How Can Ecological Land Be Deployed to Cool the Surface Thermal Environment? A Case Study from the Perspectives of Patch and Network
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. Analytical Process
3.2. Analysis of Changes in the Surface Thermal Environment
3.3. Quantification of Spatial Configuration
3.4. Identification of Heat Sources
3.5. Establishing the Resistance Surface
3.6. Identification of Corridors and Pinch Points
4. Results
4.1. Factors That Affect the Cooling Effect of Ecological Land: Proportion, Shape, or Fragmentation?
4.1.1. RLST Variation
4.1.2. Landscape Composition
4.1.3. Landscape Configuration
4.2. Blocking the Heat Source Flow: Where Are the Patches and Corridors?
4.2.1. MSPA Classification and Connectivity
4.2.2. Resistance Surface
4.2.3. Corridors and Pinch Points of Heat Networks
4.3. Cooling Effect
5. Discussion
5.1. The Rationality of the Research Method
5.2. Applicability of the Research Process to Cooling Surface Thermal Environments
5.3. Factors Influencing the Simulation
5.3.1. Impact of Grid Size on the Fitted Relationship
5.3.2. Factors and Coefficients for Constructing the Resistance Surface
- The single-factor resistance value
- 2.
- Total resistance value
5.3.3. Resistance Threshold of the Corridor
5.4. Limitations and Future Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheng, S.; Xiao, H.; Wang, Y. The cooling effects of hybrid landscapes at the district scale in mega-cities: A case study of Shanghai. J. Cleaner Prod. 2022, 366, 132942. [Google Scholar] [CrossRef]
- Khare, V.R.; Vajpai, A.; Gupta, D. A big picture of urban heat island mitigation strategies and recommendation for India. Urban Clim. 2021, 37, 100845. [Google Scholar] [CrossRef]
- Huang, A.; Shen, R.; Jia, G.; Xu, X. Reforestation enhanced landscape connectivity for thermal buffering in China. Environ. Res. Lett. 2022, 17, 014056. [Google Scholar] [CrossRef]
- Hyseni, C.; Heino, J.; Bini, L.M.; Bjelke, U.; Johansson, F. The importance of blue and green landscape connectivity for biodiversity in urban ponds. Basic Appl. Ecol. 2021, 57, 129–145. [Google Scholar] [CrossRef]
- Peng, J.; Cheng, X.; Hu, Y.; Corcoran, J. A landscape connectivity approach to mitigating the urban heat island effect. Landsc. Ecol. 2022, 37, 1707–1719. [Google Scholar] [CrossRef]
- Zou, Z.; Yan, C.; Yu, L.; Jiang, X.; Ding, J.; Qin, L.; Wang, B.; Qiu, G. Impacts of land use/ land cover types on interactions between urban heat island effects and heat waves. Build. Environ. 2021, 204, 108138. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Gaetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jorgensen, G.; Koga, M.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Xu, C.; Chen, G.; Huang, Q.; Su, M.; Rong, Q.; Yue, W.; Haase, D. Can improving the spatial equity of urban green space mitigate the effect of urban heat islands? An empirical study. Sci. Total Environ. 2022, 841, 156687. [Google Scholar] [CrossRef]
- Tan, M.; Li, X. Integrated assessment of the cool island intensity of green spaces in the mega city of Beijing. Int. J. Remote Sens. 2013, 34, 3028–3043. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, J.; Grimm, N.B.; McHale, M.; Buyantuyev, A. A hierarchical patch mosaic ecosystem model for urban landscapes: Model development and evaluation. Ecol. Model. 2013, 250, 81–100. [Google Scholar] [CrossRef]
- Zhou, W.; Qian, Y.; Li, X.; Li, W.; Han, L. Relationships between land cover and the surface urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landsc. Ecol. 2014, 29, 153–167. [Google Scholar] [CrossRef]
- Ke, X.; Men, H.; Zhou, T.; Li, Z.; Zhu, F. Variance of the impact of urban green space on the urban heat island effect among different urban functional zones: A case study in Wuhan. Urban For. Urban Green. 2021, 62, 127159. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, W.; Wu, T. An alternative method of developing landscape strategies for urban cooling: A threshold-based perspective. Landsc. Urban Plann. 2022, 225, 104449. [Google Scholar] [CrossRef]
- Xia, H.; Chen, Y.; Song, C.; Li, J.; Quan, J.; Zhou, G. Analysis of surface urban heat islands based on local climate zones via spatiotemporally enhanced land surface temperature. Remote Sens. Environ. 2022, 273, 112972. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, W.; Yang, C.; Shen, Y. Exploratory analysis of the influence of landscape patterns on lake cooling effect in Wuhan, China. Urban Clim. 2021, 39, 100969. [Google Scholar] [CrossRef]
- Cui, L.; Wang, J.; Sun, L.; Lv, C. Construction and optimization of green space ecological networks in urban fringe areas: A case study with the urban fringe area of Tongzhou district in Beijing. J. Cleaner Prod. 2020, 276, 124266. [Google Scholar] [CrossRef]
- Zhang, Z.; Meerow, S.; Newell, J.P.; Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Green. 2019, 38, 305–317. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Y.; Dong, J.; Liu, Q.; Liu, Y. Quantifying spatial morphology and connectivity of urban heat islands in a megacity: A radius approach. Sci. Total Environ. 2020, 714, 136792. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Strong contribution of rapid urbanization and urban agglomeration development to regional thermal environment dynamics and evolution. For. Ecol. Manag. 2019, 446, 214–225. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Siriwardena, G.M.; Plummer, K.E.; Harris, J.A. A bird’s eye view: Using circuit theory to study urban landscape connectivity for birds. Landsc. Ecol. 2017, 32, 1771–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Zhang, J.; Yang, G. How to build a heat network to alleviate surface heat island effect? Sus. Cities Soc. 2021, 74, 103135. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, J.; Yang, G.; Schlaberg, J. Reverse Thinking: A New Method from the Graph Perspective for Evaluating and Mitigating Regional Surface Heat Islands. Remote Sens. 2021, 13, 1127. [Google Scholar] [CrossRef]
- Liu, Q.; Xie, M.; Wu, R.; Xue, Q.; Chen, B.; Li, Z.; Li, X. From expanding areas to stable areas: Identification, classification and determinants of multiple frequency urban heat islands. Ecol. Indic. 2021, 130, 108046. [Google Scholar] [CrossRef]
- Xie, M.; Gao, Y.; Cao, Y.; Breuste, J.; Fu, M.; Tong, D. Dynamics and Temperature Regulation Function of Urban Green Connectivity. J. Urban Plann. Dev. 2015, 141, A5014008. [Google Scholar] [CrossRef]
- Lian, Z.; Feng, X. Urban Green Space Pattern in Core Cities of the Greater Bay Area Based on Morphological Spatial Pattern Analysis. Sustainability 2022, 14, 12365. [Google Scholar] [CrossRef]
- Mokhtari, Z.; Barghjelveh, S.; Sayahnia, R.; Karami, P.; Qureshi, S.; Russo, A. Spatial pattern of the green heat sink using patch- and network-based analysis: Implication for urban temperature alleviation. Sus. Cities Soc. 2022, 83, 103964. [Google Scholar] [CrossRef]
- Chen, L.; Sun, R.; Lu, Y. A conceptual model for a process-oriented landscape pattern analysis. Sci. China-Earth Sci. 2019, 62, 2050–2057. [Google Scholar] [CrossRef]
- Gao, J.; Gong, J.; Yang, J.; Li, J.; Li, S. Measuring Spatial Connectivity between patches of the heat source and sink (SCSS): A new index to quantify the heterogeneity impacts of landscape patterns on land surface temperature. Landsc. Urban Plann. 2022, 217, 104260. [Google Scholar] [CrossRef]
- Lyu, R.; Pang, J.; Tian, X.; Zhao, W.; Zhang, J. How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data. Sus. Cities Soc. 2023, 88, 104287. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Gao, S. Comparative Analysis of Variations and Patterns between Surface Urban Heat Island Intensity and Frequency across 305 Chinese Cities. Remote Sens. 2021, 13, 3505. [Google Scholar] [CrossRef]
- Forestry and Grassland Bureau of Ningxia Hui Autonomous Region Home Page. Available online: http://lcj.nx.gov.cn/zwgk/zfxxgkml/ghxx/202112/t20211213_3219671.html (accessed on 20 January 2023).
- Department of Ecology and Environment of Ningxia Hui Autonomous Region Home Page. Available online: https://sthjt.nx.gov.cn/zwgk/hjgh/hhlystbh/202210/t20221031_3823687.html (accessed on 20 January 2023).
- People’s Government of Shizuishan City Home Page. Available online: http://www.shizuishan.gov.cn/zwgk/zc/szfwj/szbf/202204/t20220406_3418273.html (accessed on 20 January 2023).
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S.K. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Chen, L. Effects of green space dynamics on urban heat islands: Mitigation and diversification. Ecosyst. Serv. 2017, 23, 38–46. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.; Zhang, Y.; Wu, J.; Li, W.; Li, Y. Evaluating the effectiveness of landscape metrics in quantifying spatial patterns. Ecol. Indic. 2010, 10, 217–223. [Google Scholar] [CrossRef]
- An, Y.; Liu, S.; Sun, Y.; Shi, F.; Beazley, R. Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landsc. Ecol. 2021, 36, 2059–2076. [Google Scholar] [CrossRef]
- Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Vogt, P. A national assessment of green infrastructure and change for the conterminous United States using morphological image processing. Landsc. Urban Plann. 2010, 94, 186–195. [Google Scholar] [CrossRef]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Modell. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Y.; Luo, X. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. 2021, 754, 141868. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Zhang, Y.-Z.; Jiang, Z.-Y.; Guo, C.-X.; Zhao, M.-Y.; Yang, Z.-G.; Guo, M.-Y.; Wu, B.-Y.; Chen, Q.-L. Integrating morphological spatial pattern analysis and the minimal cumulative resistance model to optimize urban ecological networks: A case study in Shenzhen City, China. Ecol. Process. 2021, 10, 1–15. [Google Scholar] [CrossRef]
- Leonard, P.B.; Duffy, E.B.; Baldwin, R.F.; McRae, B.H.; Shah, V.B.; Mohapatra, T.K. gflow: Software for modeling circuit theory-based connectivity at any scale. Methods Ecol. Evol. 2017, 8, 519–526. [Google Scholar] [CrossRef] [Green Version]
- McRae, B.H.; Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA 2007, 104, 19885–19890. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.H.; Zhao, X.F.; Chen, F.; Wu, L.C. Using land use change trajectories to quantify the effects of urbanization on urban heat island. Adv. Space Res. 2014, 53, 463–473. [Google Scholar] [CrossRef]
- Hondula, D.M.; Vanos, J.K.; Gosling, S.N. The SSC: A decade of climate-health research and future directions. Int. J. Biometeorol. 2014, 58, 109–120. [Google Scholar] [CrossRef]
- Yang, L.; Niyogi, D.; Tewari, M.; Aliaga, D.; Chen, F.; Tian, F.; Ni, G. Contrasting impacts of urban forms on the future thermal environment: Example of Beijing metropolitan area. Environ. Res. Lett. 2016, 11, 034018. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, Y.; Ma, R.; Gao, C.; Wu, Y. Mapping urban socio-economic vulnerability related to heat risk: A grid-based assessment framework by combing the geospatial big data. Urban Clim. 2022, 43, 101169. [Google Scholar] [CrossRef]
- Fan, H.; Yu, Z.; Yang, G.; Liu, T.Y.; Liu, T.Y.; Hung, C.H.; Vejre, H. How to cool hot-humid (Asian) cities with urban trees? An optimal landscape size perspective. Agric. For. Meteorol. 2019, 265, 338–348. [Google Scholar] [CrossRef]
- Yu, Q.; Yue, D.P.; Wang, J.P.; Zhang, Q.B.; Li, Y.T.; Yu, Y.; Chen, J.X.; Li, N. The optimization of urban ecological infrastructure network based on the changes of county landscape patterns: A typical case study of ecological fragile zone located at Deng Kou (Inner Mongolia). J. Cleaner Prod. 2017, 163, S54–S67. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Hu, M.; Li, Q.; Yan, Z.; Jones, P. Global land surface air temperature dynamics since 1880. Int. J. Climatol. 2018, 38, 466–474. [Google Scholar] [CrossRef]
Type | The Area Ratio of Ecological Land | Shape Index | Fragmentation Index | R2 of Multiple Linear Regression |
---|---|---|---|---|
M1 | >61% | ○ | ○ | 0.557 ** |
M2 | √ | ○ | 0.550 ** | |
M3 | ○ | √ | 0.559 ** | |
M4 | √ | √ | 0.565 ** | |
M5 | <61% | ○ | ○ | 0.471 ** |
M6 | √ | ○ | 0.482 ** | |
M7 | ○ | √ | 0.478 ** | |
M8 | √ | √ | 0.495 ** |
Type | Percentage of the Number in the Whole Image (%) | Percentage of the Number in the Foreground (%) | Amount (Number) | Area in the Foreground (km2) | Percentage of the Area in the Foreground (%) |
---|---|---|---|---|---|
Core | 26.58 | 88.04 | 2795 | 1880.40 | 88.31 |
Islet | 0.1 | 0.33 | 1369 | 6.20 | 0.29 |
Perforation | 0.6 | 1.99 | 995 | 41.60 | 1.95 |
Edge | 2.68 | 8.89 | 2535 | 186.00 | 8.73 |
Loop | 0.01 | 0.02 | 177 | 1.31 | 0.06 |
Bridge | 0.02 | 0.06 | 346 | 2.61 | 0.12 |
Branch | 0.2 | 0.67 | 6527 | 11.25 | 0.53 |
Rank | dPC | dIIC | Node ID | Rank | dPC | dIIC | Node ID |
---|---|---|---|---|---|---|---|
1 | 88.94 | 90.365 | 72 | 16 | 0.037 | 0.033 | 43 |
2 | 5.909 | 4.623 | 69 | 17 | 0.032 | 0.029 | 45 |
3 | 4.651 | 3.249 | 68 | 18 | 0.029 | 0.029 | 67 |
4 | 3.352 | 3.293 | 74 | 19 | 0.014 | 0.015 | 73 |
5 | 2.19 | 2.085 | 41 | 20 | 0.013 | 0.013 | 55 |
6 | 0.512 | 0.513 | 49 | 21 | 0.013 | 0.003 | 75 |
7 | 0.509 | 0.51 | 81 | 22 | 0.013 | 0.012 | 44 |
8 | 0.257 | 0.144 | 65 | 23 | 0.011 | 0.011 | 56 |
9 | 0.146 | 0.024 | 60 | 24 | 0.004 | 0.004 | 46 |
10 | 0.139 | 0.14 | 38 | 25 | 0.004 | 0.004 | 80 |
11 | 0.115 | 0.002 | 54 | 26 | 0.002 | 0.002 | 70 |
12 | 0.091 | 0.087 | 84 | 27 | 0.002 | 0.002 | 88 |
13 | 0.048 | 0.009 | 39 | 28 | 0.002 | 0.002 | 86 |
14 | 0.042 | 0.034 | 85 | 29 | 0.002 | 0.002 | 87 |
15 | 0.039 | 0.028 | 40 | 30 | 0.002 | 0.001 | 35 |
Resistance Factor | Level/Resistance Value |
---|---|
LUCC | water/6; woodland/5; grassland/4; cultivated land/3; construction land/2; unused/1 |
FVC | (0, 0.09]/1; (0.09, 0.28]/2; (0.28, 0.49]/3; (0.49, 0.7]/4; (0.7, 0.88]/5; (0.88, 1]/6 |
DEM | (1008, 1110]/1; (1110, 1158]/2; (1158, 1246]/3; (1246, 1363]/4; (1363, 1811]/5; (1811, 65535]/6 |
Distance from water/m | (500, 1000]/1; (1000, 2000]/2; (2000, 3000]/3; (3000, 4000]/4; (4000, 5000]/5; (5000, 9000]/6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Sun, H.; Xu, H.; Zhang, T.; Xu, Z.; Wu, L. How Can Ecological Land Be Deployed to Cool the Surface Thermal Environment? A Case Study from the Perspectives of Patch and Network. Remote Sens. 2023, 15, 1061. https://doi.org/10.3390/rs15041061
Wu D, Sun H, Xu H, Zhang T, Xu Z, Wu L. How Can Ecological Land Be Deployed to Cool the Surface Thermal Environment? A Case Study from the Perspectives of Patch and Network. Remote Sensing. 2023; 15(4):1061. https://doi.org/10.3390/rs15041061
Chicago/Turabian StyleWu, Dan, Hao Sun, Huanyu Xu, Tian Zhang, Zhenheng Xu, and Ling Wu. 2023. "How Can Ecological Land Be Deployed to Cool the Surface Thermal Environment? A Case Study from the Perspectives of Patch and Network" Remote Sensing 15, no. 4: 1061. https://doi.org/10.3390/rs15041061
APA StyleWu, D., Sun, H., Xu, H., Zhang, T., Xu, Z., & Wu, L. (2023). How Can Ecological Land Be Deployed to Cool the Surface Thermal Environment? A Case Study from the Perspectives of Patch and Network. Remote Sensing, 15(4), 1061. https://doi.org/10.3390/rs15041061