Multifactorial Evaluation of Spatial Suitability and Economic Viability of Light Green Bridges Using Remote Sensing Data and Spatial Urban Planning Criteria
Abstract
:1. Introduction
- (1)
- Which locations can be geometrically feasible locations of green bridges considering the geometry and elevation of road networks of cities in Germany?
- (2)
- Which geometrically feasible locations of green bridges can be spatially prioritized considering multi-dimensional factors to facilitate the effective implementation of green bridges?
- (3)
- Is a selected suitable location (case study) of a green bridge economically viable?
1.1. Concept of Green Bridge
2. Materials and Methods
2.1. Geometry Analysis Toolbox
2.1.1. Pre-Screening of Tunnels
2.1.2. Virtual Extension of Tunnels
2.1.3. Creation of Parallel Lines
2.1.4. Elevation Analysis
2.2. Multi-Criteria Decision-Making Analysis (MCDA)
Criteria Group | Indicators | Direction | Aggregated Relative Weights (35 Experts) | Reference | Data Source |
---|---|---|---|---|---|
Ecological/environmental criteria | Extent of green space areas | “−” | 9.15 | [32,33,34] | [35] |
Amount of air pollutants (PM2.5) | “+” | 8.31 | [36] | [37] | |
Land use criteria | Extent of residential areas | “+” | 8.09 | [32] | [35] |
Extent of industrial areas | “-” | 6.12 | [32] | [35] | |
Economic criteria | Amount of land values | “+” | - | [36] | Not available |
Amount of building prices | “+” | - | [36] | Not available | |
Average monthly income | “+” | 5.94 | [36] | [38] | |
Climate impact criteria | Intensity of urban heat islands areas | “+” | 8.63 | [33,34,36,39] | [40] |
Depth of flood hazard areas | “+” | 7.43 | [33] | [41] | |
Critical infrastructure criteria | Density of hospitals | “+” | 8.45 | [39] | [35] |
Density of schools | “+” | 5.91 | [39] | [35] | |
Density of kindergartens | “+” | 5.81 | [39] | [35] | |
Density of markets | “+” | 5.11 | [39] | [35] | |
Density of power stations | “+” | 4.25 | [39] | [35] | |
Density of transport stations | “+” | 6.64 | [39] | [35] | |
Social Criteria | Population density | “+” | 8.24 | [33,34,42] | [43] |
Density of elderly people | “+” | 5.10 | - | [38] |
2.2.1. Description of Criteria
2.2.2. Weighting of Criteria
2.2.3. Pre-Processing of Criteria
2.3. Cost-Benefit Analysis
2.3.1. Cost Model
2.3.2. Area Calculations
2.3.3. Index Adjustment
2.3.4. Cost Parameters
2.3.5. Sensitivity Analysis
2.3.6. Case Study McGraw Trench in Munich
2.3.7. Modification of the Model to the Case Study
3. Results
3.1. Geometry Analysis
3.2. Multi-Criteria Analysis
3.3. Cost and Benefit Analysis
3.3.1. Costs
3.3.2. Benefits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Acknowledgments
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects The 2015 Revision; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Swiss Re. Mind the Risk: A Global Ranking of Cities under Threat from Natural Disasters; Swiss Re: Zürich, Switzerland, 2013; Available online: https://reliefweb.int/report/world/mind-risk-global-ranking-cities-under-threat-natural-disasters (accessed on 31 October 2022).
- White, P.; Pelling, M.; Sen, K.; Seddon, D.; Russell, S.; Few, R. Disaster risk reduction: A development concern. London DfID 2005. Available online: https://www.droughtmanagement.info/literature/DFID_disaster_risk_reduction_2004.pdf (accessed on 31 October 2022).
- Frantzeskaki, N. Seven lessons for planning nature-based solutions in cities. Environ. Sci. Policy 2019, 93, 101–111. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; IUCN International Union for Conservation of Nature: Gland, Switzerland, 2016; p. 114. [Google Scholar]
- Gerstetter, C.; Herb, I.; Matei, A. Mainstreaming Nature-Based Solutions: Sustainable Development Goals; Naturvation Guide; 2020. Available online: https://www.ecologic.eu/18248 (accessed on 31 October 2022).
- European Commission and Directorate-General for Research and Innovation. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions and Re-Naturing Cities’: (Full Version); Publications Office: 2015. Available online: https://data.europa.eu/doi/10.2777/479582 (accessed on 31 October 2022).
- Chen, V.; Bonilla Brenes, J.R.; Chapa, F.; Hack, J. Development and modelling of realistic retrofitted Nature-based Solution scenarios to reduce flood occurrence at the catchment scale. Ambio 2021, 50, 1462–1476. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sarma, A.K.; Hack, J. Cost-Effective Optimization of Nature-Based Solutions for Reducing Urban Floods Considering Limited Space Availability. Environ. Process. 2020, 7, 297–319. [Google Scholar] [CrossRef]
- Gerla, P.J.; Cornett, M.W.; Ekstein, J.D.; Ahlering, M.A. Talking Big: Lessons Learned from a 9000 Hectare Restoration in the Northern Tallgrass Prairie. Sustainability 2012, 4, 3066–3087. [Google Scholar] [CrossRef] [Green Version]
- Marando, F.; Salvatori, E.; Fusaro, L.; Manes, F. Removal of PM10 by forests as a nature-based solution for air quality improvement in the Metropolitan city of Rome. Forests 2016, 7, 150. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Schmalzbauer, A. Barriers and Success Factors for Effectively Cocreating Nature-Based Solutions for Urban Regeneration; Deliverable 1.1.1, CLEVER Cities, H2020 Grant no. 776604; 2018. Available online: https://clevercities.eu/fileadmin/user_upload/Resources/D1.1_Theme_1_Barriers_success_factors_co-creation_HWWI_12.2018.pdf (accessed on 31 October 2022).
- Crisci, M. The Impact of the Real Estate Crisis on a South European Metropolis: From Urban Diffusion to Reurbanisation. Appl. Spat. Anal. Policy 2022, 15, 797–820. [Google Scholar] [CrossRef]
- van Doorn, L.; Arnold, A.; Rapoport, E. In the age of cities: The impact of urbanisation on house prices and affordability. Hot Prop. 2019, 3–13. Available online: https://link.springer.com/chapter/10.1007/978-3-030-11674-3_1 (accessed on 31 October 2022).
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Haase, D.; Frantzeskaki, N.; Elmqvist, T. Ecosystem services in urban landscapes: Practical applications and governance implications. Ambio 2014, 43, 407–412. [Google Scholar] [CrossRef]
- Breuste, J.; Artmann, M.; Li, J.; Xie, M. Special Issue on Green Infrastructure for Urban Sustainability. J. Urban Plan. Dev. 2015, 141, A2015001. [Google Scholar] [CrossRef]
- Droste, N.; Schröter-Schlaack, C.; Hansjürgens, B.; Zimmermann, H. Implementing Nature-Based Solutions in Urban Areas: Financing and Governance Aspects. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas, 1st ed.; Bonn, A., Kabisch, N., Korn, H., Stadler, J., Eds.; Theory and Practice of Urban Sustainability Transitions; Springer International Publishing Imprint: Cham, Switzerland, 2017; Available online: https://link.springer.com/chapter/10.1007/978-3-319-56091-5_18 (accessed on 31 October 2022).
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef]
- Plaschke, M.; Bhardwaj, M.; König, H.J.; Wenz, E.; Dobiáš, K.; Ford, A.T. Green bridges in a re-colonizing landscape: Wolves (Canis lupus) in Brandenburg, Germany. Conserv. Sci. Pract. 2021, 3. [Google Scholar] [CrossRef]
- Žák, J.; Kraus, M.; Machová, P.; Plachý, J. Smart Green Bridge-Wildlife Crossing Bridges of New Generation. IOP Conf. Ser. Mater. Sci. Eng. 2020, 728, 012010. [Google Scholar] [CrossRef]
- Herkenrath, M.; Fluschnik, T.; Grothe, F.; Kellerhals, L. Placing Green Bridges Optimally, with Habitats Inducing Cycles. 2022, 5, pp. 3825–3831. Available online: https://arxiv.org/abs/2201.12273 (accessed on 31 October 2022).
- Fluschnik, T.; Kellerhals, L. Placing Green Bridges Optimally, with a Multivariate Analysis. In Connecting with Computability; Mol, L.D., Weiermann, A., Manea, F., Fernández-Duque, D., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 204–216. [Google Scholar]
- Marzouk, M.; Nouh, A.; El-Said, M. Developing green bridge rating system using Simos’ procedure. HBRC J. 2014, 10, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Rassalski, K.; Leeson, D.; Rotolone, P. Green Bridge in Brisbane: Planning. In Proceedings of the Austroads Bridge Conference, 5th, 2004, Hobart, Tasmania, Australia, 19–20 May 2004. (No. AP-G79/04). [Google Scholar]
- Herrmann, M.; Kartkemeyer, O.; Lienhard, J.; Luwig, F.; Schonbrunner, A.; Michalski, A. IASS19_Abstract_A Noval Concept for Lightweight Green Wildlife Bridges. 2019. Available online: https://congress.cimne.com/Formandforce2019/admin/files/fileabstract/a376.pdf (accessed on 31 October 2022).
- Herrmann, M.; Arnold, M.; Fentzloff, A.; Otterbach, S.; Hawlik, J.; Kunz-Wedler, L. Abschlussbericht FREIRAUM für FREIBERG: Eine Landschaftsbrücke in hybrider Leichtbauweise mit Wohn- und Bürobebauung über die A81 für mehr Grün in Freibergs Mitte. 2020, 85. Available online: https://www.freiraumfreiberg.de/medien-raum-1/dokumente-1/ (accessed on 31 October 2022).
- Ministry of Urban Development and Housing Humburg. Spacious and Quiet New Green Spaces on Top of the A 7. 2020. Available online: https://www.hamburg.de/contentblob/14644794/d0ae8dfb950d7625f7f67f91193a1745/data/d-broschuere-%E2%80%9Ea7-deckel-englisch-letzter-stand%E2%80%9C.pdf (accessed on 31 October 2022).
- Stuttgart, U. Zukunft Bau Research Project—über_Dacht. 2022. Available online: https://www.zukunftbau.de/projekte/forschungsfoerderung/1008187-2103 (accessed on 31 October 2022).
- Road and Transportation Research Association (RAA). Guidelines for the Design of Motorways; 2018; p. 124. Available online: https://www.fgsv-verlag.de/pub/media/pdf/202_E_PDF.v.pdf (accessed on 31 October 2022).
- Langemeyer, J.; Gómez-Baggethun, E.; Haase, D.; Scheuer, S.; Elmqvist, T. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environ. Sci. Policy 2016, 62, 45–56. [Google Scholar] [CrossRef]
- Apud, A.; Faggian, R.; Sposito, V.; Martino, D. Suitability Analysis and Planning of Green Infrastructure in Montevideo, Uruguay. Sustainability 2020, 12, 9683. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Martinez-Izquierdo, L.; Langemeyer, J.; Baró, F.; McPhearson, T. Interactive spatial planning of urban green infrastructure–Retrofitting green roofs where ecosystem services are most needed in Oslo. Ecosyst. Serv. 2021, 50, 101314. [Google Scholar] [CrossRef]
- OpenStreetMap. HOT Export Tool. Available online: https://export.hotosm.org/en/v3/ (accessed on 31 October 2022).
- Sturiale, L.; Scuderi, A. The Role of Green Infrastructures in Urban Planning for Climate Change Adaptation. Climate 2019, 7, 119. [Google Scholar] [CrossRef] [Green Version]
- Umweltbundesamt. Luftschadstoffbelastung in Deutschland. Available online: https://gis.uba.de/maps/resources/apps/lu_schadstoffbelastung/index.html?lang=de (accessed on 31 October 2022).
- Federal Institute for Research on Building, U.A.; Development, S. Indicators and Maps for Spatial and Urban Development (INCAR). Available online: https://www.inkar.de/ (accessed on 31 October 2022).
- Li, Z.; Fan, Z.; Shen, S. Urban Green Space Suitability Evaluation Based on the AHP-CV Combined Weight Method: A Case Study of Fuping County, China. Sustainability 2018, 10, 2656. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, T.; Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 269–280. [Google Scholar] [CrossRef]
- Dottori, F.; Alfieri, L.; Bianchi, A.; Lorini, V.; Feyen, L.; Salamon, P. River Flood Hazard Maps for Europe: Version 1. European Commission, Joint Research Centre (JRC) [Dataset]; 2016. Available online: http://data.europa.eu/89h/8e49997c-ba99-4ed1-9aec-059bb440001b (accessed on 31 October 2022).
- Vallecillo, S.; La Notte, A.; Polce, C.; Zulian, G.; Alexandris, N.; Ferrini, S.; Maes, J. Ecosystem Services Accounting: Part I-Outdoor Recreation and Crop Pollination; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- WorldPop. Open Spatial Demographic Data and Research—WorldPop. Available online: https://www.worldpop.org/ (accessed on 31 October 2022).
- Mendoza, G.A.; Macoun, P. Guidelines for Applying Multi-Criteria Analysis to the Assessment of Criteria and Indicators; CIFOR: Jakarta, Indonesia, 1999; p. 84. [Google Scholar]
- Bundesministerium für Umwelt, N., Bau und Reaktorsicherheit. RBBau-Onlinefassung: Richtlinien für die Durchführung von Bauaufgaben des Bundes. 2021, 717. Available online: https://www.fib-bund.de/Inhalt/Richtlinien/RBBau/RBBau_Onlinefassung_Stand_10.05.2021.pdf (accessed on 31 October 2022).
- Architektenkammern, B.D. BKI Baukosten 2022 Neubau; BKI Baukosteninformationszentrum: Stuttgart, Germany, 2022. [Google Scholar]
- Bundesamt, S. Preisindizes für Bauwerke, Wohngebäude und Nichtwohngebäude. 2022. Available online: https://www.brunata-metrona.de/haeufige-fragen/was-sind-wohngebaeude-nichtwohngebaeude-gemischt-genutzte-gebaeude/ (accessed on 31 October 2022).
- Immoscout24. Garage Kaufen in Obergiesing (München)—Garagen & Stellplätze Kaufen bei ImmoScout24. Available online: https://www.immobilienscout24.de/Suche/de/bayern/muenchen/obergiesing-fasangarten/obergiesing/garage-kaufen (accessed on 21 August 2022).
- Immoscout24. Immobilienpreise Obergiesing: Entwicklung & Prognose: Kaufpreise, Mietpreise Wohnung. Available online: https://atlas.immobilienscout24.de/orte/deutschland/bayern/m%C3%BCnchen/obergiesing?cmp_id=10-04305&cmp_name=residential_atlas&cmp_position=brand_homepage&cmp_creative=oss_location_search&marketingFocus=APARTMENT_BUY&searchQuery=obergiesing&userIntent=SELL#/ (accessed on 21 August 2022).
- Institute for Ecological Economy Research (IÖW). Stadtgrün II App. Available online: https://www.stadtgruen-wertschaetzen.de/app/stadtgruenapp (accessed on 31 October 2022).
- Dymek, D.; Wilkaniec, A.; Bednorz, L.; Szczepańska, M. Significance of Allotment Gardens in Urban Green Space Systems and Their Classification for Spatial Planning Purposes: A Case Study of Poznań, Poland. Sustainability 2021, 13, 11044. [Google Scholar] [CrossRef]
- Mell, I.; Allin, S.; Reimer, M.; Wilker, J. Strategic green infrastructure planning in Germany and the UK: A transnational evaluation of the evolution of urban greening policy and practice. Int. Plan. Stud. 2017, 22, 333–349. [Google Scholar] [CrossRef] [Green Version]
- Biodiversity Information System for Europe. Policy Setting-Green Infrastructure. Available online: https://biodiversity.europa.eu/countries/germany/green-infrastructure (accessed on 22 December 2022).
- Robinson, L.A.; Hammitt, J.K.; Adler, M.D. Assessing the Distribution of Impacts in Global Benefit-Cost Analysis. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
Component | Designation | Cost Group |
---|---|---|
1. Cover | Preparatory measures | CG 200 |
Building—cover construction, modules | CG 300 | |
Technical installation tunnel | CG 400 | |
Outdoor area next to cover (OA1) | CG 500 | |
Outdoor area on cover, without M1 (OA2) | CG 500 | |
2. Basement development | Basement development | CG 300–400 |
3. Building development | Single family household—living | CG 300–400 |
Multifamily household—mixed use | CG 300–400 |
Scenario | Length 200 m | Length 400 m | Length 600 m | Low Building Density BCR 0.2 FAR 0.4 | Medium Building Density BCR 0.5 FAR 1.7 | High Building Density BCR 0.8 FAR 3.0 | Only SFH SFH 100% MFH 0% | Mix ½, ½ SFH 50% MFH 50% | Only MFH SFH 0% MFH 100% |
---|---|---|---|---|---|---|---|---|---|
2.3.1 | x | x | x | ||||||
1.3.1 | x | x | x | ||||||
3.3.1 | x | x | x | ||||||
2.3.2 | x | x | x | ||||||
1.3.2 | x | x | x | ||||||
3.3.2 | x | x | x | ||||||
2.3.3 | x | x | x | ||||||
1.3.3 | x | x | x | ||||||
3.3.3 | x | x | x | ||||||
3.2.1 | x | x | x | ||||||
2.2.1 | x | x | x | ||||||
1.2.1 | x | x | x | ||||||
3.3.3 | x | x | x | ||||||
2.2.2 | x | x | x | ||||||
1.2.2 | x | x | x | ||||||
3.2.3 | x | x | x | ||||||
2.2.3 | x | x | x | ||||||
1.2.3 | x | x | x | ||||||
3.1.1 | x | x | x | ||||||
2.1.1 | x | x | x | ||||||
1.1.1 | x | x | x | ||||||
3.1.2 | x | x | x | ||||||
2.1.2 | x | x | x | ||||||
1.1.2 | x | x | x | ||||||
3.1.3 | x | x | x | ||||||
2.1.3 | x | x | x | ||||||
1.1.3 | x | x | x |
Parameters | Consideration of Revenue |
---|---|
Length | Approx. 450 m |
Width (SC) | Approx. 20 m |
BCR | 0.3 |
FAR | 1.6 |
House mix | 100% MFH, 0% SFH |
Standard ground value | 2900 €/m2 |
Property interest | 5% |
Capitalization factor | 19.34 |
Discount factor | 0.0329 |
Purchase price parking space | 35,000 €/pc. |
Purchase price flat | 8849 €/m2 |
Rental price parking space | 100 €/m2 |
Flat rent | 17.39 €/m2 |
Criteria | Value |
---|---|
Total area | 9000 m2 |
Green space ratio | 44% |
Green space area | 3960 m2 |
Green roof ratio | 80% |
Street trees | 4 trees per 100 m |
Green path | 30% |
Maintenance of green space | 45% |
Parameters | Determined Values |
---|---|
Length project | 450 m |
Width (standard cross section) | 20 m |
Cover surface area | 9000 m2 |
Total floor area | 13,500 m2 |
Development area basement | 6405 m2 |
Basement usable area | 3881 m2 |
Parking and traffic area | 2972 m2 |
Cellar rooms | 909 m2 |
Parking spaces | 84 |
Used BCR | 0.3 |
Used FAR | 1.6 |
Permissible BCR | 4050 m2 |
Permissible FAR | 21,600 m2 |
SFH | 0% |
MFH | 100% |
GFA MFH project | 21,000 m2 |
Project usable area | 14,407 m2 |
Quantity M1 | 13 |
Total area M1 | 3960 m2 |
Quantity M2 | 7 |
Total area M2 | 5040 m2 |
Quantity M3 | 0 |
Total area M3 | 0 m2 |
Cost Group | Designation | McGraw Trench |
---|---|---|
1. Cover | 73,800,550 € | |
CG 200 | Preparatory measures/terrain modelling | 2,300,671 € |
CG 300 | Building-cover construction, modules | 51,419,968 € |
M1 | 12,221,235 € | |
M2 | 39,198,733 € | |
M3 | 0 € | |
CG 400 | Technical installations tunnel | 16,784,195 € |
CG 500 | Outdoor area next to cover (OA1) | 2,494,706 € |
CG 500 | Outdoor area on cover, without M1 (OA2) | 801,010 € |
2. Basement extension | 4,310,370 € | |
Extension cover (basement) | 4,310,370 € | |
3. Building development | 38,083,099 € | |
CG 300–400 | SFH | 0 € |
CG 300–400 | MFH | 38,083,099 € |
Total | 116,194,019 € |
Benefits | Monetary Value |
---|---|
Benefits of water retention | 546.73 €/year |
Air pollution control | 287.47 €/year |
Carbon sequestration | 206.92 €/year |
Temperature regulation | 451.7 €/year |
Cultural ecosystem services | 1946.25 €/year |
Total benefits of green space | 3442.87 €/year |
Sale price of M2 | 8850 €/m2 |
Rental price of M2 | 208.68 €/m2/year |
Total monetary income for selling M2 | 127,501,950 € |
Total rental price of M2 | 3,006,452.76 €/year |
Total benefits for the green bridge (through renting property module (M2)) | 3,009,895.63 €/year |
Total benefits for the green bridge (through selling property module (M2)) | 127,505,392.9 € |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wuit Yee Kyaw, H.; Chatzidimitriou, A.; Hellwig, J.; Bühler, M.; Hawlik, J.; Herrmann, M. Multifactorial Evaluation of Spatial Suitability and Economic Viability of Light Green Bridges Using Remote Sensing Data and Spatial Urban Planning Criteria. Remote Sens. 2023, 15, 753. https://doi.org/10.3390/rs15030753
Wuit Yee Kyaw H, Chatzidimitriou A, Hellwig J, Bühler M, Hawlik J, Herrmann M. Multifactorial Evaluation of Spatial Suitability and Economic Viability of Light Green Bridges Using Remote Sensing Data and Spatial Urban Planning Criteria. Remote Sensing. 2023; 15(3):753. https://doi.org/10.3390/rs15030753
Chicago/Turabian StyleWuit Yee Kyaw, Hnin, Angeliki Chatzidimitriou, Jocelyne Hellwig, Michael Bühler, Johannes Hawlik, and Michael Herrmann. 2023. "Multifactorial Evaluation of Spatial Suitability and Economic Viability of Light Green Bridges Using Remote Sensing Data and Spatial Urban Planning Criteria" Remote Sensing 15, no. 3: 753. https://doi.org/10.3390/rs15030753
APA StyleWuit Yee Kyaw, H., Chatzidimitriou, A., Hellwig, J., Bühler, M., Hawlik, J., & Herrmann, M. (2023). Multifactorial Evaluation of Spatial Suitability and Economic Viability of Light Green Bridges Using Remote Sensing Data and Spatial Urban Planning Criteria. Remote Sensing, 15(3), 753. https://doi.org/10.3390/rs15030753