A Potential Earthquake with Magnitude Mw 7.2 on the Northern Xiaojiang Fault Revealed by GNSS Measurement
Abstract
:1. Introduction
2. GNSS Observations
3. Slip Rate of the Xiaojiang Fault
4. Inversion for the Locking State
5. Analysis of Strain Rate
6. Results and Discussion
7. Conclusions
- (1)
- The strain rate results show that the shear strain rate in the region is concentrated on the main strike-slip fault zone, which corresponds to historical strong earthquakes. In addition, our near-fault observations greatly improved the resolution of the strain results.
- (2)
- The inversion based on the S model shows that the locking depths of the northern, central, and southern segments are 25.5 km, 12 km, and 22.5 km, respectively, and the slip rate of XJF is 9–11 mm/a. The D model inversion also shows that the locking depth in the central segment of the XJF is relatively shallow, and an asperity is found in the northern segment of the XJF.
- (3)
- The asperity and the shallow locking zone are basically consistent with the rupture areas of the 1733 M 7.8 Dongchuan earthquake and the 1833 M 8 Songming earthquake, respectively. This consistency may mean that the northern and central sections of the XJF are in different earthquake cycles.
- (4)
- The inverted model and the seismicity over time suggest that a potential earthquake with a magnitude of at least Mw 7.2 will likely occur on the northern segment of the XJF.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molnar, P.; Tapponnier, P. Cenozoic tectonics of Asia: Effects of a continental collision. Science 1975, 189, 419–426. [Google Scholar]
- Rowley, D.B. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet. Sci. Lett. 1996, 145, 1–13. [Google Scholar] [CrossRef]
- Allen, C.; Gillespie, A.; Yuan, H.; Sieh, K.E.; Buchun, Z.; Chengnan, Z. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard. Geol. Soc. Am. Bull. 1984, 95, 686–700. [Google Scholar] [CrossRef]
- Tapponnier, P.; Molnar, P. Active faulting and tectonics in China. J. Geophys. Res. 1977, 82, 2905–2930. [Google Scholar] [CrossRef]
- Hu, J.; Yang, H.; Xu, X.; Wen, L.; Li, G. Lithospheric structure and crust–mantle decoupling in the southeast edge of the Tibetan Plateau. Gondwana Res. 2012, 22, 1060–1067. [Google Scholar]
- Xu, X.; Wen, X.; Zheng, R.; Ma, W.; Song, F.; Yu, G. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sci. China Ser. D: Earth Sci. 2003, 46, 210–226. [Google Scholar] [CrossRef]
- Song, F.; Wang, Y.; Yu, W.; Cao, Z.; Shen, X.; Shen, J. Xiaojiang Active Faults; Seismological Press: Beijing, China, 1998. [Google Scholar]
- Cui, N. The Earthquake Chronicle in Dongchuan Prefecture; Seismological Press: Beijing, China; p. 1735. (In Chinese)
- Li, J.; Böse, M.; Feng, Y.; Yang, C. Real-Time Characterization of Finite Rupture and Its Implication for Earthquake Early Warning: Application of FinDer to Existing and Planned Stations in Southwest China. Front. Earth Sci. 2021, 9, 699560. [Google Scholar] [CrossRef]
- Xu, X.; Xu, C.; Yu, G.; Wu, X.; Li, X.; Zhang, J. Primary surface ruptures of the Ludian Mw6.2 earthquake, southeastern Tibetan plateau, China. Seismol. Res. Lett. 2015, 86, 1622–1635. [Google Scholar] [CrossRef]
- Nocquet, J.-M.; Villegas-Lanza, J.C.; Chlieh, M.; Mothes, P.; Rolandone, F.; Jarrin, P.; Cisneros, D.; Alvarado, A.; Audin, L.; Bondoux, F. Motion of continental slivers and creeping subduction in the northern Andes. Nat. Geosci. 2014, 7, 287–291. [Google Scholar]
- Ader, T.; Avouac, J.P.; Liu-Zeng, J.; Lyon-Caen, H.; Bollinger, L.; Galetzka, J.; Genrich, J.; Thomas, M.; Chanard, K.; Sapkota, S.N. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. J. Geophys. Res. Solid Earth 2012, 117, B04403. [Google Scholar]
- Li, S.; Freymueller, J.T. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone. Geophys. Res. Lett. 2018, 45, 3453–3460. [Google Scholar] [CrossRef]
- Drooff, C.; Freymueller, J.T. New Constraints on Slip Deficit on the Aleutian Megathrust and Inflation at Mt. Veniaminof, Alaska From Repeat GPS Measurements. Geophys. Res. Lett. 2021, 48, e2020GL091787. [Google Scholar] [CrossRef]
- Ikuta, R.; Satomura, M.; Fujita, A.; Shimada, S.; Ando, M. A small persistent locked area associated with the 2011 Mw9. 0 Tohoku-Oki earthquake, deduced from GPS data. J. Geophys. Res. Solid Earth 2012, 117, B11408. [Google Scholar]
- Wen, X.; Ma, S.; Xu, X.; He, Y. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Phys. Earth Planet. Inter. 2008, 168, 16–36. [Google Scholar]
- Yi, G.; Wen, X.; Su, Y. Study on the potential strong-earthquake risk for the eastern boundary of the Sichuan-Yunnan active faulted-block, China. Chin. J. Geophys. 2008, 51, 1151–1158. [Google Scholar]
- Mao, Y.; Liu, Z.; Ye, J.; Li, Z. Analysis on strong earthquake risk of Xiaojiang fault zone. J. Seismol. Res. 2016, 39, 213–217. [Google Scholar]
- Wang, F.; Wang, M.; Wang, Y.; Shen, Z. Earthquake potential of the Sichuan-Yunnan region, western China. J. Asian Earth Sci. 2015, 107, 232–243. [Google Scholar]
- Liu, J.; Zhang, L.; Du, Y. Seismic Hazard Assessment of the Mid-Northern Segment of Xiaojiang Fault Zone in Southwestern China Using Scenario Earthquakes. Bull. Seismol. Soc. Am. 2020, 110, 1191–1210. [Google Scholar]
- Bergen, K.J.; Shaw, J.H.; Leon, L.A.; Dolan, J.F.; Pratt, T.L.; Ponti, D.J.; Morrow, E.; Barrera, W.; Rhodes, E.J.; Murari, M.K. Accelerating slip rates on the Puente Hills blind thrust fault system beneath metropolitan Los Angeles, California, USA. Geology 2017, 45, 227–230. [Google Scholar] [CrossRef]
- Chen, Z.; Burchfiel, B.; Liu, Y.; King, R.; Royden, L.; Tang, W.; Wang, E.; Zhao, J.; Zhang, X. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J. Geophys. Res. Solid Earth 2000, 105, 16215–16227. [Google Scholar] [CrossRef]
- Jin, H.; Gao, Y.; Su, X.; Fu, G. Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data. Earth Planet. Phys. 2019, 3, 53–61. [Google Scholar]
- King, R.W.; Shen, F.; Clark Burchfiel, B.; Royden, L.H.; Wang, E.; Chen, Z.; Liu, Y.; Zhang, X.; Zhao, J.; Li, Y. Geodetic measurement of crustal motion in southwest China. Geology 1997, 25, 179–182. [Google Scholar] [CrossRef]
- Shen, Z.; Lü, J.; Wang, M.; Bürgmann, R. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res. Solid Earth 2005, 110, B11409. [Google Scholar]
- Wang, M.; Shen, Z. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar]
- Wang, Y.; Wang, E.; Shen, Z.; Wang, M.; Gan, W.; Qiao, X.; Meng, G.; Li, T.; Tao, W.; Yang, Y. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Sci. China Ser. D Earth Sci. 2008, 51, 1267. [Google Scholar]
- Wen, X.; Du, F.; Long, F.; Fan, J.; Zhu, H. Tectonic dynamics and correlation of major earthquake sequences of the Xiaojiang and Qujiang-Shiping fault systems, Yunnan, China. Sci. China Earth Sci. 2011, 54, 1563–1575. [Google Scholar]
- Han, Z.; Dong, S.; Mao, Z.; Hu, N.; Tan, X.; Yuan, R.; Guo, P. The Holocene activity and strike-slip rate of the southern segment of Xiaojiang fault in the southeastern Yunnan region, China. Seismol. Geol. 2017, 39, 1–19. [Google Scholar]
- Shen, J.; Wang, Y.; Song, F. Characteristics of the active Xiaojiang fault zone in Yunnan, China: A slip boundary for the southeastward escaping Sichuan–Yunnan Block of the Tibetan Plateau. J. Asian Earth Sci. 2003, 21, 1085–1096. [Google Scholar]
- Fu, Z.; Xu, L.; Wang, Y. Seismic Risk on the Northern Xiaojiang Fault Implied by the Latest and Nearest GPS Observations. Pure Appl. Geophys. 2020, 177, 661–679. [Google Scholar]
- Houseman, G.; England, P. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision. J. Geophys. Res. Solid Earth 1993, 98, 12233–12249. [Google Scholar] [CrossRef]
- Chen, Q.; van Dam, T.; Sneeuw, N.; Collilieux, X.; Weigelt, M.; Rebischung, P. Singular spectrum analysis for modeling seasonal signals from GPS time series. J. Geodyn. 2013, 72, 25–35. [Google Scholar] [CrossRef]
- Thatcher, W. Nonlinear strain buildup and the earthquake cycle on the San Andreas fault. J. Geophys. Res. Solid Earth 1983, 88, 5893–5902. [Google Scholar]
- Zhou, Y.; He, J.; Oimahmadov, I.; Gadoev, M.; Pan, Z.; Wang, W.; Abdulov, S.; Rajabov, N. Present-day crustal motion around the Pamir Plateau from GPS measurements. Gondwana Res. 2016, 35, 144–154. [Google Scholar] [CrossRef]
- Herring, T.; King, R.; McClusky, S. Introduction to gamit/globk. Mass. Inst. Technol. Camb. Mass. 2010. [Google Scholar]
- Chousianitis, K.; Ganas, A.; Evangelidis, C.P. Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release. J. Geophys. Res. Solid Earth 2015, 120, 3909–3931. [Google Scholar]
- Chousianitis, K.; Ganas, A.; Gianniou, M. Kinematic interpretation of present-day crustal deformation in central Greece from continuous GPS measurements. J. Geodyn. 2013, 71, 1–13. [Google Scholar]
- Petrie, E.J. Modelling Higher-Order Ionospheric Effects on Global GPS Solutions; University of Newcastle upon Tyne: Newcastle upon Tyne, UK, 2010. [Google Scholar]
- Savage, J.C.; Burford, R.O. Geodetic determination of relative plate motion in central California. J. Geophys. Res. 1973, 78, 832–845. [Google Scholar]
- Savage, J.; Svarc, J.; Prescott, W. Geodetic estimates of fault slip rates in the San Francisco Bay area. J. Geophys. Res. Solid Earth 1999, 104, 4995–5002. [Google Scholar]
- McCaffrey, R.; Stein, S.; Freymueller, J. Crustal block rotations and plate coupling. Plate Bound. Zones Geodyn. Ser 2002, 30, 101–122. [Google Scholar]
- McCaffrey, R.; Qamar, A.I.; King, R.W.; Wells, R.; Khazaradze, G.; Williams, C.A.; Stevens, C.W.; Vollick, J.J.; Zwick, P.C. Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophys. J. Int. 2007, 169, 1315–1340. [Google Scholar] [CrossRef]
- McCaffrey, R. Time-dependent inversion of three-component continuous GPS for steady and transient sources in northern Cascadia. Geophys. Res. Lett. 2009, 36, 2497–2502. [Google Scholar] [CrossRef]
- Loveless, J.P.; Meade, B.J. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations. Earth Planet. Sci. Lett. 2011, 303, 11–24. [Google Scholar]
- Wang, W.; Qiao, X.; Yang, S.; Wang, D. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophys. J. Int. 2017, 208, 1088–1102. [Google Scholar]
- Jiang, G.; Xu, X.; Chen, G.; Liu, Y.; Fukahata, Y.; Wang, H.; Yu, G.; Tan, X.; Xu, C. Geodetic imaging of potential seismogenic asperities on the Xianshuihe-Anninghe-Zemuhe fault system, southwest China, with a new 3-D viscoelastic interseismic coupling model. J. Geophys. Res. Solid Earth 2015, 120, 1855–1873. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, Z.; Shao, Z.; Zhao, G. Block motions and strain partition on active faults in Northeast Tibet and their geodynamic implications. Terra Nova 2021, 33, 356–363. [Google Scholar]
- Zhang, Y.; He, Z.; Ma, B.; Wang, J.; Zhang, H.; Wang, J. Geological and geomorphic evidence for activity of the Mengzi fault along the southeastern margin of the Tibetan Plateau. J. Asian Earth Sci. 2019, 171, 233–245. [Google Scholar]
- JianPing, W.; Ting, Y.; WeiLai, W.; YueHong, M.; TianZhong, Z. Three-Dimensional P-Wave Velocity Structure Around the Xiaojiang Fault Zone and Its Tectonic Implications. Chin. J. Geophys. 2013, 56, 400–410. [Google Scholar] [CrossRef]
- Deng, B.; Yong, Z.Q.; Liu, S.G.; Li, Z.W.; Tang, C. Cenozoic mountain-building processes in the Daliangshan, southeastern margin of the Tibetan Plateau: Evidence from low-temperature thermochronology and thermal modeling. Chin. J. Geophys. 2016, 59, 2162–2175. [Google Scholar]
- Wessel, P.; Bercovici, D. Interpolation with Splines in Tension: A Green’s Function Approach. Math. Geol. 1998, 30, 77–93. [Google Scholar]
- Hackl, M.; Malservisi, R.; Wdowinski, S. Strain rate patterns from dense GPS networks. Nat. Hazards Earth Syst. Sci. 2009, 9, 1177–1187. [Google Scholar] [CrossRef]
- Gan, W.; Zhang, P.; Shen, Z.; Niu, Z.; Wang, M.; Wan, Y.; Zhou, D.; Cheng, J. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. Solid Earth 2007, 112, B08416. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Shen, Z.; Wang, M.; Gan, W.; Bürgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]
- Kanamori, H.; Stewart, G.S. Seismological aspects of the Guatemala earthquake of February 4, 1976. J. Geophys. Res. Solid Earth 1978, 83, 3427–3434. [Google Scholar]
- Lay, T.; Kanamori, H.; Ruff, L. The asperity model and the nature of large subduction zone earthquakes. Earthq. Predict. Res. 1982, 1, 3–71. [Google Scholar]
- Cheng, J.; Liu, J.; Gan, W.; Yu, H.; Li, G. Characteristics of strong earthquake evolution around the eastern boundary faults of the Sichuan-Yunnan rhombic block. Sci. China Earth Sci. 2011, 54, 1716. [Google Scholar] [CrossRef]
- Wei, W.; Jiang, Z.; Wu, Y.; Liu, X.; Zhao, J.; Li, Q.; Dong, M. Study on motion characteristics and strain accumulation of Xiaojiang fault zone. J. Geod. Geodyn. 2012, 32, 11–15. [Google Scholar]
- Li, L.; Chen, Q.; Niu, F.; He, J.; Fu, H. Estimates of deep slip rate along the Xiaojiang fault with repeating microearthquake data. Chin. J. Geophys.—Chin. Ed. 2013, 56, 3373–3384. [Google Scholar]
- Zhou, Y.; Xu, L.; Wu, J.; Li, C.; Fang, L.; Pan, Z. Seismicity of the repeating earthquake clusters in the northern Xiaojiang fault zone and its implications. Front. Earth Sci. 2022, 10, 917635. [Google Scholar]
- Kanamori, H. The energy release in great earthquakes. J. Geophys. Res. 1977, 82, 2981–2987. [Google Scholar]
- Kanamori, H. Mechanics of earthquakes. Annu. Rev. Earth Planet. Sci. 1994, 22, 207–237. [Google Scholar]
- Working Group of M7. Study on the Mid-to Long-Term Potential of Large Earthquakes on the Chinese Continent; Seismological Press: Beijing, China, 2012. [Google Scholar]
Site | Longitude (°) | Latitude (°) | Ve (Eurasia) (mm/a) | Vn (Eurasia) (mm/a) | σE (mm/a) | σN (mm/a) | Corr. |
---|---|---|---|---|---|---|---|
SHQX | 102.82 | 26.67 | 8.65 | −11 | 0.2 | 0.11 | −0.002 |
SHTC | 102.84 | 26.52 | 8.44 | −10.3 | 0.5 | 0.4 | 0 |
SHXJ | 102.76 | 26.81 | 10.67 | −12.29 | 0.3 | 0.4 | 0 |
SNDG | 102.61 | 27.12 | 11.79 | −8.88 | 0.3 | 0.2 | 0 |
SNPS | 102.72 | 27.08 | 9.79 | −9.99 | 0.2 | 0.2 | −0.001 |
SNXY | 102.78 | 26.88 | 8.67 | −10.79 | 0.2 | 0.2 | −0.001 |
YDAW | 103.18 | 26.00 | 7.78 | −8.02 | 0.5 | 0.3 | 0 |
YDTB | 103.03 | 26.38 | 7.82 | −10.71 | 0.4 | 0.4 | 0 |
YDYM | 102.91 | 26.30 | 7.71 | −9.8 | 0.4 | 0.5 | 0 |
YHCS | 103.27 | 26.19 | 7.7 | −5.64 | 0.7 | 0.5 | 0 |
YHDH | 103.23 | 26.33 | 7.42 | −6.23 | 0.11 | 0.11 | −0.006 |
YHDQ | 103.33 | 26.65 | 7.15 | −5.75 | 0.21 | 0.4 | −0.001 |
YHJC | 103.39 | 26.00 | 8.58 | −4.55 | 1.1 | 0.8 | 0 |
YHNG | 103.18 | 26.51 | 7.83 | −6.93 | 0.2 | 0.21 | −0.002 |
YHXJ | 103.40 | 26.31 | 7.61 | −5.35 | 0.8 | 0.7 | 0 |
YQBH | 102.92 | 27.00 | 8.18 | −7.71 | 0.2 | 0.2 | −0.001 |
YQJT | 102.99 | 26.78 | 7.56 | −8.21 | 0.2 | 0.2 | −0.001 |
YQLD | 103.19 | 26.96 | 7.38 | −6.83 | 0.2 | 0.11 | −0.004 |
YXDS | 103.05 | 25.73 | 6.75 | −9.4 | 0.6 | 0.5 | 0 |
YXGM | 103.18 | 25.73 | 7.35 | −7.32 | 0.6 | 0.4 | 0 |
YXGY | 103.46 | 25.83 | 5.86 | −4.85 | 0.6 | 0.4 | 0 |
YXHK | 103.48 | 25.68 | 6.04 | −4.95 | 0.5 | 0.4 | 0 |
YXLH | 103.01 | 26.00 | 7.68 | −9.61 | 0.5 | 0.4 | 0 |
YXQX | 103.41 | 25.50 | 6.92 | −4.54 | 0.6 | 0.5 | 0 |
YXXF | 103.00 | 25.47 | 6.62 | −9.89 | 0.6 | 0.5 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Xu, L.; Pan, Z.; Hao, M.; Li, C. A Potential Earthquake with Magnitude Mw 7.2 on the Northern Xiaojiang Fault Revealed by GNSS Measurement. Remote Sens. 2023, 15, 944. https://doi.org/10.3390/rs15040944
Zhou Y, Xu L, Pan Z, Hao M, Li C. A Potential Earthquake with Magnitude Mw 7.2 on the Northern Xiaojiang Fault Revealed by GNSS Measurement. Remote Sensing. 2023; 15(4):944. https://doi.org/10.3390/rs15040944
Chicago/Turabian StyleZhou, Yun, Lisheng Xu, Zhengyang Pan, Ming Hao, and Chunlai Li. 2023. "A Potential Earthquake with Magnitude Mw 7.2 on the Northern Xiaojiang Fault Revealed by GNSS Measurement" Remote Sensing 15, no. 4: 944. https://doi.org/10.3390/rs15040944
APA StyleZhou, Y., Xu, L., Pan, Z., Hao, M., & Li, C. (2023). A Potential Earthquake with Magnitude Mw 7.2 on the Northern Xiaojiang Fault Revealed by GNSS Measurement. Remote Sensing, 15(4), 944. https://doi.org/10.3390/rs15040944