v
(32)

u∗ =
kuz

ln[(Z− do,s)/Zom,s]
(33)

where Re∗ is the roughness Reynolds number; u∗ is the friction velocity; and v is the kinematic molecular
viscosity with v = 1.48 × 10−7 m2

·s−1.

2.3.4. Component Surface Resistance Inversion

• Estimation of rs,v

By calculating canopy conductance, Mu et al. [26] developed a method for estimating vegetation
canopy surface resistance (rs,v), as follows:

Cs = CL ×m(Tmin) ×m(VPD) (34)
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Cc = Cs × LAI (35)

rs,v =
1

Cc
(36)

where the leaf area index (LAI) was used to convert stomatal conductance (Cs) to canopy conductance
(Cc). The Level-4 MODIS global leaf area index product (MOD15A2H) was used for LAI data,
which were acquired from Level 1 and Atmosphere Archive and Distribution System Distributed
Active Archive Center (LAADS DAAC) [59]; m(Tmin) is a constraint that limits Cs via minimum air
temperatures (Tmin); m(VPD) is the constraint for reducing Cs relative to the saturated air vapor
pressure (VPD); and CL is the mean potential stomatal conductance per unit leaf area which can be
taken as 0.0013 according to Leuning et al.’s [60] research.

m(VPD) =


1 VPD ≤ VPDopen

VPDclose−VPD
VPDclose−VPDopen

VPDopen < VPD < VPDclose

0.1 VPD ≥ VPDclose

(37)

m(Tmin) =


1 Tmin ≥ Tmin_open

Tmin−Tmin_close
Tmin_open−Tmin_close

Tmin_close < Tmin < Tmin_open

0.1 Tmin ≤ Tmin_close

(38)

where VPDopen, VPDclose, Tmin_open, and Tmin_close are the threshold values under the conditions of
nearly complete suppression with full stomatal closure (“close” condition) and no suppression for
transpiration (“open” condition), respectively. The threshold values for various biomes can be obtained
from the Biome Properties Look-Up Table (BPLUT) [32].
• Estimation of rtot

For soil surfaces, Mu et al. [26] proposed that the total aerodynamic resistance for vapor transport
(rtot) can be used to estimate soil transport. They assumed a global constant for rtot based on ground
observations [61] and corrected this using standardized conditions; thus:

rcorr =
1.0(

273.15+T
293.15

)1.75
×

101.3
PA

(39)

rtotc = 107.0
(
m·s−1

)
(40)

rtot = rtotc × rcorr (41)

where rcorr is the correction term; rtotc is the constant based on ground observations; and T (◦C) and PA
(kPa) are the atmospheric temperature and pressure, respectively.

2.3.5. Soil Heat Flux Inversion

Based on the observation data of the soil heat flux and the soil component net radiation, Friedl [62]
has reported that there is a functional relationship between soil heat flux G∗s, soil component net
radiation R∗n,s, and solar zenith angle θ, which can be expressed as follows:

G∗s = 0.25R∗n,s cosθ (42)

2.4. Land Surface Temperature Inversion Using the IMW Algorithm

As there are two TIR bands (Band 10 and Band 11) in Landsat 8 data, the split-window algorithm is
suitable for inversing land surface temperature (LST). Based on the split-window algorithm proposed
by Qin et al. [63], Rozenstein et al. [64] developed a two-factor split-window algorithm for calculating
LST using Landsat 8 data. Jiménez-Muñoz et al. [65] also developed single-channel and split-window
algorithms for Landsat 8 LST inversion. However, according to the notice issued by the United
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States Geological Survey (USGS) [66], the calibration of Landsat 8 TIR bands indicated that the
root mean square error (RMS) of Band 11 is much greater than that of Band 10. Therefore, given
the greater uncertainty associated with TIR Band 11, the USGS recommends using TIR Band 10
to retrieve LST independently. For previous Landsat TM or ETM+ data with a single TIR band,
Qin et al.’s [45] mono-window algorithm is widely used for LST inversion as it only requires three
additional parameters, namely the effective mean atmospheric temperature, atmospheric transmittance,
and land surface emissivity. Based on this, Wang et al. [66] developed an improved mono-window
(IMW) algorithm specifically for Landsat 8 data, which has been shown to be highly accurate in its
application. The IMW algorithm can be expressed as follows:

Tsur =
{
a(1−C−D) + [b(1−C−D) + C + D]T10 −DTair_e

}
/C (43)

C = ετ (44)

D = (1− τ)[1 + (1− ε)τ] (45)

where Tsur is the LST; a and b are the linearized regression coefficient of Planck blackbody radiation
function for TIR Band 10 (for the temperature range 0–50 ◦C: a = −62.7182 and b = 0.4339); T10 is the
brightness temperature calculated using TIR Band 10 [66]; Tair_e is the effective mean atmospheric
temperature; and C and D are intermediate parameters determined using atmospheric transmittance
(τ) and land surface emissivity (ε), respectively.

As Xuzhou is located in the middle latitudes, Tair_e can be calculated based on its linear
relationship with near-surface air temperature (Tair) during the summer (Equation (46)) and winter
(Equation (47)) [45]:

Tair_e = 16.0110 + 0.9262Tair (46)

Tair_e = 19.2704 + 0.9112Tair (47)

The emissivity of a water body in the thermal band is very high (close to a blackbody) and,
therefore, water emissivity can be estimated directly as εw = 0.991 [66]. For natural (vegetation and
soil) and anthropogenic (impervious surfaces) land surface types, land surface emissivity can be
estimated as follows [45]:

ε = PvRvεv + (1− Pv)Riεi + dε (48)

where Pv is the vegetation proportion of a mixed pixel calculated from the NDVI; Rv is the pixel
radiation ratio of vegetation, where Ri refers to Rs and Rm, which are the pixel radiation ratios of soil
and anthropogenic land, respectively; εv is the land surface emissivity of a completely vegetated pixel
(εv = 0.973); εi refers to εs and εm, which are the emissivity of pure soil (εs = 0.966) and anthropogenic
pixel (εm = 0.962) surfaces, respectively; and dε is the thermal radiation interaction between vegetation
and soil (or anthropogenic surfaces), which can be estimated using Pv [66].

As atmospheric transmittance (τ) is mainly affected by atmospheric water content (w) [45],
Wang et al. [66] developed regression equations for Landsat 8 TIR Band 10 using the Moderate
Resolution Atmospheric Transmission simulation program (MODTRAN 4). For different ranges of w
during the mid-latitude summer and winter, τ can thus be estimated using the equations in Table 3.

Table 3. Atmospheric transmittance estimation for Landsat 8 TIR Band 10.

Atmospheric Model w (g·cm−2) Estimation Equation of τ

Mid-latitude summer
0.2–1.6 τ = 0.9184− 0.0725w
1.6–4.4 τ = 1.0163− 0.1330w
4.4–5.4 τ = 0.7029− 0.0620w

Mid-latitude winter 0.2–1.4 τ = 0.9228− 0.0735w
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As water content (w) data have not been directly observed in the study area, the empirical
algorithm derived from the observation data of 28 Chinese meteorological stations was applied to
estimate water content [33].

w = a0e + b0 (49)

a0 = 0.17−
0.066

(ϕ− 33)2 + 4.41
(50)

b0 = 0.03exp
(
−1.39H2 + 2.74H + 0.15

)
(51)

where e is the atmospheric water vapor pressure; ϕ = 34.24◦N is the central latitude of the study area;
and H = 40 m is the average elevation of the study area.

3. Results

3.1. Urban ET

3.1.1. Urban RS-PM Model Estimates

After all the intermediate parameters calculated using the satellite and meteorological data
(Section 2.2.2) were inputted into the urban RS-PM model, the urban ET spatial distribution for the
2014–2016 satellite transit period were obtained, as shown in Figure 4. Considering the order of
magnitude of instant ET values (mm·s−1), modeled ET is expressed as latent heat flux (W·m−2).
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3.1.2. Accuracy of Modeled ET

The representative spatial range of the ground flux observations was determined from the
observation height, atmospheric stability, wind direction, wind speed, and surface coverage. Thus, if
ground flux observations are directly used to verify the inversion values for the corresponding pixels,
large errors are likely to occur [67]. Therefore, the footprint model [67,68] was used to evaluate the
accuracy of the ET estimations. In the footprint model, the region that dominates the contribution
rate of ground flux observations is called the flux source area (Ωp). The model describes the spatial
distribution relationship between ground flux observations and the source areas at or near the Earth
surface (Figure 5), which can be expressed as follows:

fEC(x, y, zm) = Dy(x, y) f y(x, zm) (52)
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where x is the downwind distance; y is the crosswind distance; zm is the observation height of
EC; Dy(x, y) is the lateral concentration diffusion function; and f y(x, zm) is the crosswind integral
function [69].

ETs =
n∑

i=1

(xi × ETi) (53)
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Figure 5. (a) Footprint function schematic (adapted from Schmid [70]); (b) modeled latent heat flux (ET,
gray image) overlaid with the flux source area (Ωp, color graphic) of eddy covariance (EC) observation
on 1 May 2014.

As shown in Equation (53) and Figure 5b, considering the area flux contribution, the weighted
sum of modeled ET values (ETi) of all the pixels covered by the source area were converted to source
ET values (ETs), which have the same spatial representativeness as the values obtained using the EC
(ETo). Therefore, ETs can be directly validated using ETo, as shown in Figure 6.
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Figure 6. Accuracy analysis between modeled source area ET and EC-observed ET: (a) error value and
error rate between ETs and ETo; (b) linear regression between ETs and ETo.

Figure 6a indicates that the error values for ETs and ETo are in the range of 4.52 W·m−2 to
42.85 W·m−2 (error rates of 9.67% to 52.11%) with an average of 21.35 W·m−2 (an average error rate
of 23.74%). The scatter plot of ETs against ETo in Figure 6b shows that points are evenly distributed
near to the 1:1 line, and Table 4 reveals that at the confidence level of 99%, their linear regression also
shows a good fit (R2 = 0.8691) and a strong positive correlation (r = 0.9322) with P < 0.01. In addition,
the mean relative error (MRE) and the root mean square error (RMSE) between ETs and ETo are 0.1976
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and 27.15 W·m−2, respectively. These results indicate that the accuracy of the modeled ET values is
acceptable, and the urban RS-PM model is, therefore, considered reliable for simulating urban ET.

Table 4. Linear regression parameters between ETs and ETo.

Parameters Regression Equation r R2 P-Value

Value y = −0.9930 × −2.0436 0.9322 0.8691 8.48 × 10−5

3.2. ET Effects on the UHI

3.2.1. Relationship between Urban ET and LST

The ET and LST values of all pixels (excluding water) in the study area were extracted and plotted
in the scatter plots shown in Figure 7. The relationship between these two variables was evaluated
using correlation and linear regression analyses, also shown in Figure 7 and Table 5. The correlation
significance test indicated that at the confidence level of 99%, the negative correlation between ET
and LST is significant for each date (P < 0.01). Moreover, urban ET and LST were more strongly
correlated between May and September (|r| > 0.5 and R2 > 0.3) but were more weakly correlated
between November and March (|r| < 0.5 and R2 < 0.3). It should be noted that the significance of the
correlation between ET and LST in October depends on the weather conditions in any single year. This
indicates that urban ET had a stronger impact on LST during the warm months and a weaker influence
during the cold months.
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Table 5. Correlation coefficient and linear fitting goodness between urban ET and LST.

Date 2014
05–01

2014
10–24

2015
12–21

2016
02–16

2016
03–10

2016
09–02

2016
10–04

2016
11–05

2017
05–16

2018
05–03

1O r −0.7349 −0.5147 −0.1058 −0.4412 −0.3526 −0.5875 −0.6261 −0.4863 −0.7009 −0.6260
2O R2 0.5401 0.2649 0.0111 0.1946 0.1243 0.3452 0.3920 0.2334 0.4913 0.3919

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1O Pearson correlation coefficient; 2O linear fitting goodness.

3.2.2. Relationship between the Intensity of Urban ET and the UHI Effect

To further explore the impact of urban ET on the UHI, the ET and LST values for each period
were normalized (Equations (54) and (55)) using ET intensity (ETi) and UHI intensity (UHIi). ETi and
UHIi were classified into five levels based on the following conditions: (1) All pixels were sorted in
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ascending order according to their intensity value (ETi or UHIi, respectively), and (2) the first 20% of
pixels were categorized as level 1 (LV 1), and then each subsequent 20% of pixels were categorized as
level 2 to level 5 (LV 2 to LV 5), respectively. Finally, the different levels of ETi and UHIi were visualized
and, by overlaying them, the proportion of each UHIi level at each ETi level was assessed (Figure 8).
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Three important features can be noted in Figure 8. First, with an increase in the ET intensity level,
the UHI intensity level generally decreased, which indicates that the UHI intensity is weaker in regions
with high ET intensity levels. Second, the impact of ET intensity on the UHI intensity between May
and October was significantly higher than between November and March. Finally, the sum of the areas
classified as UHIi = LV 1 and LV 2 are highest in those regions where ETi = LV 5 (61%–85%, except for
2015–12–21 and 2016–11–05). This indicates that the highest ET intensities had the most significant
impact on the UHI. In other words, ET played an important role in regulating the UHI in those regions
where the intensity of ET was highest during the summer (or near summer) period.

UHIi =
Tsur − Tsur,min

Tsur,max − Tsur,min
(54)

ETi =
ET − ETmin

ETmax − ETmin
(55)

where Tsur,max and ETmax are the maximum values of LST and ET, respectively; Tsur,min and ETmin are
the minimum values of LST and ET, respectively.

3.2.3. The Effect of High ET Intensity on UHI

Given our finding that higher ET intensities had the strongest influence on the UHI effect, especially
during the warmer months of the year, it is necessary to clarify the mechanism underpinning this
relationship. To do this, we used buffer analysis. First, data from six periods between May and October
were selected, and those regions where ETi = LV 5 were extracted. Second, using the LV 5 areas as the
central areas, five buffer zones were established at 30 m intervals (the distance of one pixel), as shown
in Figure 9. Finally, the vector layers of the core areas (ETi = LV 5) and the five buffer zones were
overlaid onto the corresponding ET and LST images, and the average ET and LST values for each layer
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were calculated (Figure 10). It should be noted that to avoid the interference of waterbodies, their ET
and LST values were assigned as null values so that they were excluded from the analysis.
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Figure 10. Variation tendencies of the average values of ET and LST in each layer of buffer zone (0 on
the abscissa represents the core area).

Figure 10 shows that the average ET values in the core zones are significantly higher than in each
successive (outward) buffer zone, while the average LST values show the opposite trend. Indeed,
the average surface ET values decrease outwards from the core zones while the average LST values
increase. Furthermore, areas further away from the core zones show lower rates of change in ET
(decreases) and LST (increases). These characteristics indicate that regions with high ET intensities
exert a regulatory effect on the thermal environment of their surrounding area and that this relationship
weakens with distance. To further quantify the regulating effect of areas with high ET intensities on
their surrounding areas, the variation of ET (∆ETAbu f ) and LST (∆TAbu f ) between the adjacent buffer
layers was evaluated, as shown in Table 6.

From the outermost buffer zone to the innermost buffer zone, higher increases in ∆ETAbu f
corresponded to greater decreases in ∆TAbu f . Normalized ∆ETAbu f and ∆TAbu f are also shown in
Figure 11a, which indicates that variations in these two parameters are highly coincident. At the
confidence level of 99%, linear regression analysis between ∆ETAbu f and ∆TAbu f (Figure 11b and Table 7)
gave a Pearson correlation coefficient (r) of −0.9628 and an R2 of 0.9270 with P < 0.01, indicating a
strong negative linear correlation. Our analyses, therefore, indicate that those urban regions with high
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ET intensities play an important role in alleviating temperatures in the surrounding environment.
According to the linear fitting equation, in high ET intensity areas, for every 10 W·m−2 increase in ET
intensity, LST decreases by approximately 0.56 K within a 150 m radius (excluding other cooling factors).

Table 6. Average variation value statistics of ET and LST between adjacent buffer layers.

Date
Adjacent Buffer

0–1 1–2 2–3 3–4 4–5

01–05–2014
∆ETAbu f

(W·m−2)
111.77 28.76 9.73 4.30 0.86

∆TAbu f (K) −4.27 −0.99 −0.71 −0.49 −0.25

24–10–2014
∆ETAbu f

(W·m−2)
50.38 27.11 6.10 3.50 −0.14

∆TAbu f (K) −1.88 −0.63 −0.34 −0.24 −0.09

02–09–2016
∆ETAbu f

(W·m−2)
149.22 52.42 10.94 4.39 0.70

∆TAbu f (K) −5.45 −1.80 −1.18 −0.64 −0.21

04–10–2016
∆ETAbu f

(W·m−2)
72.80 41.71 7.90 3.98 0.94

∆TAbu f (K) −1.95 −1.24 −0.81 −0.54 −0.27

16–05–2017
∆ETAbu f

(W·m−2)
80.95 50.94 15.35 8.46 4.66

∆TAbu f (K) −2.12 −1.61 −1.14 −0.75 −0.48

03–05–2018
∆ETAbu f

(W·m−2)
70.50 51.01 16.94 9.93 6.15

∆TAbu f (K) −2.14 −1.36 −0.92 −0.59 −0.31
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Table 7. Linear regression parameters between ∆ETAbu f and ∆TAbu f .

Parameters Regression Equation r R2 P-Value

Value y = −0.0309 × −0.2520 −0.9628 0.9270 1.89 × 10−17

4. Discussion

Our verification results for the urban RS-PM model [35] show a good inversion accuracy was
achieved and that the parameters of the model are easy to obtain. Compared with the modified
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multi-source parallel model [33], which can only be applied to remote sensing data with multiple TIR
bands, the urban RS-PM model has better applicability and generalizability for urban ET estimation.

Most previous studies of mitigating the UHI effect have focused on factors including vegetation
indices [19,71,72], the “cool island effect” of urban parks (which can be affected by urban parks’ size,
land surface coverage types and shape, etc.) [73–75], and land surface moisture [76]. By approaching
the challenge from a new perspective, we explored the magnitude and spatial characteristics of the
urban ET alleviation effect on the UHI.

Our results indicate that ET from urban vegetation and bare soil has a mitigating effect on the UHI;
however, this effect is not always significant. During the colder months of the year (November–March)
no significant correlation was found between ET and LST (|r| = 0.1058–0.4863 and R2 = 0.0111–0.2334)
(Figure 7), Furthermore, during these months, increases in the intensity of ET were not associated with
significant changes in the intensity of the UHI (Figure 8). For example, for 5 November 2016 and 21
December 2015, the proportions of areas with a low UHI intensity (LV 1 and LV 2) occurring in areas
with the highest ET intensities (LV 5) were approximately 47.4% and 47.3%, respectively, which is
notably lower than the warmer months of the year. These differences are explained by the fact that ET
rates are much lower in winter than in summer (Figure 4), meaning that urban ET is less important in
regulating the UHI during the cooler autumn/winter period.

Compared with the colder months of the year, the alleviating effect of urban ET on the heat island
effect was found to be highly significant during the warmest months; however, this effect was strongly
affected by the intensity of ET. As shown in Figure 8, for each category of decrease in ET intensity
between May and October, the area corresponding to a weak UHI effect significantly decreased. Our
findings suggest that when the intensity of ET decreased from LV 5 to LV 4, the average rate of decrease
in the area experiencing a LV 1 UHI intensity (the lowest intensity level) was 59.9%. Therefore, only
high ET intensities were effective at alleviating the UHI effect.

We have also shown that the regulating influence of high-intensity ET areas on the UHI decreases
rapidly with distance (Figure 10). Our correlation and fitting results (Figure 11) indicate that the degree
of variation in ET is a dominant factor leading to this phenomenon. As the major driver of urban ET
is vegetation, factors such as vegetation shading [77,78], size [13,79], and type [75] are known to be
important controls on the cooling effect. Studies on the cooling effects of urban parks [10,80] have
also found that this effect is limited to distances of 35 to 840 m from parks [81–83]. Therefore, the
magnitude of the thermal regulating effect of high-intensity ET areas is dependent on the ET intensity
alongside the characteristics of the vegetation.

5. Conclusions

Based on the modified RS-PM model, ET in urban areas of Xuzhou was successfully inversed
for the period 2014–2018 using Landsat 8 data. The relationship between urban ET and LST was
significantly negative during the warmer months of the year (May–October), but during the colder
months (November–March), there was no significant correlation. This was further verified through the
spatial superposition analysis of the intensity of ET and UHI, demonstrating that high-intensity regions
had the most significant alleviating effect on the UHI. According to our buffer analysis, the variation in
ET is a key factor regulating the UHI during the warmer summer months. We found that for every
10 W·m−2 increase in ET, LST decreased by 0.56 K. Our findings provide a new perspective for the
improvement of urban thermal comfort, which can be applied to urban management, planning, and
natural design.

To explore these relationships between ET and UHI in more detail, further research is required
on the cooling effects of ET with different vegetation characteristics (such as shading capacity,
density of planting, and size), and the application of high-resolution remote sensing data could be
especially advantageous.
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