Spatiotemporal Changes in Supply–Demand Patterns of Carbon Sequestration Services in an Urban Agglomeration under China’s Rapid Urbanization
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Carbon Sequestration Services Supply: Net Primary Productivity (NPP)
2.3. Carbon Sequestration Services Demand: Estimation of Pixel-Based CO2 Emissions
2.4. The Supply–Demand Pattern of Carbon Sequestration Services
2.4.1. Supply–Demand Ratio (SDR)
2.4.2. Spatial Matching Patterns of Carbon Sequestration Services
3. Results
3.1. Spatiotemporal Characteristics of Carbon Sequestration Services Supply and Demand
3.2. Spatial and Temporal Characteristics of the Supply–Demand Pattern
4. Discussion
4.1. The Spatial and Temporal Pattern of Supply and Demand
4.2. The Spatial Matching Pattern of Supply and Demand
4.3. Policy Implications
5. Conclusions
- (1)
- The supply of carbon sequestration services showed a distribution pattern of “high in the southeast with high elevation and low in the northwest with low elevation”. From 2012 to 2020, the supply of carbon sequestration services increased in eastern mountainous areas and decreased in the regions with lower elevation.
- (2)
- The demand of carbon sequestration services was low in the southeast with high elevation and high in the northwest with low elevation. The demand of carbon sequestration services increased, particularly in the western developed urban areas.
- (3)
- Most of the areas had a carbon surplus, and areas in the HCUA with carbon surplus decreased and tended to convert to carbon deficit areas. Under rapid urbanization, the SDR decreased annually and the carbon deficit areas increased continuously, which were mainly distributed as patches in the developed urban areas and its surrounding areas.
- (4)
- The spatial matching pattern of the carbon sequestration services was dominated by the L–L pattern, occurring mainly in the northwest and southeast regions. The L–H pattern showed significant spatial mismatching between supply and demand in the HCUA. The proportion of regions with the L–H pattern increased obviously from 2012 to 2020, and the carbon deficit tended to be more obvious. The results of our study provide important guidelines for the implementation of low-carbon development strategies under China’s rapid urbanization.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coutts, A.; Beringer, J.; Tapper, N. Changing Urban Climate and CO2 Emissions: Implications for the Development of Policies for Sustainable Cities. Urban Policy Res. 2010, 28, 27–47. [Google Scholar] [CrossRef]
- Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef]
- Cerretelli, S.; Poggio, L.; Gimona, A.; Yakob, G.; Boke, S.; Habte, M.; Coull, M.; Peressotti, A.; Black, H. Spatial assessment of land degradation through key ecosystem services: The role of globally available data. Sci. Total Environ. 2018, 628–629, 539–555. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Hellweg, S.; Azapagic, A. Accounting for land use, biodiversity and ecosystem services in life cycle assessment: Impacts of breakfast cereals. Sci. Total Environ. 2018, 645, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.L.; Yue, C.; Ding, J.Z.; Guo, Z.T. The role of terrestrial ecosystem carbon sink in the goal of “carbon neutrality”. China Sci. Earth Sci. 2022, 52, 1419–1426. [Google Scholar]
- Ma, L.; Liu, H.; Peng, J.; Wu, J. A review of ecosystem services supply and demand. Acta Geogr. Sin. 2017, 72, 1277–1289. [Google Scholar]
- Cong, W.C.; Sun, X.Y. A Study on Carbon Sequestration Capacity Based on GIS and InVEST Model in Rizhao City. Bull. Soil Water Conserv. 2018, 38, 200–205. [Google Scholar]
- Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- Schroter, M.; Barton, D.N.; Remme, R.P.; Hein, L. Accounting for capacity and flow of ecosystem services: A conceptual model and a case study for Telemark, Norway. Ecol. Indic. 2014, 36, 539–551. [Google Scholar] [CrossRef]
- Yan, Z.; Xia, L.; Xiang, W. Analyzing spatial patterns of urban carbon metabolism: A case study in Beijing, China. Landsc. Urban Plan. 2014, 130, 184–200. [Google Scholar]
- Li, X.; Wu, K.N.; Feng, Z.; Wang, Y.H. Carbon balance in Henan Province from the perspective of carbon sequestration service supply and demand. Acta Geogr. Sin. 2022, 23, 9627–9635. [Google Scholar]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Mueller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Zhai, T.; Wang, J.; Jin, Z.; Qi, Y.; Fang, Y.; Liu, J. Did improvements of ecosystem services supply-demand imbalance change environmental spatial injustices? Ecol. Indic. 2020, 111, 106068. [Google Scholar] [CrossRef]
- Fu, Y.C.; Lu, X.Y.; Zhao, Y.L.; Zeng, X.T.; Xia, L.L. Assessment Impacts of Weather and Land Use/Land Cover (LULC) Change on Urban Vegetation Net Primary Productivity (NPP): A Case Study in Guangzhou, China. Remote Sens. 2013, 5, 4125–4144. [Google Scholar] [CrossRef] [Green Version]
- Neumann, M.; Moreno, A.; Thurnher, C.; Mues, V.; Harkonen, S.; Mura, M.; Bouriaud, O.; Lang, M.; Cardellini, G.; Thivolle-Cazat, A.; et al. Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests. Remote Sens. 2016, 8, 554. [Google Scholar] [CrossRef]
- Shang, E.P.; Xu, E.Q.; Zhang, H.Q.; Liu, F. Analysis of Spatiotemporal Dynamics of the Chinese Vegetation Net Primary Productivity from the 1960s to the 2000s. Remote Sens. 2018, 10, 860. [Google Scholar] [CrossRef] [Green Version]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial Ecosystem Production—A Process Model-Based on Global Satellite and Surface Data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Baro, F.; Haase, D.; Gomez-Baggethun, E.; Frantzeskaki, N. Mismatches between ecosystem services supply and demand in urban areas: A quantitative assessment in five European cities. Ecol. Indic. 2015, 55, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Larondelle, N.; Lauf, S. Balancing demand and supply of multiple urban ecosystem services on different spatial scales. Ecosyst. Serv. 2016, 22, 18–31. [Google Scholar] [CrossRef]
- Liu, L.C.; Liu, C.F.; Wang, C.; Li, P.J. Supply and demand matching of ecosystem services in loess hilly region: A case study of Lanzhou. Acta Geogr. Sin. 2019, 74, 1921–1937. [Google Scholar]
- Xue, D.; Wang, Z.J.; Li, Y.; Liu, M.X.; Wei, H.J. Assessment of Ecosystem Services Supply and Demand (Mis)matches for Urban Ecological Management: A Case Study in the Zhengzhou-Kaifeng-Luoyang Cities. Remote Sens. 2022, 14, 1703. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, S.; Zhou, Z.; Liu, C.; Xu, L.; Gao, X. Supply and demand measurement and spatio-temporal evolution of ecosystem services in Beijing-Tianjin-Hebei Region. Acta Ecol. Sin. 2021, 41, 3354–3367. [Google Scholar]
- Gonzalez-Garcia, A.; Palomo, I.; Gonzalez, J.A.; Lopez, C.A.; Montes, C. Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Policy 2020, 94, 104493. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, Y.; Zhou, L.; Sun, Q.; Yu, X.; Zhu, L.; Zhang, X.; Fang, Q.; Yang, X.; Yang, J.; et al. Trade-off between vegetation CO2 sequestration and fossil fuel-related CO2 emissions: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area of China. Sustain. Cities Soc. 2021, 74, 103195. [Google Scholar] [CrossRef]
- Han, P.F.; Lin, X.H.; Zeng, N.; Oda, T.; Zhang, W.; Liu, D.; Cai, Q.X.; Crippa, M.; Guan, D.B.; Ma, X.L.; et al. Province-level fossil fuel CO2 emission estimates for China based on seven inventories. J. Clean. Prod. 2020, 277, 123377. [Google Scholar] [CrossRef]
- Jing, Q.N.; Bai, H.T.; Luo, W.; Cai, B.F.; Xu, H. A top-bottom method for city-scale energy-related CO2 emissions estimation: A case study of 41 Chinese cities. J. Clean. Prod. 2018, 202, 444–455. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.W.; Dong, L.Q.; Zhang, L.W.; He, B.Y.; Zhang, Y.Q. Quantitative assessment of carbon sequestration service supply and demand and service flows: A case study of the Yellow River Diversion Project South Line. Resour Sci. 2019, 41, 557–571. [Google Scholar]
- Zhang, M.; Wang, K.; Liu, H.; Wang, J.; Zhang, C.; Yue, Y.; Qi, X. Spatio-Temporal Variation and Impact Factors for Vegetation Carbon Sequestration and Oxygen Production Based on Rocky Desertification Control in the Karst Region of Southwest China. Remote Sens. 2016, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.X.; Jing, X.Y.; Liu, S. The high quality development and spatial-temporal evolution of Harbin-Chang Urban agglomeration. Spec. Zone Econ. 2022, 4, 66–70. [Google Scholar]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Fan, D.Q.; Zhao, X.S.; Sun, W.B. Spatio-temporal Changes of NPP and Its Responses to Phenology in Northeast China. Geogr. Geo-Inf. Sci. 2017, 33, 21–27. [Google Scholar]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. Data Descriptor: China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Guan, D.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 335–338. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Guan, J.Y.; Li, D.; Wang, Y.F.; Wang, X.Q. DMSP-OLS and NPP-VIIRS night light image correction in China. Bull. Surv. Mapp. 2021, 0, 1–8. [Google Scholar]
- Zhao, M.; Zhou, Y.; Li, X.; Zhou, C.; Cheng, W.; Li, M.; Huang, K. Building a Series of Consistent Night-Time Light Data (1992–2018) in Southeast Asia by Integrating DMSP-OLS and NPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1843–1856. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China’s cities. Remote Sens. Lett. 2014, 5, 165–174. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, B.; Bai, Y.; Xu, X.; Alatalo, J.M. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.C.; Zhang, S.X.; Lin, B.; Zhao, Y.J.; Hu, B.Q. Spatial zoning of county land ecological restoration based on ecosystem service supply and demand in Guangxi counties. J. Nat. Resour. 2020, 35, 217–229. [Google Scholar]
- Chen, F.J.; Sheng, Y.J.; Li, Q.; Guo, Y.; Xu, L.M. Spatial and temporal variations of NPP in terrestrial ecosystems in China during the past 30 years. Sci. Geogr. Sin. 2011, 31, 1409–1414. [Google Scholar]
- Chuai, X.; Feng, J. High resolution carbon emissions simulation and spatial heterogeneity analysis based on big data in Nanjing City, China. Sci. Total Environ. 2019, 686, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Fu, M.C.; Zeng, H.; Geng, Y.H.; Hassani, F.P. Variations in ecosystem service values and local economy in response to land use: A case study of Wu’an, China. Land Degrad. Dev. 2013, 24, 236–249. [Google Scholar] [CrossRef]
- Wang, S.; Ma, H.; Zhao, Y. Exploring the relationship between urbanization and the eco-environment-A case study of Beijing-Tianjin-Hebei region. Ecol. Indic. 2014, 45, 171–183. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, T.; Lin, Y.; Kong, X.; He, T. Spatial imbalance and changes in supply and demand of ecosystem services in China. Sci. Total Environ. 2019, 657, 781–791. [Google Scholar] [CrossRef]
- Yao, S.M.; Zhang, P.Y.; Yu, C.; Li, G.Y.; Wang, C.X. Theoretical and practical problems of China’s new urbanization. Sci. Geogr. Sin. 2014, 34, 641–647. [Google Scholar]
- Peng, J.; Yang, Y.; Xie, P.; Liu, Y.X. Zoning of green space ecological network construction in Guangdong Province based on ecosystem service supply and demand. Acta Ecol. Sin. 2017, 37, 4562–4572. [Google Scholar]
- Lin, B.; Li, Z. Spatial analysis of mainland cities’ carbon emissions of and around Guangdong-Hong Kong-Macao Greater Bay area. Sustain. Cities Soc. 2020, 61, 102299. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Z.; Zhang, Z.; Li, X.; Shan, Y.; Song, M.; Mi, Z.; Meng, J.; Ou, J.; Guan, D. Mapping Carbon and Water Networks in the North China Urban Agglomeration. One Earth 2019, 1, 126–137. [Google Scholar] [CrossRef] [Green Version]
- Gizachew, B.; Solberg, S.; Puliti, S. Forest Carbon Gain and Loss in Protected Areas of Uganda: Implications to Carbon Benefits of Conservation. Land 2018, 7, 138. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Jia, Z. How does tax system on energy industries affect energy demand, CO2 emissions, and economy in China? Energy Econ. 2019, 84, 104496. [Google Scholar] [CrossRef]
- Fu, B.J.; Lv, N.; Lv, Y.H. Strengthening ecosystem management is helpful for achieving the carbon neutrality goal. Bull. Chin. Acad. Sci. 2022, 37, 1529–1533. [Google Scholar]
- Zhang, C.; Li, J.; Zhou, Z.-X.; Liu, X.-F. Research progress on the cascade effect of ecosystem service. Chin. J. Appl. Ecol. 2021, 32, 1633–1642. [Google Scholar]
- Serna-Chavez, H.M.; Schulp, C.J.E.; van Bodegom, P.M.; Bouten, W.; Verburg, P.H.; Davidson, M.D. A quantitative framework for assessing spatial flows of ecosystem services. Ecol. Indic. 2014, 39, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef]
- Huh, K.Y.; Deurer, M.; Sivakumaran, S.; McAuliffe, K.; Bolan, N.S. Carbon sequestration in urban landscapes: The example of a turfgrass system in New Zealand. Aust. J. Soil Res. 2008, 46, 610–616. [Google Scholar] [CrossRef]
- Bazame, H.C.; Althoff, D.; Filgueiras, R.; Calijuri, M.L.; de Oliveira, J.C. Modeling the Net Primary Productivity: A Study Case in the Brazilian Territory. J. Indian Soc. Remote Sens. 2019, 47, 1727–1735. [Google Scholar] [CrossRef]
- Hankey, S.; Marshall, J.D. Impacts of urban form on future US passenger-vehicle greenhouse gas emissions. Energy Policy 2010, 38, 4880–4887. [Google Scholar] [CrossRef]
Data | Year | Spatial Resolution | Sources |
---|---|---|---|
NPP/VIIRS | 2012, 2017, 2020 | 500 m | Corolla University of Mines |
MOD17A3 | 2012, 2017, 2020 | 500 m | NASA |
CO2 Emissions | 2012–2017 | / | CEADs |
Land Use | 2012, 2017, 2020 | 30 m | Landsat SR |
Administrative Division | 2019 | / | China Bureau of Statistics |
DEM | / | 50 m | Geospatial Information Authority of Japan |
Supply (g/m2) | Demand (g/m2) | Levels |
---|---|---|
<1500 | <2000 | Lowest supply/demand |
1500–3000 | 2000–4000 | Lower supply/demand |
3000–4500 | 4000–6000 | Medium supply/demand |
4500–6000 | 6000–8000 | Higher supply/demand |
>6000 | >8000 | Highest supply/demand |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, W.; Bao, G.; Du, Y.; Guo, Y.; Wang, C.; Wang, G.; Ren, Z. Spatiotemporal Changes in Supply–Demand Patterns of Carbon Sequestration Services in an Urban Agglomeration under China’s Rapid Urbanization. Remote Sens. 2023, 15, 811. https://doi.org/10.3390/rs15030811
Hong W, Bao G, Du Y, Guo Y, Wang C, Wang G, Ren Z. Spatiotemporal Changes in Supply–Demand Patterns of Carbon Sequestration Services in an Urban Agglomeration under China’s Rapid Urbanization. Remote Sensing. 2023; 15(3):811. https://doi.org/10.3390/rs15030811
Chicago/Turabian StyleHong, Wenhai, Guangdao Bao, Yunxia Du, Yujie Guo, Chengcong Wang, Guodong Wang, and Zhibin Ren. 2023. "Spatiotemporal Changes in Supply–Demand Patterns of Carbon Sequestration Services in an Urban Agglomeration under China’s Rapid Urbanization" Remote Sensing 15, no. 3: 811. https://doi.org/10.3390/rs15030811
APA StyleHong, W., Bao, G., Du, Y., Guo, Y., Wang, C., Wang, G., & Ren, Z. (2023). Spatiotemporal Changes in Supply–Demand Patterns of Carbon Sequestration Services in an Urban Agglomeration under China’s Rapid Urbanization. Remote Sensing, 15(3), 811. https://doi.org/10.3390/rs15030811