A Summary of Hail Events during the Summer of 2022 in Catalonia: A Comparison with the Period of 2013–2021
Abstract
:1. Introduction
2. Data and Methods
2.1. Area and Period of Study
2.2. Data Used
2.2.1. Hail Reports
2.2.2. Radar Fields
2.3. Methodology
2.3.1. Characterization of Hail Reports
2.3.2. Hail-Swaths Based on Radar Data
3. Results
3.1. Differences in the Yearly Distribution of the Hail Reports
3.2. Differences in the Monthly Distribution of the Hail Reports
3.3. Differences in the Yearly Spatial Distribution
3.4. Differences in the Monthly Spatial Distribution
3.5. Comparison of Hail Swaths from Radar
3.6. Thermodynamic Comparison
4. Conclusions
- From the previous years, we observed a large number of hail events in June and fewer cases in August. The first cases had a lower size of the hail stones, whereas August events presented more severe hail. In addition, the area of the hail swath was also larger in August events, but the differences were not important on average;
- The summer of 2022 was characterized by extremely hot temperatures and very dry conditions, with an important drought in the entire Catalan territory;
- June and practically all of July of 2022 can be characterized by few cases and hail below 2 cm;
- On the contrary, the last part of summer 2022 (the last four days of July and all of August) presented different behavior, with many very large hail reports, affecting, in most cases, non-usual areas (e.g., coastal zones), with the extent of the hail swaths clearly exceeding the average, even presenting a case of giant hail;
- This unusual situation resulted in many damages to humans and properties, leading us to conclude that it is necessary to improve the warning chain; in particular, the steps directed to the end-users, which is the dissemination of alerts to citizens.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SWDB | Severe Weather Database of the Servei Meteorològic de Catalunya |
CDV | Radar of Creu Del Vent peak |
PBE | Radar of Puig Bernat peak |
PDA | Radar of Puig d’Arques peak |
LMI | Radar of La Miranda peak |
PPI | Plan Position Indicator |
CAPE | Convective Available Potential Energy |
CIN | Convective INhibition energy |
EL | Equilibrium Level |
LI | Lifted Index |
WMax | Maximum updraft strength |
VIL | Vertically Integrated Liquid |
SMC | Servei Meteorològic de Catalunya (in Catalan, Meteorological Service of Catalonia) |
References
- de Catalunya, S.M. Butlletí Climàtic Estacional. Estiu 2022 [Catalan: Climatic Seasonaly Bulletin. 2022 Summer]. 2022. Available online: https://static-m.meteo.cat/wordpressweb/wp-content/uploads/2022/10/25113851/Butlleti-Estiu-2022.pdf (accessed on 3 January 2023).
- Ceperuelo, M.; Llasat, M.; López, L.; García-Ortega, E.; Sánchez, J. Study of 11 September 2004 hailstorm event using radar identification of 2-D systems and 3-D cells. Adv. Geosci. 2006, 7, 215–222. [Google Scholar] [CrossRef]
- Pineda, N.; Rigo, T.; Montanyà, J.; van der Velde, O.A. Charge structure analysis of a severe hailstorm with predominantly positive cloud-to-ground lightning. Atmos. Res. 2016, 178, 31–44. [Google Scholar] [CrossRef]
- Montanyà, J.; Soula, S.; Pineda, N.; van der Velde, O.; Clapers, P.; Solà, G.; Bech, J.; Romero, D. Study of the total lightning activity in a hailstorm. Atmos. Res. 2009, 91, 430–437. [Google Scholar] [CrossRef]
- Pineda, N.; Aran, M.; Andres, A.; Busto, M.; Farnell, C.; Tora, M. Study of the September 17th 2007 severe hailstorm in Pla d’Urgell. Part II: Meteorological analysis. Tethys 2009, 6, 83–103. [Google Scholar] [CrossRef]
- Farnell, C.; Busto, M.; Aran, M.; Andrés, A.; Pineda, N. Study of the September 17th 2007 severe hailstorm in Pla d’Urgell. Part one: Fieldwork and analysis of the hailpads. Tethys 2009, 6, 67–79. [Google Scholar]
- Rigo, T.; Pineda, N. Inferring the severity of a multicell thunderstorm evolving to supercell, by means of radar and total lightning. J. Sev. Storms Meteorol. 2016, 11, 1–27. [Google Scholar] [CrossRef]
- Rigo, T.; Llasat, M.C. Forecasting hailfall using parameters for convective cells identified by radar. Atmos. Res. 2016, 169, 366–376. [Google Scholar] [CrossRef]
- Ceperuelo, M.; Llasat, M.; Rigo, T. Rainfall events and hailstorms analysis program (RHAP). Adv. Geosci. 2006, 7, 205–213. [Google Scholar] [CrossRef]
- Rigo, T.; Farnell, C. Using maximum Vertical Integrated Liquid (VIL) maps for identifying hail-affected areas: An operative application for agricultural purposes. J. Mediterr. Meteorol. Clim. 2019, 16, 15–24. [Google Scholar] [CrossRef]
- del Moral, A.; del Carmen Llasat, M.; Rigo, T. Identification of anomalous motion of thunderstorms using daily rainfall fields. Atmos. Res. 2017, 185, 92–100. [Google Scholar] [CrossRef]
- Farnell, C.; Rigo, T.; Martin-Vide, J. Application of cokriging techniques for the estimation of hail size. Theor. Appl. Climatol. 2018, 131, 133–151. [Google Scholar] [CrossRef]
- del Moral, A.; Weckwerth, T.M.; Rigo, T.; Bell, M.M.; Llasat, M.C. C-band dual-doppler retrievals in complex terrain: Improving the knowledge of severe storm dynamics in catalonia. Remote Sens. 2020, 12, 2930. [Google Scholar] [CrossRef]
- Aran, M.; Sairouni, A.; Bech, J.; Toda, J.; Rigo, T.; Cunillera, J.; Moré, J. Pilot project for intensive surveillance of hail events in Terres de Ponent (Lleida). Atmos. Res. 2007, 83, 315–335. [Google Scholar] [CrossRef]
- Farnell, C.; Llasat, M.d.C. Proposal of three thermodynamic variables to discriminate between storms associated with hail and storms with intense rainfall in Catalonia. Tethys 2013, 10, 25–34. [Google Scholar] [CrossRef]
- Farnell, C.; Rigo, T.; Heymsfield, A. Shape of hail and its thermodynamic characteristics related to records in Catalonia. Atmos. Res. 2022, 271, 106098. [Google Scholar] [CrossRef]
- Farnell, C.; Rigo, T.; Pineda, N. Lightning jump as a nowcast predictor: Application to severe weather events in Catalonia. Atmos. Res. 2017, 183, 130–141. [Google Scholar] [CrossRef]
- Farnell, C.; Rigo, T.; Pineda, N. Exploring radar and lightning variables associated with the Lightning Jump. Can we predict the size of the hail? Atmos. Res. 2018, 202, 175–186. [Google Scholar] [CrossRef]
- Rigo, T.; Farnell, C. Characterisation of Thunderstorms with Multiple Lightning Jumps. Atmosphere 2022, 13, 171. [Google Scholar] [CrossRef]
- Farnell, C.; Rigo, T. The Lightning Jump, the 2018 “Picking up Hailstones” Campaign and a Climatological Analysis for Catalonia for the 2006–2018 Period. Tethys 2020, 17, 10–20. [Google Scholar] [CrossRef]
- Marcos, J.; Sánchez, J.; Merino, A.; Melcón, P.; Mérida, G.; García-Ortega, E. Spatial and temporal variability of hail falls and estimation of maximum diameter from meteorological variables. Atmos. Res. 2021, 247, 105142. [Google Scholar] [CrossRef]
- Fraile, R.; Berthet, C.; Dessens, J.; Sánchez, J.L. Return periods of severe hailfalls computed from hailpad data. Atmos. Res. 2003, 67, 189–202. [Google Scholar] [CrossRef]
- Aran, M.; Pena, J.; Torà, M. Atmospheric circulation patterns associated with hail events in Lleida (Catalonia). Atmos. Res. 2011, 100, 428–438. [Google Scholar] [CrossRef]
- Tiesi, A.; Mazzà, S.; Conte, D.; Ricchi, A.; Baldini, L.; Montopoli, M.; Picciotti, E.; Vulpiani, G.; Ferretti, R.; Miglietta, M.M. Numerical simulation of a Giant-hail-bearing Mediterranean supercell in the Adriatic Sea. Atmosphere 2022, 13, 1219. [Google Scholar] [CrossRef]
- Papavasileiou, G.; Kotroni, V.; Lagouvardos, K.; Giannaros, T.M. Observational and numerical study of a giant hailstorm in Attica, Greece, on 4 October 2019. Atmos. Res. 2022, 278, 106341. [Google Scholar] [CrossRef]
- Kopp, J.; Schröer, K.; Schwierz, C.; Hering, A.; Germann, U.; Martius, O. The summer 2021 Switzerland hailstorms: Weather situation, major impacts and unique observational data. Weather 2022. [Google Scholar] [CrossRef]
- Wilhelm, J.; Mohr, S.; Punge, H.J.; Mühr, B.; Schmidberger, M.; Daniell, J.E.; Bedka, K.M.; Kunz, M. Severe thunderstorms with large hail across Germany in June 2019. Weather 2021, 76, 228–237. [Google Scholar] [CrossRef]
- Allen, J.T.; Giammanco, I.M.; Kumjian, M.R.; Jurgen Punge, H.; Zhang, Q.; Groenemeijer, P.; Kunz, M.; Ortega, K. Understanding hail in the earth system. Rev. Geophys. 2020, 58, e2019RG000665. [Google Scholar] [CrossRef]
- Tang, B.; Gensini, V.; Homeyer, C. Trends in United States large hail environments and observations. Clim. Atmpospheric Sci. 2019, 2. [Google Scholar] [CrossRef]
- Rigo, T.; Rodríguez, O.; Bech, J.; Farnell, C. An observational analysis of two companion supercell storms over complex terrain. Atmos. Res. 2022, 272, 106149. [Google Scholar] [CrossRef]
- Rigo, T.; Farnell Barqué, C. Evaluation of the Radar Echo Tops in Catalonia: Relationship with Severe Weather. Remote Sens. 2022, 14, 6265. [Google Scholar] [CrossRef]
- Amburn, S.A.; Wolf, P.L. VIL density as a hail indicator. Weather. Forecast. 1997, 12, 473–478. [Google Scholar] [CrossRef]
- Greene, D.R.; Clark, R.A. Vertically integrated liquid water—A new analysis tool. Mon. Weather. Rev. 1972, 100, 548–552. [Google Scholar] [CrossRef]
- Edwards, R.; Thompson, R.L. Nationwide comparisons of hail size with WSR-88D vertically integrated liquid water and derived thermodynamic sounding data. Weather. Forecast. 1998, 13, 277–285. [Google Scholar] [CrossRef]
- Blair, S.F.; Deroche, D.R.; Boustead, J.M.; Leighton, J.W.; Barjenbruch, B.L.; Gargan, W.P. A radar-based assessment of the detectability of giant hail. J. Sev. Storms Meteorol. 2011, 6. [Google Scholar] [CrossRef]
- Liu, K.; Li, P.; Wang, Z. Statistical modeling of random hail impact. Extrem. Mech. Lett. 2021, 48, 101374. [Google Scholar] [CrossRef]
- Punge, H.J.; Bedka, K.M.; Kunz, M.; Bang, S.D.; Itterly, K.F. Characteristics of hail hazard in South Africa based on satellite detection of convective storms. Nat. Hazards Earth Syst. Sci. Discuss. 2021, 1–32. [Google Scholar] [CrossRef]
- Mahoney, K.; Alexander, M.A.; Thompson, G.; Barsugli, J.J.; Scott, J.D. Changes in hail and flood risk in high-resolution simulations over Colorado’s mountains. Nat. Clim. Chang. 2012, 2, 125–131. [Google Scholar] [CrossRef]
- Sanchez, J.; Merino, A.; Melcón, P.; García-Ortega, E.; Fernández-González, S.; Berthet, C.; Dessens, J. Are meteorological conditions favoring hail precipitation change in Southern Europe? Analysis of the period 1948–2015. Atmos. Res. 2017, 198, 1–10. [Google Scholar] [CrossRef]
- Schuster, S.S.; Blong, R.J.; Speer, M.S. A hail climatology of the greater Sydney area and New South Wales, Australia. Int. J. Climatol. 2005, 25, 1633–1650. [Google Scholar] [CrossRef]
- Czernecki, B.; Taszarek, M.; Szuster, P. Thunder: Computation and Visualisation of Atmospheric Convective Parameters. R Package Version 0.9.8. 2023. Available online: https://rdrr.io/cran/thunder/ (accessed on 3 February 2022).
- Lukach, M.; Foresti, L.; Giot, O.; Delobbe, L. Estimating the occurrence and severity of hail based on 10 years of observations from weather radar in Belgium. Meteorol. Appl. 2017, 24, 250–259. [Google Scholar] [CrossRef]
- Hermida, L.; Sánchez, J.L.; López, L.; Berthet, C.; Dessens, J.; García-Ortega, E.; Merino, A. Climatic trends in hail precipitation in France: Spatial, altitudinal, and temporal variability. Sci. World J. 2013, 2013, 494971. [Google Scholar] [CrossRef] [PubMed]
2013–2021 | 2022 | |
---|---|---|
CIN (J/kg) | −11.09 | −11.22 |
CAPE (J/kg) | 2034.9 | 2945.7 |
EL (m) | 11,787.28 | 12,441.42 |
LI | −6.01 | −7.90 |
Wmax (m/s) | 62.49 | 76.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigo, T.; Farnell, C. A Summary of Hail Events during the Summer of 2022 in Catalonia: A Comparison with the Period of 2013–2021. Remote Sens. 2023, 15, 1012. https://doi.org/10.3390/rs15041012
Rigo T, Farnell C. A Summary of Hail Events during the Summer of 2022 in Catalonia: A Comparison with the Period of 2013–2021. Remote Sensing. 2023; 15(4):1012. https://doi.org/10.3390/rs15041012
Chicago/Turabian StyleRigo, Tomeu, and Carme Farnell. 2023. "A Summary of Hail Events during the Summer of 2022 in Catalonia: A Comparison with the Period of 2013–2021" Remote Sensing 15, no. 4: 1012. https://doi.org/10.3390/rs15041012
APA StyleRigo, T., & Farnell, C. (2023). A Summary of Hail Events during the Summer of 2022 in Catalonia: A Comparison with the Period of 2013–2021. Remote Sensing, 15(4), 1012. https://doi.org/10.3390/rs15041012