Remote Sensing Monitoring of the Pietrafitta Earth Flows in Southern Italy: An Integrated Approach Based on Multi-Sensor Data
Abstract
:1. Introduction
2. Study Area and Landslide Features
3. Materials and Methods
3.1. Ground-Based Monitoring
3.1.1. Robotic Total Station (R-TS) Data
3.1.2. Terrestrial Interferometric Synthetic Aperture Radar (T-InSAR) Data
3.1.3. Terrestrial Laser Scanner (TLS) Data
3.2. Satellite PhotoMonitoring Data and Analysis
IRIS Software Analysis
4. Results
4.1. R-TS Analysis
4.2. T-InSAR Analysis
4.3. TLS Analysis
4.4. DIC Analysis
5. Discussion
6. Conclusions
- The results obtained from R-TS and T-InSAR were combined and compared in order to understand the deformation behaviour at different scales. This approach made it possible to observe that, despite the different resolutions of these techniques, the deformation trends recorded remained approximately consistent, with only the presence of differences mainly related to intrinsic acquisition inequalities between the technologies. Both techniques were proven to be reliable tools for evaluating the evolution of earth flows, allowing their typical characteristics to be highlighted, such as slow, localised and persistent movements and sensitivity to rainfall events (i.e., the variation of pore water pressure), resulting in the acceleration or deceleration of displacement rates.
- Using the TLS measurements, it was possible to derive the volume of material that was mobilised during the period of maximum activity.
- The use of the DIC technique by means of satellite images made it possible to study the deformation behaviour as a whole; using this technique also allowed us to observe a deformation zone, in Sector 2, with a tendency for the landslide body to widen along the right flank. This aspect was not evidenced with the other techniques previously used.
- The design and use of new integrated monitoring points to be installed in the field (e.g., corner reflectors for T-InSAR equipped with optical prisms for R-TS) would make the monitoring network more efficient, providing additional insights into measurement accuracies.
- The use of orthophotos acquired from aerial platforms (e.g., UAVs) on a weekly basis would provide high-spatial- and temporal-resolution data that would constitute an excellent dataset for analysis using the DIC technique.
- The use of increasingly automated systems that make it possible to fully exploit the potential of multi-sensor monitoring should be recommended, with the help of cutting-edge techniques such as machine learning.
- The drafting of shared guidelines and standards regarding the monitoring instrumentation and techniques to be used in earth flow situations would lead to the spread of a set of best practices and better use of the monitoring solutions available today.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Revellino, P.; Grelle, G.; Donnarumma, A.; Guadagno, F.M. Structurally Controlled Earth Flows of the Benevento Province (Southern Italy). Bull. Eng. Geol. Environ. 2010, 69, 487–500. [Google Scholar] [CrossRef]
- Donnarumma, A.; Revellino, P.; Grelle, G.; Guadagno, F.M. Slope Angle as Indicator Parameter of Landslide Susceptibility in a Geologically Complex Area. In Landslide Science and Practice: Volume 1: Landslide Inventory and Susceptibility and Hazard Zoning; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 425–433. ISBN 978-3-642-31325-7. [Google Scholar]
- Keefer, D.K.; Johnson, A.M. Earth Flows: Morphology, Mobilization, and Movement; Professional Paper; U.S. Geological Survey: Washington, DC, USA, 1983; Volume 1264.
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes; Special Report—National Research Council; Transportation Research Board: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Hungr, O.; Evans, S.G.; Bovis, M.J.; Hutchinson, J.N. A Review of the Classification of Landslides of the Flow Type. Environ. Eng. Geosci. 2001, 7, 221–238. [Google Scholar] [CrossRef]
- Hutchinson, J.N.; Prior, D.B.; Stephens, N. Potentially Dangerous Surges in an Antrim Mudslide. Q. J. Eng. Geol. Hydrogeol. 1974, 7, 363–376. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Roering, J.J.; Schmidt, D.A. Controls on the Seasonal Deformation of Slow-Moving Landslides. Earth Planet. Sci. Lett. 2013, 377, 239–247. [Google Scholar] [CrossRef]
- Guerriero, L. Landslides and Infrastrucutres: The Case of the Montaguto Earth Flow in Southern Italy. Ital. J. Eng. Geol. Environ. 2013, 459–466. [Google Scholar] [CrossRef]
- Revellino, P.; Guerriero, L.; Ruzza, G.; Guadagno, F.M. Defining Kinematic and Evolutive Features of Earth Flows Using Integrated Monitoring and Low-Cost Sensors. In Understanding and Reducing Landslide Disaster Risk: Volume 3 Monitoring and Early Warning; Casagli, N., Tofani, V., Sassa, K., Bobrowsky, P.T., Takara, K., Eds.; ICL Contribution to Landslide Disaster Risk Reduction; Springer International Publishing: Cham, Switzerland, 2021; pp. 25–40. ISBN 978-3-030-60311-3. [Google Scholar]
- Bertello, L.; Berti, M.; Castellaro, S.; Squarzoni, G. Dynamics of an Active Earthflow Inferred From Surface Wave Monitoring. J. Geophys. Res. Earth Surf. 2018, 123, 1811–1834. [Google Scholar] [CrossRef]
- Vassallo, R.; Calcaterra, S.; D’Agostino, N.; De Rosa, J.; Di Maio, C.; Gambino, P. Long-Term Displacement Monitoring of Slow Earthflows by Inclinometers and GPS, and Wide Area Surveillance by COSMO-SkyMed Data. Geosciences 2020, 10, 171. [Google Scholar] [CrossRef]
- Calvello, M.; Peduto, D.; Arena, L. Combined Use of Statistical and DInSAR Data Analyses to Define the State of Activity of Slow-Moving Landslides. Landslides 2017, 14, 473–489. [Google Scholar] [CrossRef]
- Di Matteo, L.; Romeo, S.; Kieffer, D.S. Rock Fall Analysis in an Alpine Area by Using a Reliable Integrated Monitoring System: Results from the Ingelsberg Slope (Salzburg Land, Austria). Bull. Eng. Geol. Environ. 2017, 76, 413–420. [Google Scholar] [CrossRef]
- Romeo, S.; Di Matteo, L.; Kieffer, D.S.; Tosi, G.; Stoppini, A.; Radicioni, F. The Use of Gigapixel Photogrammetry for the Understanding of Landslide Processes in Alpine Terrain. Geosciences 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Mazzanti, P. Toward Transportation Asset Management: What Is the Role of Geotechnical Monitoring? J. Civil. Struct Health Monit. 2017, 7, 645–656. [Google Scholar] [CrossRef]
- Lissak, C.; Bartsch, A.; De Michele, M.; Gomez, C.; Maquaire, O.; Raucoules, D.; Roulland, T. Remote Sensing for Assessing Landslides and Associated Hazards. Surv. Geophys 2020, 41, 1391–1435. [Google Scholar] [CrossRef]
- Mazzanti, P. Remote Monitoring of Deformation. An Overview of the Seven Methods Described in Previous GINs. Geotech. News 2012, 30, 24–29. [Google Scholar]
- Dei Cas, L.; Triglia, A.; Iadanza, C. Linee Guida per Il Monitoraggio Delle Frane. Linee Guid. SNPA 2021, 32, 2021. [Google Scholar]
- Malet, J.-P.; Maquaire, O.; Calais, E. The Use of Global Positioning System Techniques for the Continuous Monitoring of Landslides: Application to the Super-Sauze Earthflow (Alpes-de-Haute-Provence, France). Geomorphology 2002, 43, 33–54. [Google Scholar] [CrossRef] [Green Version]
- Guerriero, L.; Guerriero, G.; Grelle, G.; Guadagno, F.M.; Revellino, P. Brief Communication: A Low-Cost Arduino®-Based Wire Extensometer for Earth Flow Monitoring. Nat. Hazards Earth Syst. Sci. 2017, 17, 881–885. [Google Scholar] [CrossRef] [Green Version]
- Berti, M.; Simoni, A. Reactivation of a Dormant Earthflow Documented by Field Monitoring Data. EGU General Assembly Conference Abstracts, 2017. p. 6331. Available online: https://ui.adsabs.harvard.edu/abs/2017EGUGA..19.6331B/abstract (accessed on 20 December 2022).
- Guerriero, L.; Bertello, L.; Cardozo, N.; Berti, M.; Grelle, G.; Revellino, P. Unsteady Sediment Discharge in Earth Flows: A Case Study from the Mount Pizzuto Earth Flow, Southern Italy. Geomorphology 2017, 295, 260–284. [Google Scholar] [CrossRef]
- Mantovani, F.; Pasuto, A.; Silvano, S.; Zannoni, A. Collecting Data to Define Future Hazard Scenarios of the Tessina Landslide. Int. J. Appl. Earth Obs. Geoinf. 2000, 2, 33–40. [Google Scholar] [CrossRef]
- Giordan, D.; Allasia, P.; Manconi, A.; Baldo, M.; Santangelo, M.; Cardinali, M.; Corazza, A.; Albanese, V.; Lollino, G.; Guzzetti, F. Morphological and Kinematic Evolution of a Large Earthflow: The Montaguto Landslide, Southern Italy. Geomorphology 2013, 187, 61–79. [Google Scholar] [CrossRef]
- Bozzano, F.; Cipriani, I.; Mazzanti, P.; Prestininzi, A. Displacement Patterns of a Landslide Affected by Human Activities: Insights from Ground-Based InSAR Monitoring. Nat. Hazards 2011, 59, 1377–1396. [Google Scholar] [CrossRef]
- Mazzanti, P.; Bozzano, F.; Cipriani, I.; Prestininzi, A. New Insights into the Temporal Prediction of Landslides by a Terrestrial SAR Interferometry Monitoring Case Study. Landslides 2015, 12, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Pieraccini, M.; Miccinesi, L. Ground-Based Radar Interferometry: A Bibliographic Review. Remote Sens. 2019, 11, 1029. [Google Scholar] [CrossRef] [Green Version]
- Ferrigno, F.; Gigli, G.; Fanti, R.; Intrieri, E.; Casagli, N. GB-InSAR Monitoring and Observational Method for Landslide Emergency Management: The Montaguto Earthflow (AV, Italy). Nat. Hazards Earth Syst. Sci. 2017, 17, 845–860. [Google Scholar] [CrossRef] [Green Version]
- Bardi, F.; Raspini, F.; Frodella, W.; Lombardi, L.; Nocentini, M.; Gigli, G.; Morelli, S.; Corsini, A.; Casagli, N. Monitoring the Rapid-Moving Reactivation of Earth Flows by Means of GB-InSAR: The April 2013 Capriglio Landslide (Northern Appennines, Italy). Remote Sens. 2017, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Baldo, M.; Bicocchi, C.; Chiocchini, U.; Giordan, D.; Lollino, G. LIDAR Monitoring of Mass Wasting Processes: The Radicofani Landslide, Province of Siena, Central Italy. Geomorphology 2009, 105, 193–201. [Google Scholar] [CrossRef]
- Clapuyt, F.; Vanacker, V.; Schlunegger, F.; Van Oost, K. Unravelling Earth Flow Dynamics with 3-D Time Series Derived from UAV-SfM Models. Earth Surf. Dynam. 2017, 5, 791–806. [Google Scholar] [CrossRef] [Green Version]
- Mugnai, F.; Caporossi, P.; Mazzanti, P. Exploiting Image Assisted Total Station in Digital Image Correlation (DIC) Displacement Measurements: Insights from Laboratory Experiments. Eur. J. Remote Sens. 2022, 55, 115–128. [Google Scholar] [CrossRef]
- Hermle, D.; Gaeta, M.; Krautblatter, M.; Mazzanti, P.; Keuschnig, M. Performance Testing of Optical Flow Time Series Analyses Based on a Fast, High-Alpine Landslide. Remote Sens. 2022, 14, 455. [Google Scholar] [CrossRef]
- Lacroix, P.; Araujo, G.; Hollingsworth, J.; Taipe, E. Self-Entrainment Motion of a Slow-Moving Landslide Inferred From Landsat-8 Time Series. J. Geophys. Res. Earth Surf. 2019, 124, 1201–1216. [Google Scholar] [CrossRef]
- Guerriero, L.; Di Martire, D.; Calcaterra, D.; Francioni, M. Digital Image Correlation of Google Earth Images for Earth’s Surface Displacement Estimation. Remote Sens. 2020, 12, 3518. [Google Scholar] [CrossRef]
- Daehne, A.; Corsini, A. Kinematics of Active Earthflows Revealed by Digital Image Correlation and DEM Subtraction Techniques Applied to Multi-Temporal LiDAR Data: KINEMATICS OF ACTIVE EARTHFLOWS. Earth Surf. Process. Landforms 2013, 38, 640–654. [Google Scholar] [CrossRef]
- Travelletti, J.; Oppikofer, T.; Delacourt, C. Monitoring Landslide Displacements during a Controlled Rain Experiment Using a Long-Range Terrestrial Laser Scanning (TLS); Chen, J., Jiang, J., Eds.; Hans-Gerd MAAS: Beijing, China, 2008; Volume XXXVII, Part B5, p. 6. [Google Scholar]
- Di Nocera, S.; Matano, F.; Pescatore, T.; Pinto, F.; Quarantiello, R.; Senatore, M.R.; Torre, M.L. Geological Scheme of the Transect Eastern Picentini-Southern Daunia Mts.: Stratigraphic Units and Tectonic Evolution of the Outer Zones of the Southern Apennines, Italy. Boll. Soc. Geol. Ital. 2006, 125, 39–58. [Google Scholar]
- Di Nocera, S.; Matano, F.; Torre, M. The “samnitic” Units Auct. (Central-Southern Apennines): Review of Current Palaegeographic and Stratigraphic Interpretations and New Hypotheses with the Introduction of the Unit of Frigento. 2002, 2002/1, pp. 87–102.
- Guerriero, L.; Diodato, N.; Fiorillo, F.; Revellino, P.; Grelle, G.; Guadagno, F. Reconstruction of Long-Term Earth-Flow Activity Using a Hydro-Climatological Model. Nat. Hazards 2015, 77, 1–15. [Google Scholar] [CrossRef]
- Guerriero, L.; Revellino, P.; Mottola, A.; Grelle, G.; Sappa, G.; Guadagno, F. Multi-Temporal Mapping of the Caforchio Earth Flow, Southern Italy. Rend. Online Della Soc. Geol. Ital. 2015, 35, 166–169. [Google Scholar] [CrossRef]
- Guerriero, L.; Coe, J.A.; Revellino, P.; Grelle, G.; Pinto, F.; Guadagno, F.M. Influence of Slip-Surface Geometry on Earth-Flow Deformation, Montaguto Earth Flow, Southern Italy. Geomorphology 2014, 219, 285–305. [Google Scholar] [CrossRef]
- Guerriero, L.; Focareta, M.; Fusco, G.; Rabuano, R.; Guadagno, F.M.; Revellino, P. Flood Hazard of Major River Segments, Benevento Province, Southern Italy. J. Maps 2018, 14, 597–606. [Google Scholar] [CrossRef] [Green Version]
- Revellino, P.; Guerriero, L.; Mascellaro, N.; Fiorillo, F.; Grelle, G.; Ruzza, G.; Guadagno, F. Multiple Effects of Intense Meteorological Events in the Benevento Province, Southern Italy. Water 2019, 11, 1560. [Google Scholar] [CrossRef] [Green Version]
- Castagnetti, C.; Bertacchini, E.; Corsini, A.; Capra, A. Multi-Sensors Integrated System for Landslide Monitoring: Critical Issues in System Setup and Data Management. Eur. J. Remote Sens. 2013, 46, 104–124. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in Landslide Investigations: A Review. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Bitelli, G.; Dubbini, M.; Zanutta, A. Terrestrial Laser Scanning and Digital Photogrammetry Techniques to Monitor Landslide Bodies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 246–251. [Google Scholar]
- Mazzanti, P.; Schilirò, L.; Martino, S.; Antonielli, B.; Brizi, E.; Brunetti, A.; Margottini, C.; Scarascia Mugnozza, G. The Contribution of Terrestrial Laser Scanning to the Analysis of Cliff Slope Stability in Sugano (Central Italy). Remote Sens. 2018, 10, 1475. [Google Scholar] [CrossRef] [Green Version]
- Bozzano, F.; Esposito, C.; Mazzanti, P.; Innocca, F.; Romeo, S. Urban Engineered Slope Collapsed in Rome on February 14th, 2018: Results from Remote Sensing Monitoring. Geosciences 2020, 10, 331. [Google Scholar] [CrossRef]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D Comparison of Complex Topography with Terrestrial Laser Scanner: Application to the Rangitikei Canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Wen, Y.; Chen, Z.; Zhang, G.; Wang, Y.; Hao, J.; Zhang, Q. A Rapid Gradation Detection System for Earth and Stone Materials Based on Digital Image. Adv. Civ. Eng. 2021, 2021, e6660301. [Google Scholar] [CrossRef]
- Caporossi, P.; Mazzanti, P.; Bozzano, F. Digital Image Correlation (DIC) Analysis of the 3 December 2013 Montescaglioso Landslide (Basilicata, Southern Italy): Results from a Multi-Dataset Investigation. ISPRS Int. J. Geo-Inf. 2018, 7, 372. [Google Scholar] [CrossRef] [Green Version]
- White, D.J.; Take, W.A.; Bolton, M.D. Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry. Géotechnique 2003, 53, 619–631. [Google Scholar] [CrossRef]
- Bickel, V.T.; Manconi, A.; Amann, F. Quantitative Assessment of Digital Image Correlation Methods to Detect and Monitor Surface Displacements of Large Slope Instabilities. Remote Sens. 2018, 10, 865. [Google Scholar] [CrossRef] [Green Version]
- Corvec, N.L.; Walter, T.R. Volcano Spreading and Fault Interaction Influenced by Rift Zone Intrusions: Insights from Analogue Experiments Analyzed with Digital Image Correlation Technique. J. Volcanol. Geotherm. Res. 2009, 183, 170. [Google Scholar] [CrossRef]
- Kääb, A. Monitoring High-Mountain Terrain Deformation from Repeated Air- and Spaceborne Optical Data: Examples Using Digital Aerial Imagery and ASTER Data. ISPRS J. Photogramm. Remote Sens. 2002, 57, 39–52. [Google Scholar] [CrossRef]
- Avouac, J.-P.; Ayoub, F.; Wei, S.; Ampuero, J.-P.; Meng, L.; Leprince, S.; Jolivet, R.; Duputel, Z.; Helmberger, D. The 2013, Mw 7.7 Balochistan Earthquake, Energetic Strike-Slip Reactivation of a Thrust Fault. Earth Planet. Sci. Lett. 2014, 391, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Mugnai, F.; Cosentino, A.; Mazzanti, P.; Tucci, G. Vibration Analyses of a Gantry Structure by Mobile Phone Digital Image Correlation and Interferometric Radar. Geomatics 2022, 2, 17–35. [Google Scholar] [CrossRef]
- Stumpf, A. Landslide Recognition and Monitoring with Remotely Sensed Data from Passive Optical Sensors; University of Strasbourg: Strasbourg, France, 2013. [Google Scholar]
- Tong, X.; Ye, Z.; Xu, Y.; Gao, S.; Xie, H.; Du, Q.; Liu, S.; Xu, X.; Liu, S.; Luan, K.; et al. Image Registration With Fourier-Based Image Correlation: A Comprehensive Review of Developments and Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4062–4081. [Google Scholar] [CrossRef]
- Dematteis, N.; Wrzesniak, A.; Allasia, P.; Bertolo, D.; Giordan, D. Integration of Robotic Total Station and Digital Image Correlation to Assess the Three-Dimensional Surface Kinematics of a Landslide. Eng. Geol. 2022, 303, 106655. [Google Scholar] [CrossRef]
- Guerriero, L.; Ruzza, G.; Maresca, R.; Guadagno, F.M.; Revellino, P. Clay Landslide Movement Triggered by Artificial Vibrations: New Insights from Monitoring Data. Landslides 2021, 18, 2949–2957. [Google Scholar] [CrossRef]
- Mazzanti, P.; Caporossi, P.; Muzi, R. Sliding Time Master Digital Image Correlation Analyses of CubeSat Images for Landslide Monitoring: The Rattlesnake Hills Landslide (USA). Remote Sens. 2020, 12, 592. [Google Scholar] [CrossRef] [Green Version]
- Casagli, N.; Intrieri, E.; Tofani, V.; Gigli, G.; Raspini, F. Landslide Detection, Monitoring and Prediction with Remote-Sensing Techniques. Nat. Rev. Earth Environ. 2023, 4, 51–64. [Google Scholar] [CrossRef]
Operating Frequency | 17.2 GHz (Ku Band) |
---|---|
Max. Operational Distance | 1000 m |
Max. Range Resolution | 0.5 m |
Nominal Displacement Accuracy | 10−5 m |
Max. Acquisition Rate | 200 Hz |
Cross-range Resolution | 4.4 mrad in Ku band |
Accuracy | Precision | Laser Wavelength | Minimum Range | Maximum Range | Laser Beam Divergence | Laser Beam Footprint |
---|---|---|---|---|---|---|
15 mm | 10 mm | Near infrared | 5 m | 4000 m | 0.15 mrad | 150 mm @ 1000 m |
Month | Number of Scans | Dates |
---|---|---|
March | 1 | 29 March 2016 |
April | 3 | 6 April 2016 11 April 2016 27 April 2016 |
May | 2 | 4 May 2016 30 May 2016 |
Name Images | Date |
---|---|
3358114_2016-03-19_RE4_3A_Analytic_SR_5 | 19 March 2016 |
3358114_2016-04-30_RE3_3A_Analytic_SR_5 | 30 April 2016 |
Benchmark | Displacement Rate T1 (m/day) | Displacement Rate T2 (m/day) |
---|---|---|
2 | <0.01 | ~0.019 |
3 | <0.01 | ~0.018 |
4 | <0.01 | ~0.018 |
6 | ~0.01 | ~0.011 |
7 | ~0.07 | ~0.035 |
8 | ~0.06 | ~0.028 |
Techniques | Accuracy Reached | Spatial Resolution | Temporal Resolution | Range | Targets | Presumed Cost | Deployment |
---|---|---|---|---|---|---|---|
R-TS | mm (+) | Measurements on prisms (−) | 1 h | 800 m (+) | Yes (−) | €€ | Complex |
T-InSAR | mm (+) | 8–10 m (−) | 5 min (+) | 800 m (+) | No (+) | €€€ | Complex |
TLS | cm | 10 points/cm2 (+) | Weeks | 800 m (+) | No (+) | €€ | Difficult |
DIC | dm | 5 m | Months (−) | km (+) | No (+) | € | No hardware required |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazza, D.; Cosentino, A.; Romeo, S.; Mazzanti, P.; Guadagno, F.M.; Revellino, P. Remote Sensing Monitoring of the Pietrafitta Earth Flows in Southern Italy: An Integrated Approach Based on Multi-Sensor Data. Remote Sens. 2023, 15, 1138. https://doi.org/10.3390/rs15041138
Mazza D, Cosentino A, Romeo S, Mazzanti P, Guadagno FM, Revellino P. Remote Sensing Monitoring of the Pietrafitta Earth Flows in Southern Italy: An Integrated Approach Based on Multi-Sensor Data. Remote Sensing. 2023; 15(4):1138. https://doi.org/10.3390/rs15041138
Chicago/Turabian StyleMazza, Davide, Antonio Cosentino, Saverio Romeo, Paolo Mazzanti, Francesco M. Guadagno, and Paola Revellino. 2023. "Remote Sensing Monitoring of the Pietrafitta Earth Flows in Southern Italy: An Integrated Approach Based on Multi-Sensor Data" Remote Sensing 15, no. 4: 1138. https://doi.org/10.3390/rs15041138
APA StyleMazza, D., Cosentino, A., Romeo, S., Mazzanti, P., Guadagno, F. M., & Revellino, P. (2023). Remote Sensing Monitoring of the Pietrafitta Earth Flows in Southern Italy: An Integrated Approach Based on Multi-Sensor Data. Remote Sensing, 15(4), 1138. https://doi.org/10.3390/rs15041138