Estimating Afforestation Area Using Landsat Time Series and Photointerpreted Datasets
Abstract
:1. Introduction
1.1. Importance of Afforestation Monitoring
1.2. Remote Sensing Support for Afforestation Monitoring: The State of the Art
1.3. Objectives of the Study
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Forest Mask, Italian Administrative Regions, and Digital Elevation Model
2.1.3. Landsat Best Available Pixel (BAP) Composite
2.1.4. Training Dataset
- 526 polygons (A) that experienced a change from non-forest to forest between 1985 and 2019;
- 526 polygons (B) in non-forest areas that did not change between 1985 and 2019;
- 526 polygons (C) in forest areas that did not change between 1985 and 2019.
2.1.5. Forest Disturbance Data
2.2. Methods
2.2.1. Afforestation Map Construction
RF Temporal Predictors
Random Forests
2.2.2. Selection of the Estimation Sample
- -
- (i) For administrative region samples, we assigned the 4000 points to the 80 map classes obtained by intersecting the four AB map classes and the 20 administrative regions and augmented the samples for within-class estimation datasets that had fewer than 30 points. For this sample, we photointerpreted 254 additional points for a total of 4254 points.
- -
- (ii) For elevation class samples, we assigned the 4000 points to the 56 map classes obtained by intersecting the four AB map classes and the 14 elevation classes from the DEM and augmented the samples for within-class estimation datasets that had fewer than 30 points. For this sample, we photointerpreted 401 additional points for a total of 4401 points.
2.2.3. Accuracy Assessment and Afforestation Area Estimation
2.2.4. Potential Carbon Sequestration
3. Results
3.1. Afforestation Map
3.2. Accuracy Assessment
3.3. Area Estimates
3.4. C-Sequestration Assessment
4. Discussion
4.1. Random Forest for Afforestation Map Construction
4.2. Afforestation Map Validation and Accuracy Assessment
4.3. Afforestation Area Estimates
4.4. Potential C-Sequestration
4.5. Future Developments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Intermediate Results of the Sample Selection
AB Map Class | Reference Class | |||||
---|---|---|---|---|---|---|
Afforestation | Non-Afforestation | First Sample Total | % Class Variances | Second Sample Total | Final Sample | |
afforestation inside buffer (i) | 164 | 496 | 660 | 9.68 | 194 | 854 |
non-afforestation inside buffer (ii) | 329 | 331 | 660 | 41.76 | 835 | 1495 |
afforestation outside buffer (iii) | 9 | 331 | 340 | 3.75 | 75 | 415 |
non-afforestation outside buffer (iv) | 26 | 314 | 340 | 44.80 | 896 | 1236 |
Total | 528 | 1472 | 2000 | 100.00 | 2000 | 4000 |
Appendix B. Accuracy Assessment
AB Map Classes | ||||||
---|---|---|---|---|---|---|
Reference | Total | Accuracy | Weight (Wt) | Wt *Acc | ||
Afforestation | Non-Afforestation | |||||
afforestation inside buffer (i) | 418 | 436 | 854 | 0.49 | 0.11 | 0.05 |
non-afforestation inside buffer (ii) | 60 | 1115 | 1175 | 0.95 | 0.30 | 0.29 |
afforestation outside buffer (iii) | 191 | 544 | 735 | 0.26 | 0.08 | 0.02 |
non-afforestation outside buffer (iv) | 16 | 1220 | 1236 | 0.99 | 0.52 | 0.51 |
Overall Accuracy | 0.87 |
Appendix C
Appendix C.1. Afforestation Estimates in Administrative Regions
Administrative Region | Afforestation (ha) | Afforestation (%) | SE (ha) | SE (%) | CI Width (ha) | CI Width (%) |
---|---|---|---|---|---|---|
Abruzzo | 218,839 | 20.27 | 23,035 | 10.53 | 46,071 | 21.05 |
Apulia | 61,313 | 3.17 | 11,254 | 18.36 | 22,509 | 36.71 |
Basilicata | 142,766 | 14.29 | 22,028 | 15.43 | 44,057 | 30.86 |
Calabria | 222,525 | 14.75 | 27,302 | 12.27 | 54,604 | 24.54 |
Campania | 151,133 | 11.11 | 24,805 | 16.41 | 49,610 | 32.83 |
Emilia-Romagna | 183,743 | 8.19 | 26,858 | 14.62 | 53,716 | 29.23 |
Friuli Venezia Giulia | 64,950 | 8.20 | 10,864 | 16.73 | 21,727 | 33.45 |
Latium | 217,336 | 12.63 | 31,482 | 14.49 | 62,964 | 28.97 |
Liguria | 108,395 | 20.00 | 15,639 | 14.43 | 31,277 | 28.85 |
Lombardy | 129,382 | 5.42 | 17,173 | 13.27 | 34,346 | 26.55 |
Marche | 120,337 | 12.82 | 15,784 | 13.12 | 31,569 | 26.23 |
Molise | 74,489 | 16.78 | 12,987 | 17.44 | 25,975 | 34.87 |
Piedmont | 187,841 | 7.40 | 26,166 | 13.93 | 52,333 | 27.86 |
Sardinia | 260,653 | 10.81 | 29,261 | 11.23 | 58,522 | 22.45 |
Sicily | 183,561 | 7.14 | 27,181 | 14.81 | 54,361 | 29.61 |
Trentino-Alto Adige | 136,171 | 10.01 | 22,885 | 16.81 | 45,771 | 33.61 |
Tuscany | 169,211 | 7.36 | 26,327 | 15.56 | 52,653 | 31.12 |
Umbria | 104,304 | 12.34 | 18,450 | 17.69 | 36,900 | 35.38 |
Valle d’Aosta | 28,644 | 8.78 | 6057 | 21.15 | 12,114 | 42.29 |
Veneto | 89,398 | 4.88 | 21,365 | 23.90 | 42,731 | 47.80 |
National | 2,855,009 | 9.53 | 98,087 | 3.44 | 196,175 | 6.87 |
Appendix C.2. Afforestation Estimates in Elevation Classes
Elevation Classes | Afforestation (ha) | Afforestation (%) | SE (ha) | SE (%) | CI Width (ha) | CI Width (%) |
---|---|---|---|---|---|---|
<200 | 359,769 | 3.37 | 37,499 | 10.42 | 74,998 | 20.85 |
200–400 | 498,396 | 8.20 | 40,165 | 8.06 | 80,330 | 16.12 |
400–600 | 549,497 | 13.94 | 42,489 | 7.73 | 84,979 | 15.46 |
600–800 | 468,891 | 17.49 | 39,854 | 8.50 | 79,708 | 17.00 |
800–1000 | 354,437 | 19.55 | 37,065 | 10.46 | 74,131 | 20.92 |
1000–1200 | 226,546 | 18.53 | 29,391 | 12.97 | 58,782 | 25.95 |
1200–1400 | 94,722 | 10.56 | 11,994 | 12.66 | 23,988 | 25.33 |
1400–1600 | 101,565 | 15.18 | 20,946 | 20.62 | 41,891 | 41.25 |
1600–1800 | 64,805 | 12.55 | 12,066 | 18.62 | 24,133 | 37.24 |
1800–2000 | 47,693 | 11.26 | 10,289 | 21.57 | 20,578 | 43.15 |
2000–2200 | 55,295 | 16.01 | 10,420 | 18.84 | 20,841 | 37.69 |
2200–2400 | 16,226 | 5.92 | 3620 | 22.31 | 7240 | 44.62 |
>2400 | 474 | 0.11 | 441 | 93.14 | 883 | 186.27 |
National | 2,801,050 | 9.35 | 94,647 | 3.38 | 189,293 | 6.76 |
Appendix D. Random Forests Importance Ranking
Appendix E. Potential C-Sequestration Estimation
Administrative Region | Afforestation(ha) | AfforestationCI Width (ha) | Total Biomass Stock (t/ha) | Afforestation Potential Biomass (t) | Potential C(t) | Potential Biomass CI Width(t) | Potential C CI Width (t) |
---|---|---|---|---|---|---|---|
Calabria | 222,525 | 54,604 | 157.10 | 34,958,678 | 17,479,339 | 8,578,288 | 4,289,144 |
Abruzzo | 218,839 | 46,071 | 140.00 | 30,637,460 | 15,318,730 | 6,449,940 | 3,224,970 |
Latium | 217,336 | 62,964 | 135.40 | 29,427,294 | 14,713,647 | 8,525,326 | 4,262,663 |
Sardinia | 260,653 | 58,522 | 99.50 | 25,934,974 | 12,967,487 | 5,822,939 | 2,911,470 |
Emilia-Romagna | 183,743 | 53,716 | 140.00 | 25,724,020 | 12,862,010 | 7,520,240 | 3,760,120 |
Piedmont | 187,841 | 52,333 | 136.70 | 25,677,865 | 12,838,932 | 7,153,921 | 3,576,961 |
Trentino-Alto Adige | 136,171 | 45,771 | 181.30 | 24,687,802 | 12,343,901 | 8,298,282 | 4,149,141 |
Sicily | 183,561 | 54,361 | 133.30 | 24,468,681 | 12,234,341 | 7,246,321 | 3,623,161 |
Campania | 151,133 | 49,610 | 158.30 | 23,924,354 | 11,962,177 | 7,853,263 | 3,926,632 |
Tuscany | 169,211 | 52,653 | 130.60 | 22,098,957 | 11,049,478 | 6,876,482 | 3,438,241 |
Lombardy | 129,382 | 34,346 | 160.50 | 20,765,811 | 10,382,906 | 5,512,533 | 2,756,267 |
Basilicata | 142,766 | 44,057 | 135.60 | 19,359,070 | 9,679,535 | 5,974,129 | 2,987,065 |
Marche | 120,337 | 31,569 | 131.20 | 15,788,214 | 7,894,107 | 4,141,853 | 2,070,926 |
Liguria | 108,395 | 31,277 | 131.40 | 14,243,103 | 7,121,552 | 4,109,798 | 2,054,899 |
Veneto | 89,398 | 42,731 | 158.70 | 14,187,463 | 7,093,731 | 6,781,410 | 3,390,705 |
Umbria | 104,304 | 36,900 | 121.50 | 12,672,936 | 6,336,468 | 4,483,350 | 2,241,675 |
Molise | 74,489 | 25,975 | 155.60 | 11,590,488 | 5,795,244 | 4,041,710 | 2,020,855 |
Friuli Venezia Giulia | 64,950 | 21,727 | 159.30 | 10,346,535 | 5,173,268 | 3,461,111 | 1,730,556 |
Apulia | 61,313 | 22,509 | 138.20 | 8,473,457 | 4,236,728 | 3,110,744 | 1,555,372 |
Valle d’Aosta | 28,644 | 12,114 | 102.50 | 2,936,010 | 1,468,005 | 1,241,685 | 620,843 |
Italy | 2,855,009 | 196,175 | 141.80 | 404,840,276 | 202,420,138 | 27,817,615 | 13,908,808 |
References
- FAO. Global Forest Resources Assessment 2000 Main Report. Land Use Policy 2003, 20, 195. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020 Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- Spadoni, G.L.; Cavalli, A.; Congedo, L.; Munafò, M. Analysis of Normalized Difference Vegetation Index (NDVI) Multi-Temporal Series for the Production of Forest Cartography. Remote Sens. Appl. 2020, 20, 100419. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change Agriculture, Forestry and Other Land Use (AFOLU). Climate Change 2014 Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2015; pp. 811–922. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Slade, R.; van Diemen, R.; Haughey, E.; Malley, J.; Pathak, M.; Pereira, J.P. Foreword Technical and Preface. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2019; pp. 35–74. [Google Scholar]
- Buscardo, E.; Smith, G.F.; Kelly, D.L.; Freitas, H.; Iremonger, S.; Mitchell, F.J.G.; O’Donoghue, S.; McKee, A.M. The Early Effects of Afforestation on Biodiversity of Grasslands in Ireland. Biodivers. Conserv. 2008, 17, 1057–1072. [Google Scholar] [CrossRef]
- Veldman, J.W.; Overbeck, G.E.; Negreiros, D.; Mahy, G.; le Stradic, S.; Fernandes, G.W.; Durigan, G.; Buisson, E.; Putz, F.E.; Bond, W.J. Where Tree Planting and Forest Expansion Are Bad for Biodiversity and Ecosystem Services. Bioscience 2015, 65, 1011–1018. [Google Scholar] [CrossRef]
- Chersich, S.; Rejšek, K.; Vranová, V.; Bordoni, M.; Meisina, C. Climate Change Impacts on the Alpine Ecosystem: An Overview with Focus on the Soil—A Review. J. For. Sci. 2015, 61, 496–514. [Google Scholar] [CrossRef]
- European Commission. New EU Forest Strategy for 2030; COM(2021) 572 final; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- MIPAAF. Strategia Forestale Nazionale; MIPAAF: Rome, Italy, 2018. [Google Scholar]
- Nabuurs, G.-J.; Harris, N.; Sheil, D.; Palahi, M.; Chirici, G.; Boissière, M.; Fay, C.; Reiche, J.; Valbuena, R. Glasgow Forest Declaration Needs New Modes of Data Ownership. Nat. Clim. Change 2022, 12, 415–417. [Google Scholar] [CrossRef]
- Francini, S.; Chirici, G. A Sentinel-2 Derived Dataset of Forest Disturbances Occurred in Italy between 2017 and 2020. Data Brief 2022, 42, 108297. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C. Satellites: Make Earth Observations Open Access. Nature 2014, 513, 30–31. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T.; Bollandsås, O.M. Indirect and Direct Estimation of Forest Biomass Change Using Forest Inventory and Airborne Laser Scanning Data. Remote Sens. Environ. 2015, 164, 36–42. [Google Scholar] [CrossRef]
- Fuller, R.M.; Smith, G.M.; Devereux, B.J. The Characterisation and Measurement of Land Cover Change through Remote Sensing: Problems in Operational Applications? Int. J. Appl. Earth Obs. Geoinf. 2003, 4, 243–253. [Google Scholar] [CrossRef]
- Bollandsås, O.M.; Gregoire, T.G.; Næsset, E.; Øyen, B.H. Detection of Biomass Change in a Norwegian Mountain Forest Area Using Small Footprint Airborne Laser Scanner Data. Stat. Methods Appl. 2013, 22, 113–129. [Google Scholar] [CrossRef]
- Skowronski, N.S.; Clark, K.L.; Gallagher, M.; Birdsey, R.A.; Hom, J.L. Airborne Laser Scanner-Assisted Estimation of Aboveground Biomass Change in a Temperate Oak-Pine Forest. Remote Sens. Environ. 2014, 151, 166–174. [Google Scholar] [CrossRef]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr-Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Coops, N.C.; Shang, C.; Wulder, M.A.; White, J.C.; Hermosilla, T. Change in Forest Condition: Characterizing Non-Stand Replacing Disturbances Using Time Series Satellite Imagery. For. Ecol. Manag. 2020, 474, 118370. [Google Scholar] [CrossRef]
- Murillo-Sandoval, P.J.; van Dexter, K.; van den Hoek, J.; Wrathall, D.; Kennedy, R. The End of Gunpoint Conservation: Forest Disturbance after the Colombian Peace Agreement. Environ. Res. Lett. 2020, 15, 34033. [Google Scholar] [CrossRef]
- Laurin, G.V.; Francini, S.; Luti, T.; Chirici, G.; Pirotti, F.; Papale, D. Satellite Open Data to Monitor Forest Damage Caused by Extreme Climate-Induced Events: A Case Study of the Vaia Storm in Northern Italy. Forestry 2021, 94, 407–416. [Google Scholar] [CrossRef]
- Qiu, B.; Zou, F.; Chen, C.; Tang, Z.; Zhong, J.; Yan, X. Automatic Mapping Afforestation, Cropland Reclamation and Variations in Cropping Intensity in Central East China during 2001–2016. Ecol. Indic. 2018, 91, 490–502. [Google Scholar] [CrossRef]
- Yin, H.; Pflugmacher, D.; Li, A.; Li, Z.; Hostert, P. Land Use and Land Cover Change in Inner Mongolia-Understanding the Effects of China’s Re-Vegetation Programs. Remote Sens. Environ. 2018, 204, 918–930. [Google Scholar] [CrossRef]
- Ramírez-Cuesta, J.M.; Minacapilli, M.; Motisi, A.; Consoli, S.; Intrigliolo, D.S.; Vanella, D. Characterization of the Main Land Processes Occurring in Europe (2000–2018) through a MODIS NDVI Seasonal Parameter-Based Procedure. Sci. Total Environ. 2021, 799, 149346. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping Major Land Cover Dynamics in Beijing Using All Landsat Images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Luti, T.; de Fioravante, P.; Marinosci, I.; Strollo, A.; Riitano, N.; Falanga, V.; Mariani, L.; Congedo, L.; Munafò, M. Land Consumption Monitoring with Sar Data and Multispectral Indices. Remote Sens. 2021, 13, 1586. [Google Scholar] [CrossRef]
- Chirici, G.; Giannetti, F.; Mazza, E.; Francini, S.; Travaglini, D.; Pegna, R.; White, J.C. Monitoring Clearcutting and Subsequent Rapid Recovery in Mediterranean Coppice Forests with Landsat Time Series. Ann. For. Sci. 2020, 77, 40. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making Better Use of Accuracy Data in Land Change Studies: Estimating Accuracy and Area and Quantifying Uncertainty Using Stratified Estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Marcelli, A.; Mattioli, W.; Puletti, N.; Chianucci, F.; Gianelle, D.; Grotti, M.; Chirici, G.; D’Amico, G.; Francini, S.; Travaglini, D.; et al. Large-Scale Two-Phase Estimation of Wood Production by Poplar Plantations Exploiting Sentinel-2 Data as Auxiliary Information. Silva Fenn. 2020, 54, 1–15. [Google Scholar] [CrossRef]
- Wagner, J.E.; Stehman, S.V. Optimizing Sample Size Allocation to Strata for Estimating Area and Map Accuracy. Remote Sens. Environ. 2015, 168, 126–133. [Google Scholar] [CrossRef]
- RAF. RaFITALIA 2017–2018. In Rapporto Sullo Stato Delle Foreste e del Settore Forestale in Italia; Compagnia delle Foreste S.R.L.: Arezzo, Italy, 2019; ISBN 978-88-98850-34-1. [Google Scholar]
- D’amico, G.; Vangi, E.; Francini, S.; Giannetti, F.; Nicolaci, A.; Travaglini, D.; Massai, L.; Giambastiani, Y.; Terranova, C.; Chirici, G. Are We Ready for a National Forest Information System? State of the Art of Forest Maps and Airborne Laser Scanning Data Availability in Italy. IForest 2021, 14, 144–154. [Google Scholar] [CrossRef]
- Vangi, E.; D’amico, G.; Francini, S.; Giannetti, F.; Lasserre, B.; Marchetti, M.; McRoberts, R.E.; Chirici, G. The Effect of Forest Mask Quality in the Wall-to-wall Estimation of Growing Stock Volume. Remote Sens. 2021, 13, 1038. [Google Scholar] [CrossRef]
- ISTAT. Descrizione dei Dati Geografici dei Confini Delle Unità Amministrative a Fini Statistici; ISTAT: Rome, Italy, 2019. [Google Scholar]
- Tarquini, S.; Isola, I.; Favalli, M.; Mazzarini, F.; Bisson, M.; Pareschi, M.T.; Boschi, E. TINITALY/01: A New Triangular Irregular Network of Italy. Ann. Geophys. 2009, 50, 407–425. [Google Scholar] [CrossRef]
- Tarquini, S.; Vinci, S.; Favalli, M.; Doumaz, F.; Fornaciai, A.; Nannipieri, L. Release of a 10-m-Resolution DEM for the Italian Territory: Comparison with Global-Coverage DEMs and Anaglyph-Mode Exploration via the Web. Comput. Geosci. 2012, 38, 168–170. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; D’Amico, G.; Coops, N.C.; Hermosilla, T.; White, J.C.; Wulder, M.A.; Marchetti, M.; Mugnozza, G.S.; Chirici, G. An Open Science and Open Data Approach for the Statistically Robust Estimation of Forest Disturbance Areas. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102663. [Google Scholar] [CrossRef]
- Gomes, V.C.F.; Queiroz, G.R.; Ferreira, K.R. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hobart, G.W.; Luther, J.E.; Hermosilla, T.; Griffiths, P.; Coops, N.C.; Hall, R.J.; Hostert, P.; Dyk, A.; et al. Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science. Can. J. Remote Sens. 2014, 40, 192–212. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hermosilla, T.; Coops, N.C.; Hobart, G.W. A Nationwide Annual Characterization of 25 Years of Forest Disturbance and Recovery for Canada Using Landsat Time Series. Remote Sens. Environ. 2017, 194, 303–321. [Google Scholar] [CrossRef]
- Griffiths, P.; van der Linden, S.; Kuemmerle, T.; Hostert, P. Erratum: A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2013, 6, 2088–2101. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. An Integrated Landsat Time Series Protocol for Change Detection and Generation of Annual Gap-Free Surface Reflectance Composites. Remote Sens. Environ. 2015, 158, 220–234. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Regional Detection, Characterization, and Attribution of Annual Forest Change from 1984 to 2012 Using Landsat-Derived Time-Series Metrics. Remote Sens. Environ. 2015, 170, 121–132. [Google Scholar] [CrossRef]
- Sallustio, L.; Munafò, M.; Riitano, N.; Lasserre, B.; Fattorini, L.; Marchetti, M. Integration of Land Use and Land Cover Inventories for Landscape Management and Planning in Italy. Environ. Monit. Assess. 2016, 188, 48. [Google Scholar] [CrossRef]
- Marchetti, M.; Bertani, R.; Corona, P.; Valentini, R. Changes of Forest Coverage and Land Uses as Assessed by the Inventory of Land Uses in Italy. For.@-Riv. Di Selvic. Ed Ecol. For. 2012, 9, 170–184. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; Giannetti, F.; Marchetti, M.; Scarascia Mugnozza, G.; Chirici, G. The Three Indices Three Dimensions (3I3D) Algorithm: A New Method for Forest Disturbance Mapping and Area Estimation Based on Optical Remotely Sensed Imagery. Int. J. Remote Sens. 2021, 42, 4697–4715. [Google Scholar] [CrossRef]
- Francini, S.; Amico, G.D.; Vangi, E.; Borghi, C. Integrating GEDI and Landsat: Spaceborne Lidar and Four Decades of Optical Imagery for the Analysis of Forest Disturbances and Biomass Changes in Italy. Sensors 2022, 22, 2015. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, NASA/GSFC Type III Final Report 1974; Texas A&M University Remote Sensing Center: Greenbelt, MD, USA, 1973; 371p. [Google Scholar]
- Key, C.H.; Benson, N.C. Landscape Assessment (LA) Sampling and Analysis Methods. In USDA Forest Service-General Technical Report RMRS-GTR; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006. [Google Scholar]
- Huete, A.R. Modis vegetation index algorithm theoretical basis v3. Environ. Sci. 1999. [Google Scholar]
- Kauth, R.J. Tasselled Cap—A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen By Landsat; Purdue University: West Lafayette, IN, USA, 1976; pp. 41–51. [Google Scholar]
- Knight, W.R. A Computer Method for Calculating Kendall’s Tau with Ungrouped Data. J. Am. Stat. Assoc. 1966, 61, 436–439. [Google Scholar] [CrossRef]
- Tomppo, E. Satellite image based national forest inventory of Finland. Int. Arch. Photogramm. Remote Sens. 1991, 28, 419–424. [Google Scholar]
- Chirici, G.; Mura, M.; McInerney, D.; Py, N.; Tomppo, E.O.; Waser, L.T.; Travaglini, D.; McRoberts, R.E. A Meta-Analysis and Review of the Literature on the k-Nearest Neighbors Technique for Forestry Applications That Use Remotely Sensed Data. Remote Sens. Environ. 2016, 176, 282–294. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Doan, T.M.; Tomppo, E.; McRoberts, R.E. Land Use/Land Cover Mapping Using Multitemporal Sentinel-2 Imagery and Four Classification. Remote Sens. 2020, 12, 1367. [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef]
- Hawryło, P.; Francini, S.; Chirici, G.; Giannetti, F.; Parkitna, K.; Krok, G.; Mitelsztedt, K.; Lisańczuk, M.; Stereńczak, K.; Ciesielski, M.; et al. The Use of Remotely Sensed Data and Polish NFI Plots for Prediction of Growing Stock Volume Using Different Predictive Methods. Remote Sens. 2020, 12, 3331. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Nicodemus, K.K. Letter to the Editor: On the Stability and Ranking of Predictors from Random Forest Variable Importance Measures. Brief. Bioinform. 2011, 12, 369–373. [Google Scholar] [CrossRef]
- Fattorini, L. Design-Based Methodological Advances to Support National Forest Inventories: A Review of Recent Proposals. IForest 2014, 8, 6–11. [Google Scholar] [CrossRef]
- INFC. Inventario Nazionale Delle Foreste e dei Serbatoi Forestali di Carbonio; Ministero delle Politiche Agricole Alimentari e Forestali, Ispettorato Generale-Corpo Forestale dello Stato-CRA-Unitò di ricerca per il monitoraggio e la Pianificazione forestale: Rome, Italy, 2005. [Google Scholar]
- Intergovernal Panel on Climate Change. Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. In Reference Manual, Reporting Guidelines and Workbook; Cambridge University Press: Cambridge, UK, 1997; Volume 3. [Google Scholar]
- Vitullo, M.; de Lauretis, R.; Federici, S. La Contabilità Del Carbonio Contenuto Nelle Foreste Italiane. Silvae 2008, 9, 91–104. [Google Scholar]
- Pompei, E. Espansione Delle Foreste Italiane Negi Ultimi 50 Anni: Il Caso Della Regione Abruzzo. Ph.D. Thesis, Tuscia University, Viterbo, WI, USA, 2007; p. 162. [Google Scholar]
- Ershov, D.V.; Gavrilyuk, E.A.; Koroleva, N.V.; Belova, E.I.; Tikhonova, E.V.; Shopina, O.V.; Titovets, A.V.; Tikhonov, G.N. Natural Afforestation on Abandoned Agricultural Lands during Post-Soviet Period: A Comparative Landsat Data Analysis of Bordering Regions in Russia and Belarus. Remote Sens. 2022, 14, 322. [Google Scholar] [CrossRef]
- Alberti, G.; Peressotti, A.; Piussi, P.; Zerbi, G. Forest Ecosystem Carbon Accumulation during a Secondary Succession in the Eastern Prealps of Italy. Forestry 2008, 81, 1–11. [Google Scholar] [CrossRef]
- Agnoletti, M.; Piras, F.; Venturi, M.; Santoro, A. Cultural Values and Forest Dynamics: The Italian Forests in the Last 150 Years. For. Ecol. Manag. 2022, 503, 119655. [Google Scholar] [CrossRef]
Map Class | Reference Class | Sum | #1 | |||||
---|---|---|---|---|---|---|---|---|
Afforest- Ation | Non- Afforest- Ation | |||||||
Afforestation outside buffer | ||||||||
Afforestation inside buffer | ||||||||
Non-afforestation outside buffer | ||||||||
Non-afforestation inside buffer | ||||||||
#3 |
Area (ha) | SE (ha) | SE (%) | CI Width (ha) | CI Width (%) | |
---|---|---|---|---|---|
National map | 2,833,365 | 101,125 | 3.57 | 202,250 | 7.14 |
Elevation classes | 2,801,050 | 94,647 | 3.38 | 189,293 | 6.76 |
Administrative regions | 2,855,009 | 98,087 | 3.43 | 196,175 | 6.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalli, A.; Francini, S.; McRoberts, R.E.; Falanga, V.; Congedo, L.; De Fioravante, P.; Maesano, M.; Munafò, M.; Chirici, G.; Scarascia Mugnozza, G. Estimating Afforestation Area Using Landsat Time Series and Photointerpreted Datasets. Remote Sens. 2023, 15, 923. https://doi.org/10.3390/rs15040923
Cavalli A, Francini S, McRoberts RE, Falanga V, Congedo L, De Fioravante P, Maesano M, Munafò M, Chirici G, Scarascia Mugnozza G. Estimating Afforestation Area Using Landsat Time Series and Photointerpreted Datasets. Remote Sensing. 2023; 15(4):923. https://doi.org/10.3390/rs15040923
Chicago/Turabian StyleCavalli, Alice, Saverio Francini, Ronald E. McRoberts, Valentina Falanga, Luca Congedo, Paolo De Fioravante, Mauro Maesano, Michele Munafò, Gherardo Chirici, and Giuseppe Scarascia Mugnozza. 2023. "Estimating Afforestation Area Using Landsat Time Series and Photointerpreted Datasets" Remote Sensing 15, no. 4: 923. https://doi.org/10.3390/rs15040923
APA StyleCavalli, A., Francini, S., McRoberts, R. E., Falanga, V., Congedo, L., De Fioravante, P., Maesano, M., Munafò, M., Chirici, G., & Scarascia Mugnozza, G. (2023). Estimating Afforestation Area Using Landsat Time Series and Photointerpreted Datasets. Remote Sensing, 15(4), 923. https://doi.org/10.3390/rs15040923