Mapping of Soil Liquefaction Associated with the 2021 Mw 7.4 Maduo (Madoi) Earthquake Based on the UAV Photogrammetry Technology
Abstract
:1. Introduction
2. Geological and Tectonic Setting
3. Data Acquisition Methods
3.1. Field Investigation of Liquefaction
3.2. UAV Image Acquisition and Liquefaction Identification
4. Results
4.1. Liquefaction Distribution Versus the Peak Ground Acceleration (PGA)
4.2. Liquefaction Distribution along the Surface Rupture
4.3. Liquefaction Density Decay away from the Surface Rupture
4.4. Liquefaction Distribution and Sedimentary Environments
5. Discussion
5.1. Relationship between Seismic Ground Motion and Liquefaction
5.2. Liquefaction Density Decay with Distance from the Surface Rupture
5.3. Influence of the Sedimentary Environment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu-Zeng, J.; Yao, W.; Liu, X.; Shao, Y.; Wang, W.; Han, L.; Wang, Y.; Zeng, X.; Li, J.; Wang, Z.; et al. High-resolution structure-from-motion models covering 160 km-long surface ruptures of the 2021 Mw7.4 Madoi earthquake in northern Qinghai-Tibetan Plateau. Earthq. Res. Adv. 2022, 2, 100140. [Google Scholar] [CrossRef]
- Pan, J.; Li, H.; Chevalier, M.-L.; Tapponnier, P.; Bai, M.; Li, C.; Liu, F.; Liu, D.; Wu, K.; Wang, P.; et al. Coseismic rupture of the 2021, M7.4 Maduo earthquake (northern Tibet): Short-cutting of the Kunlun fault big bend. Earth Planet. Sci. Lett. 2022, 594, 117703. [Google Scholar] [CrossRef]
- Guo, J. Sand liquefaction during the 2021 M7.4 Maduo earthquake, China. Nat. Hazards 2022, 114, 3359–3375. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Liu, R.; Li, W.; Zhang, W.; Du, P.; Tian, Q. Preliminary analyses of landslides and sand liquefaction triggered by 22 May, 2021, Maduo Mw7.3 earthquake on Northern Tibetan Plateau, China. Landslides 2022, 19, 155–164. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, Y.; Zhan, B.; Yuan, X.; Wu, X.; Ma, J. Comprehensive investigation and analysis of liquefaction damage caused by the Ms7.4 Maduo earthquake in 2021 on the Tibetan Plateau, China. Soil Dyn. Earthq. Eng. 2022, 155, 107191. [Google Scholar] [CrossRef]
- Harp, E.L.; Jibson, R.W.; Kayen, R.E.; Keefer, D.K.; Sherrod, B.L.; Carver, G.A.; Collins, B.D.; Moss, R.E.S.; Sitar, N. Landslides and liquefaction triggered by the M7.9 Denali Fault earthquake of 3 November 2002. GSA Today 2003, 13, 4–10. [Google Scholar] [CrossRef]
- Quigley, M.C.; Bastin, S.; Bradley, B.A. Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence. Geology 2013, 41, 419–422. [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Wang, P.; Zhang, Z.; Li, Z.; Cao, Z.; Zhang, J.; Yuan, X.; Wang, W.; Xing, X. Liquefaction in western Sichuan Basin during the 2008 Mw7.9 Wenchuan earthquake, China. Tectonophysics 2017, 694, 214–238. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, J.; Li, T.; Fu, B.; Wang, H.; Li, Y.; Jia, H. Soil liquefaction in seasonally frozen ground during the 2016 Mw6.6 Akto earthquake. Soil Dyn. Earthq. Eng. 2019, 117, 138–148. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, M. Chapter 2: Macroscopic characteristics of seismic liquefaction. In Hazard Analysis of Seismic Soil Liquefaction; Springer Natural Hazards; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Elgamal, A.W.; Zeghal, M.; Parra, E. Liquefaction of reclaimed island in Kobe, Japan. J. Geotech. Eng. 1996, 122, 39–49. [Google Scholar] [CrossRef]
- Wang, C.Y.; Dreger, D.S.; Wang, C.H.; Mayeri, D.; Berryman, J.G. Field relations among coseismic ground motion, water level change and liquefaction for the 1999 Chi-Chi (Mw = 7.5) earthquake, Taiwan. Geophys. Res. Lett. 2003, 30, 1890. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, X.; Cao, Z.; Hou, L.; Sun, R.; Dong, L.; Wang, W.; Meng, F.; Chen, H. Liquefaction macrophenomena in the great Wenchuan earthquake. Earthq. Eng. Eng. Vib. 2009, 8, 219–229. [Google Scholar] [CrossRef]
- Cao, Z.; Leslie Youd, T.; Yuan, X. Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, Ms = 8.0. Soil Dyn. Earthq. Eng. 2011, 31, 1132–1143. [Google Scholar] [CrossRef]
- Cubrinovski, M.; Bray, J.D.; Taylor, M.; Giorgini, S.; Bradley, B.; Wotherspoon, L.; Zupan, J. Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake. Seismol. Res. Lett. 2011, 82, 893–904. [Google Scholar] [CrossRef]
- Orense, R.P.; Kiyota, T.; Yamada, S.; Cubrinovski, M.; Hosono, Y.; Okamura, M.; Yasuda, S. Comparison of liquefaction features observed during the 2010 and 2011 Canterbury earthquakes. Seismol. Res. Lett. 2011, 82, 905–918. [Google Scholar] [CrossRef]
- Villamor, P.; Almond, P.; Tuttle, M.P.; Giona-Bucci, M.; Langridge, R.M.; Clark, K.; Ries, W.; Bastin, S.H.; Eger, A.; Vandergoes, M.; et al. Liquefaction features produced by the 2010–2011 Canterbury earthquake sequence in southwest Christchurch, New Zealand, and preliminary sssessment of paleoliquefaction features. Bull. Seismol. Soc. Am. 2016, 106, 1747–1771. [Google Scholar] [CrossRef]
- Zimmaro, P.; Nweke, C.C.; Hernandez, J.L.; Hudson, K.S.; Hudson, M.B.; Ahdi, S.K.; Boggs, M.L.; Davis, C.A.; Goulet, C.A.; Brandenberg, S.J.; et al. Liquefaction and related ground failure from July 2019 Ridgecrest earthquake sequence. Bull. Seismol. Soc. Am. 2020, 110, 1549–1566. [Google Scholar] [CrossRef]
- Yi, Z.; Buckreis, T.; Issa, O.; Yeung, J.S.; Lyda, A.; Gallien, T.W.; Kim, Y.; Lucey, J.; Delisle, M.-P.; Winters, M.A.; et al. Ground deformation data from GEER investigations of Ridgecrest earthquake sequence. Seismol. Res. Lett. 2020, 91, 2024–2034. [Google Scholar] [CrossRef]
- Fu, S.; Tatsuoka, F. Soil liquefaction during Haicheng and Tangshan earthquake in China; a review. Soils Found. 1984, 24, 11–29. [Google Scholar] [CrossRef] [Green Version]
- Owen, G.; Moretti, M. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sediment. Geol. 2011, 235, 141–147. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef]
- Bi, H.; Zheng, W.; Ren, Z.; Zeng, J.; Yu, J. Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry. Int. J. Remote Sens. 2016, 38, 2495–2510. [Google Scholar] [CrossRef]
- Javernick, L.; Brasington, J.; Caruso, B. Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Franke, K.W.; Rollins, K.M.; Ledezma, C.; Hedengren, J.D.; Wolfe, D.; Ruggles, S.; Bender, C.; Reimschiissel, B. Reconnaissance of two liquefaction sites using small unmanned aerial vehicles and structure from motion computer vision following the April 1, 2014 Chile earthquake. J. Geotech. Geoenviron. 2017, 143. [Google Scholar] [CrossRef]
- Papathanassiou, G.; Valkaniotis, S.; Pavlides, S. The July 20, 2017 Bodrum-Kos, Aegean Sea Mw = 6.6 earthquake; preliminary field observations and image-based survey on a lateral spreading site. Soil Dyn. Earthq. Eng. 2019, 116, 668–680. [Google Scholar] [CrossRef]
- Tapponnier, P.; Peltzer, G.; Le Dain, A.Y.; Armijo, R.; Cobbold, P. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 1982, 10, 611–616. [Google Scholar] [CrossRef]
- Rui, X.; Stamps, D.S. Present-day kinematics of the eastern Tibetan Plateau and Sichuan Basin: Implications for lower crustal rheology. J. Geophys. Res. Solid Earth 2016, 121, 3846–3866. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Zhiliang, C.; Yupinc, L.; Royden, L.H. Tectonics of the Longmen Shan and adjacent regions, central China. Int. Geol. Rev. 2010, 37, 661–735. [Google Scholar] [CrossRef]
- Klinger, Y.; Xu, X.; Tapponnier, P.; Van der Woerd, J.r.; Lasserre, C.; King, G. High-resolution satellite imagery mapping of the surface rupture and slip distribution of the Mw~7.8, 14 November 2001 Kokoxili earthquake, Kunlun fault, northern Tibet, China. Bull. Seismol. Soc. Am. 2005, 95, 1970–1987. [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Zhang, Z.; Wen, L.; Tapponnier, P.; Sun, J.; Xing, X.; Hu, G.; Xu, Q.; Zeng, L.; Ding, L.; et al. coseismic ruptures of the 12 May 2008, Ms8.0 Wenchuan earthquake, Sichuan: East–west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. Earth Planet. Sci. Lett. 2009, 286, 355–370. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Lee, Y.H.; Tan, X.; Yu, G.; Dai, F. The 2010 Yushu earthquake triggered landslide hazard mapping using GIS and weight of evidence modeling. Environ. Earth Sci. 2012, 66, 1603–1616. [Google Scholar] [CrossRef]
- Xu, X.; Wen, X.; Han, Z.; Chen, G.; Li, C.; Zheng, W.; Zhnag, S.; Ren, Z.; Xu, C.; Tan, X.; et al. Lushan Ms7.0 earthquake: A blind reserve-fault event. Chin. Sci. Bull. 2013, 58, 3437–3443. [Google Scholar] [CrossRef]
- Xu, X.; Tan, X.; Yu, G.; Wu, G.; Fang, W.; Chen, J.; Song, H.; Shen, J. Normal- and oblique-slip of the 2008 Yutian earthquake: Evidence for eastward block motion, northern Tibetan Plateau. Tectonophysics 2013, 584, 152–165. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu-Zeng, J.; Li, X.; Xu, J.; Yao, W.; Han, L.; Li, T. Detailed mapping of the surface rupture of the 12 February 2014 Yutian Ms7.3 earthquake, Altyn Tagh fault, Xinjiang, China. Sci. China Earth Sci. 2020, 64, 127–147. [Google Scholar] [CrossRef]
- Sun, J.; Yue, H.; Shen, Z.; Fang, L.; Zhan, Y.; Sun, X. The 2017 Jiuzhaigou earthquake: A complicated event occurred in a young fault system. Geophys. Res. Lett. 2018, 45, 2230–2240. [Google Scholar] [CrossRef]
- Tapponnier, P.; Xu, Z.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J. Oblique stepwise rise and growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Xu, X.; Zhang, G.; Wang, Q.; Zhang, Z.; Gai, H.; Kang, W. Coseismic surface ruptures, slip distribution, and 3D seismogenic fault for the 2021 Mw7.3 Maduo earthquake, central Tibetan Plateau, and its tectonic implications. Tectonophysics 2022, 827, 229275. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, T.; Su, P.; Sun, H.; Ha, G.; Guo, P.; Chen, G.; Thompson Jobe, J. Large surface-rupture gaps and low surface fault slip of the 2021 Mw7.4 Maduo earthquake along a low-activity strike-slip fault, Tibetan Plateau. Geophys. Res. Lett. 2022, 49, e2021GL096874. [Google Scholar] [CrossRef]
- Liu, X.; Xia, T.; Liu-zeng, J.; Yao, W.; Xu, J.; Deng, D.; Han, L.; Jia, Z.; Shao, Y.; Wang, Y.; et al. Distributed characteristics of the surface deformations associated with the 2021 Mw7.4 Madoi earthquake, Qinghai, China. Seismol. Geol. 2022, 44, 461–483. (In Chinese) [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Wallace, L. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [Google Scholar] [CrossRef]
- Ajayi, O.G.; Salubi, A.A.; Angbas, A.F.; Odigure, M.G. Generation of accurate digital elevation models from UAV acquired low percentage overlapping images. Int. J. Remote Sens. 2017, 38, 3113–3134. [Google Scholar] [CrossRef]
- Giordan, D.; Adams, M.S.; Aicardi, I.; Alicandro, M.; Allasia, P.; Baldo, M.; De Berardinis, P.; Dominici, D.; Godone, D.; Hobbs, P.; et al. The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bull. Eng. Geol. Environ. 2020, 79, 3437–3481. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2013, 6, 1–15. [Google Scholar] [CrossRef]
- Chen, W.; Wang, D.; Zhang, C.; Yao, Q.; Si, H. Estimating seismic intensity maps of the 2021 Mw7.3 Madoi, Qinghai and Mw6.1 Yangbi, Yunnan, China earthquakes. J. Earth Sci. 2022, 33, 839–846. [Google Scholar] [CrossRef]
- Powers, P.M.; Jordan, T.H. Distribution of seismicity across strike-slip faults in California. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Rodriguez Padilla, A.M.; Oskin, M.E.; Milliner, C.W.D.; Plesch, A. Accrual of widespread rock damage from the 2019 Ridgecrest earthquakes. Nat. Geosci. 2022, 15, 222–226. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, M. Review of soil liquefaction characteristics during major earthquakes of the twenty-first century. Nat. Hazards 2012, 65, 2375–2384. [Google Scholar] [CrossRef]
- Tang, X.W.; Hu, J.L.; Qiu, J.N. Identifying significant influence factors of seismic soil liquefaction and analyzing their structural relationship. KSCE J. Civ. Eng. 2016, 20, 2655–2663. [Google Scholar] [CrossRef]
- Bloom, C.K.; Howell, A.; Stahl, T.; Massey, C.; Singeisen, C. The influence of off-fault deformation zones on the near-fault distribution of coseismic landslides. Geology 2022, 50, 272–277. [Google Scholar] [CrossRef]
- Chen, H.; Qu, C.; Zhao, D.; Ma, C.; Shan, X. Rupture kinematics and coseismic slip model of the 2021 Mw7.3 Maduo (China) earthquake: Implications for the seismic hazard of the Kunlun fault. Remote Sens. 2021, 13, 3327. [Google Scholar] [CrossRef]
- Zhao, D.; Qu, C.; Chen, H.; Shan, X.; Song, X.; Gong, W. Tectonic and geometric control on fault kinematics of the 2021 Mw7.3 Maduo (China) earthquake inferred from interseismic, coseismic, and postseismic InSAR observations. Geophys. Res. Lett. 2021, 48, e2021GL095417. [Google Scholar] [CrossRef]
- Chester, F.M.; Chester, J.S. Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California. Tectonophysics 1998, 295, 199–221. [Google Scholar] [CrossRef]
- Ben-Zion, Y.; Sammis, C.G. Characterization of fault zones. Pure Appl. Geophys. 2003, 160, 677–715. [Google Scholar] [CrossRef]
- Li, Y.G.; Leary, P.C. Fault zone trapped seismic wave. Bull. Seismol. Soc. Am. 1990, 80, 1245–1271. [Google Scholar] [CrossRef]
- Donati, S.; Marra, F.; Rovelli, A. Damage and ground shaking in the town of Nocera Umbra during Umbria-Marche, central Italy, earthquakes: The special effect of a fault zone. Bull. Seismol. Soc. Am. 2001, 91, 511–519. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, F.; Li, T.; Allen, M.; Yuan, Z.; Li, Z.; Hong, S.; Zhang, Y.; Yuan, X.; Liu, R.; et al. Links between landscapes, seismicity and hydrology revealed by 2021 Maduo Mw7.3 earthquake. Commun. Earth Environ. 2023; under review. [Google Scholar]
- Zeng, X.; Liu-zeng, J.; Wang, W.; Yao, W.; Wu, J.; Liu, X.; Han, L.; Wang, W.; Xing, Y.; Du, R.; et al. Machine learning in identifyng and mapping the surface rupture of the 2021 Mw7.4 Madoi earthquake, Qinghai. Chinese J. Geophys. 2023, 66. (In Chinese) [Google Scholar] [CrossRef]
- Rashidian, V.; Baise, L.G.; Koch, M. Using high resolution optical imagery to detect earthquake-induced liquefaction: The 2011 Christchurch earthquake. Remote Sens. 2020, 12, 377. [Google Scholar] [CrossRef] [Green Version]
- Liang, P.; Xu, Y.; Li, W.; Zhang, Y.; Tian, Q. Automatic identification of liquefaction induced by 2021 Maduo Mw7.3 earthquake based on machine learning methods. Remote Sens. 2022, 14, 5595. [Google Scholar] [CrossRef]
- Mavroulis, S.; Lekkas, E.; Carydis, P. Liquefaction phenomena induced by the 26 November 2019, Mw = 6.4 Durrës (Albania) earthquake and liquefaction susceptibility assessment in the affected area. Geosciences 2021, 11, 215. [Google Scholar] [CrossRef]
- Papathanassiou, G.; Valkaniotis, S.; Ganas, A.; Stampolidis, A.; Rapti, D.; Caputo, R. Floodplain evolution and its influence on liquefaction clustering: The case study of March 2021 Thessaly, Greece, seismic sequence. Eng. Geol. 2022, 298, 106542. [Google Scholar] [CrossRef]
- Audemard, M.F.A.; Gómez, J.C.; Tavera, H.J.; Orihuela, N. Soil liquefaction during the Arequipa Mw8.4, June 23, 2001 earthquake, southern coastal Peru. Eng. Geol. 2005, 78, 237–255. [Google Scholar] [CrossRef]
- Zhu, J.; Baise, L.G.; Thompson, E.M. An updated geospatial liquefaction model for global application. Bull. Seismol. Soc. Am. 2017, 107, 1365–1385. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liu-Zeng, J.; Shao, Y.; Wang, Z.; Han, L.; Shen, X.; Qin, K.; Gao, Y.; Yao, W.; Hu, G.; et al. Mapping of Soil Liquefaction Associated with the 2021 Mw 7.4 Maduo (Madoi) Earthquake Based on the UAV Photogrammetry Technology. Remote Sens. 2023, 15, 1032. https://doi.org/10.3390/rs15041032
Wang W, Liu-Zeng J, Shao Y, Wang Z, Han L, Shen X, Qin K, Gao Y, Yao W, Hu G, et al. Mapping of Soil Liquefaction Associated with the 2021 Mw 7.4 Maduo (Madoi) Earthquake Based on the UAV Photogrammetry Technology. Remote Sensing. 2023; 15(4):1032. https://doi.org/10.3390/rs15041032
Chicago/Turabian StyleWang, Wenxin, Jing Liu-Zeng, Yanxiu Shao, Zijun Wang, Longfei Han, Xuwen Shen, Kexin Qin, Yunpeng Gao, Wenqian Yao, Guiming Hu, and et al. 2023. "Mapping of Soil Liquefaction Associated with the 2021 Mw 7.4 Maduo (Madoi) Earthquake Based on the UAV Photogrammetry Technology" Remote Sensing 15, no. 4: 1032. https://doi.org/10.3390/rs15041032
APA StyleWang, W., Liu-Zeng, J., Shao, Y., Wang, Z., Han, L., Shen, X., Qin, K., Gao, Y., Yao, W., Hu, G., Zeng, X., Liu, X., Wang, W., Cui, F., Liu, Z., Li, J., & Tu, H. (2023). Mapping of Soil Liquefaction Associated with the 2021 Mw 7.4 Maduo (Madoi) Earthquake Based on the UAV Photogrammetry Technology. Remote Sensing, 15(4), 1032. https://doi.org/10.3390/rs15041032