Extracting a Connected River Network from DEM by Incorporating Surface River Occurrence Data and Sentinel-2 Imagery in the Danjiangkou Reservoir Area
Abstract
:1. Introduction
2. Methods
2.1. Processing of SWO and DEM Correction Based on the Stream Burning Approach
2.2. Extraction of the Skeleton Lines and DEM Correction Based on the Modified AGREE Approach
2.3. River Network Based on AGRSDEM
3. Study Area and Materials
3.1. Study Area
3.2. Datasets
3.2.1. NASADEM 001
3.2.2. Surface Water Occurrence
3.2.3. Sentinel-2 Data
4. Results
4.1. Validation and Assessment
4.2. Analysis of the Extracted River Network
5. Discussion
5.1. Comparative Analysis of Rebuild DEM Algorithm by Using Different River Information
5.2. Comparative Analysis of Different SHAGRID and SMOELEV Parameters of AGRSDEM
5.3. The Comparative Analysis of Determination of Flow Direction by Using Different Algorithms
5.4. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Liu, J.; Li, J.; Meng, Y.; Pokhrel, Y.; Zhang, H. Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery. Remote Sens. Environ. 2021, 255, 112281. [Google Scholar] [CrossRef]
- Wu, T.; Li, J.; Li, T.; Sivakumar, B.; Zhang, G.; Wang, G. High-efficient extraction of drainage networks from digital elevation models constrained by enhanced flow enforcement from known river maps. Geomorphology 2019, 340, 184–201. [Google Scholar] [CrossRef]
- Chen, X.; Long, D.; Hong, Y.; Zeng, C.; Yan, D. Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resour. Res. 2017, 53, 2431–2466. [Google Scholar] [CrossRef]
- Sheng, M.; Lei, H.; Jiao, Y.; Yang, D. Evaluation of the runoff and river routing schemes in the community land model of the Yellow River Basi. J. Adv. Model. Earth Syst. 2017, 9, 2993–3018. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef]
- Shin, S.; Pokhrel, Y.; Yamazaki, D.; Huang, X.; Torbick, N.; Qi, J.; Pattanakiat, S.; Ngo-Duc, T.; Duc Nguyen, T. High resolution modeling of river-floodplain-reservoir inundation dynamics in the Mekong River Basin. Water Resour. Res. 2020, 56, 1–23. [Google Scholar] [CrossRef]
- Buchanan, B.P.; Archibald, J.A.; Easton, Z.M.; Shaw, S.B.; Schneider, R.L.; Todd Walter, M. A phosphorus index that combines critical source areas and transport pathways using a travel time approach. J. Hydrol. 2013, 486, 123–135. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J. Investigating the effects of point source and non point source pollution on the water quality of the East River (Dongjiang) in South China. Ecol. Indic. 2013, 32, 294–304. (In Chinese) [Google Scholar] [CrossRef]
- Garneau, C.; Sauvage, S.; Sánchez-Pérez, J.M.; Lofts, S.; Brito, D.; Neves, R.; Probst, A. Modelling trace metal transfer in large rivers under dynamic hydrology: A coupled hydrodynamic and chemical equilibrium model. Environ. Model. Softw. 2017, 89, 77–96. [Google Scholar] [CrossRef]
- U.S. Geological Survey. HYDRO1k Elevation Derivative Database. 2000. Available online: http://eros.usgs.gov/products/elevation/gtopo30/hydro/index.html (accessed on 28 December 2020).
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data. Eos Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Agosto, E.; Dalmasso, S.; Pasquali, P.; Terzo, O. Ithaca worldwide flood alert system: The web framework. Appl. Geomat. 2011, 3, 83–89. [Google Scholar] [CrossRef]
- Marthews, T.R.; Dadson, S.J.; Lehner, B.; Abele, S.; Gedney, N. High-resolution global topographic index values for use in large-scale hydrological modelling. Hydrol. Earth Syst. Sci. 2015, 19, 91–104. [Google Scholar] [CrossRef]
- Dirk, E.; Willem, V.V.; Dai, Y.; Albrecht, W.; Hessel, C.W.; Philip, J.W. A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models. Hydrol. Earth Syst. Sci. 2021, 25, 5287–5313. [Google Scholar] [CrossRef]
- Wu, H.; Kimball, J.S.; Li, H.; Huang, M.; Leung, L.R.; Adler, R.F. A new global river network database for macroscale hydrologic modeling. Water Resour. Res. 2012, 48, 93–94. [Google Scholar] [CrossRef]
- Stanislawski, L.; Brockmeyer, T.; Shavers, E. Automated road breaching to enhance extraction of natural drainage networks from elevation models through deep learning. ISPRS-Int. Arch. Photogrammetry. Remote Sens. Spat. Inf. Sci. 2018, XLII-4, 597–601. [Google Scholar] [CrossRef]
- Yan, Y.; Tang, J.; Pilesjö, P. A combined algorithm for automated drainage network extraction from digital elevation models. Hydrol. Process. 2018, 32, 1322–1333. [Google Scholar] [CrossRef]
- Du, C.; Ye, A.; Gan, Y.; You, J.; Duan, Q.; Ma, F.; Hou, J. Drainage network extraction from a high-resolution DEM using parallel programming in the NET Framework. J. Hydrol. 2017, 555, 506–517. [Google Scholar] [CrossRef]
- Bai, R.; Li, T.; Huang, Y.; Li, J.; Wang, G.; Yin, D. A hierarchical pyramid method for managing large-scale high-resolution drainage networks extracted from DEM. Comput. Geosci. 2015, 85, 234–247. [Google Scholar] [CrossRef]
- O'Callaghan, J.F.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vis. Graph. Image Process. 1984, 28, 323–344. [Google Scholar] [CrossRef]
- Tarboton, D.G. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res. 1997, 33, 309–319. [Google Scholar] [CrossRef]
- Qin, C.; Li, B.; Zhu, A.; Yang, L.; Pei, T.; Zhou, C. Multiple flow direction algorithm with flow partition scheme based on downslope gradient. Adv. Water Sci. 2006, 17, 450–456. (In Chinese) [Google Scholar] [CrossRef]
- Werner, M. Shuttle Radar Topography Mission (SRTM), Mission Overview. J. Telecommun. 2001, 55, 75–79. [Google Scholar] [CrossRef]
- Danko, D.M. The Digital Chart of the World Project. Photogramm. Eng. Remote Sens. 1992, 58, 1125–1128. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute. ArcWorld 1: 3 Mio: Continental Coverage; Data obtained on CD; Environmental Systems Research Institute: Redlands, CA, USA, 1992. [Google Scholar]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Haklay, M.; Singleton, A.; Parker, C. Web Mapping 2.0: The Neogeography of the GeoWeb. Geogr. Compass 2008, 2, 2011–2039. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O'Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Paul, D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Li, J.; Zhang, D.D. Multi-Spectral Water Index (MuWI): A Native 10-m Multi-Spectral Water Index for Accurate Water Mapping on Sentinel-2. Remote Sens. 2018, 10, 1643. [Google Scholar] [CrossRef]
- Saunders, W. Preparation of DEMs for use in environmental modeling analysis. Esri User Conf. 1999, 24, 1–18. [Google Scholar]
- Hellweger, R. Center for Research in Water Resources, The University of Texas at Austin 1997. Available online: https://www.ce.utexas.edu/prof/maidment/gishydro/ferdi/research/agree/agree.html (accessed on 1 October 1997).
- Peng, P.; Lin, A. River System Extraction Based on AGREE Algorithm. Water Resour. Power 2015, 33, 27–29. (In Chinese) [Google Scholar]
- Pickens, A.H.; Hansen, M.C.; Hancher, M.S.; Stehman, V.; Tyukavina, A.; Potapov, P.; Marroquin, B.; Pickens, Z.S. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 2020, 243, 1–19. [Google Scholar] [CrossRef]
- Puttinaovarat, S.; Horkaew, P.; Khaimook, K.; Polnigongit, W. Adaptive hydrological flow field modeling based on water body extraction and surface information. J. Appl. Remote Sens. 2015, 9, 095041. [Google Scholar] [CrossRef]
- Li, Q.; Lan, H.; Zhao, X.; Wu, Y. River centerline extraction using the multiple direction integration algorithm for mixed and pure water pixels. GISci. Remote Sens. 2019, 56, 26. [Google Scholar] [CrossRef]
- Maswood, M.; Hossain, F. Advancing river modelling in ungauged basins using satellite remote sensing: The case of the Ganges–Brahmaputra–Meghna basin. Int. J. River Basin Manag. 2016, 14, 15. [Google Scholar] [CrossRef]
- Ujwal Deep, S.; Sohini, N.; Jhikmik, K.; Uttam, M. Lithological and tectonic response on catchment characteristics of Rishi Khola, Sikkim, India. J. Mt. Sci. 2021, 18, 3003–3024. [Google Scholar] [CrossRef]
- Esper Angillieri, M.Y.; Perucca, L.P. Geomorphology and morphometry of the de La Flecha river basin, San Juan, Argentina. Environ. Earth Sci. 2014, 72, 3227–3237. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Suen, C.Y. A fast parallel algorithm for thinning digital patterns. Commun. ACM 1984, 27, 236–239. [Google Scholar] [CrossRef]
- Wang, L.; Huang, J.; Du, Y.; Hu, Y.; Han, P. Dynamic Assessment of Soil Erosion Risk Using Landsat TM and HJ Satellite Data in Danjiangkou Reservoir area, China. Remote Sens. 2013, 5, 3826–3848. [Google Scholar] [CrossRef]
- Liu, C.; Wu, X.; Wang, L. Analysis on land ecological security change and affect factors using RS and GWR in the Danjiangkou Reservoir area, China. Appl. Geogr. 2019, 105, 1–14. [Google Scholar] [CrossRef]
- Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; et al. NASADEM global elevation model:methods and progress. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 125–128. [Google Scholar] [CrossRef]
- McFEETERS, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, J.O. Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
Test Area | Data | First Quartile | Second Quartile | Third Quartile | Max | Mean | Number of Pixels |
---|---|---|---|---|---|---|---|
A | NASADEM | 12.86 | 38.57 | 79.29 | 546.44 | 73.73 | 5108 |
AGRSDEM | 8.64 | 28.09 | 79.96 | 551.09 | 68.38 | 4310 | |
HydroSHEDS | 35.71 | 78.13 | 138.40 | 569.21 | 74.29 | 5250 | |
MERIT Hydro | 19.68 | 39.36 | 80.90 | 557.58 | 72.96 | 5346 | |
B | NASADEM | 19.68 | 43.58 | 88.56 | 358.47 | 61.95 | 7030 |
AGRSDEM | 9.32 | 27.95 | 53.24 | 339.41 | 36.99 | 7882 | |
HydroSHEDS | 27.45 | 56.00 | 90.04 | 280.00 | 62.05 | 7249 | |
MERIT Hydro | 13.98 | 36.10 | 64.06 | 296.98 | 46.35 | 7668 | |
C | NASADEM | 13.70 | 31.22 | 60.15 | 194.16 | 37.45 | 8196 |
AGRSDEM | 0.00 | 14.14 | 30.00 | 176.92 | 21.59 | 8273 | |
HydroSHEDS | 19.47 | 42.33 | 76.19 | 215.87 | 51.18 | 8067 | |
MERIT Hydro | 9.69 | 28.31 | 49.92 | 190.00 | 31.31 | 8005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Wang, L.; Yang, Q.; Zhao, P.; Du, Y.; Xiao, F.; Ling, F. Extracting a Connected River Network from DEM by Incorporating Surface River Occurrence Data and Sentinel-2 Imagery in the Danjiangkou Reservoir Area. Remote Sens. 2023, 15, 1014. https://doi.org/10.3390/rs15041014
Lu L, Wang L, Yang Q, Zhao P, Du Y, Xiao F, Ling F. Extracting a Connected River Network from DEM by Incorporating Surface River Occurrence Data and Sentinel-2 Imagery in the Danjiangkou Reservoir Area. Remote Sensing. 2023; 15(4):1014. https://doi.org/10.3390/rs15041014
Chicago/Turabian StyleLu, Lijie, Lihui Wang, Qichi Yang, Pengcheng Zhao, Yun Du, Fei Xiao, and Feng Ling. 2023. "Extracting a Connected River Network from DEM by Incorporating Surface River Occurrence Data and Sentinel-2 Imagery in the Danjiangkou Reservoir Area" Remote Sensing 15, no. 4: 1014. https://doi.org/10.3390/rs15041014
APA StyleLu, L., Wang, L., Yang, Q., Zhao, P., Du, Y., Xiao, F., & Ling, F. (2023). Extracting a Connected River Network from DEM by Incorporating Surface River Occurrence Data and Sentinel-2 Imagery in the Danjiangkou Reservoir Area. Remote Sensing, 15(4), 1014. https://doi.org/10.3390/rs15041014