Improved Global Gross Primary Productivity Estimation by Considering Canopy Nitrogen Concentrations and Multiple Environmental Factors
Abstract
:1. Introduction
2. Data
2.1. Site Data
2.2. Global Scale Data
2.3. GPP Products Derived from Different Models
3. Methods
3.1. Calculation of the Optimum Temperature for Photosynthesis
3.2. Product Algorithm
3.3. Model Parameterization and Validation
3.4. Evaluation of Spatial Performance
3.5. Contribution of Each Variable to Long-Term Variations in GPP
4. Results
4.1. Distribution of Global Ecosystem-Scale Optimum Temperature for Photosynthesis
4.2. Canopy N Concentrations Index Selection and Model Parameter Optimization
4.3. Spatiotemporal Patterns in Global GPP
4.4. Comparison with Other Global GPP Products
5. Discussion
5.1. Contributions of Multiple Variables to the GPP Simulation
5.2. Uncertainties Analysis
5.3. Potential Benefits and Applications of the Product
6. Conclusions
7. Data Availability
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Index | Formulation | Selected MODIS Bands | References |
---|---|---|---|
Normalized difference vegetation index (NDVI) | B2 B1 | Rouse et al. [88] | |
Simple ratio (SR) | B2 B1 | Jordan [89] | |
Green NDVI (GNDVI) | B2 B4 | Gitelson et al. [90] | |
Optimized soil-adjusted vegetation index (OSAVI) | B2 B1 | Rondeaux et al. [91] | |
Structure insensitive pigment index (SIPI) | B2 B3 B1 | Penuelas et al. [92] | |
Greenness index (GI) | B4 B1 | Zarco-Tejada et al. [93] | |
Green chlorophyll index (CIgreen) | B2 B4 | Gitelson et al. [94] | |
Modified transformed Chlorophyll absorption in reflectance index (TCARI) | B2 B1 B4 | Rondeaux et al. [91] | |
TCARI/OSAVI | B2 B1 B4 | Rondeaux et al. [91] | |
Enhanced vegetation index 2 (EVI2) | B2 B1 | Jiang et al. [95] | |
Wide dynamic range vegetation index (WDRVI) | B2 B1 | Gitelson [96] | |
Wide dynamic range vegetation index 3 (WDRVI3) | B2 B1 | Peng and Gitelson [97] | |
Modified simple ratio (MSR) | B2 B1 | Chen [98] | |
Plant pigment ratio (PPR) | B4 B3 | Metternicht [99] | |
NIR | R800 | B2 | Ollinger et al. [53] |
SPVI | B2 B1 B4 | Vincini et al. [100] | |
Lichtenthaler Index 2 (LIC2) | B3 B1 | Lichtenthaler et al. [101] | |
Enhanced vegetation index (EVI) | B2 B1 B3 | Huete et al. [102] | |
Difference vegetation index (DVI) | B2 B1 | Jordan [89] | |
Modified Triangular Vegetation Index (MTVI) | B2 B4 B1 | Haboudane et al. [103] | |
NIRv | B1 B2 | Badgley et al. [104] | |
kNDVI | B1 B2 | Camps-Valls et al. [105] | |
Chlorophyll/Carotenoid index (CCI) | B11 B1 | Gamon et al. [106] |
Site | Latitude (°) | Longitude (°) | Canopy N, % by Mass | Vegetation Type | Date | References |
---|---|---|---|---|---|---|
Bartlett Experimental Forest, NH | 44.05 | −70.72 | 1.66 | Mixed northern hardwood | Growing season between 2000 and 2006 | Ollinger et al. [53] |
Duke Forest Deciduous, NC | 35.97 | −78.90 | 1.85 | Oak–hickor | ||
Duke Forest Pine, NC | 35.97 | −78.92 | 1.47 | Loblolly pine | ||
Harvard Forest, MA | 42.53 | −71.83 | 1.95 | Mixed deciduous | ||
Howland, ME | 45.20 | −67.27 | 1.16 | Boreal evergreen | ||
Hubbard Brook, NH | 43.95 | −70.27 | 2.24 | Northern hardwoods | ||
Morgan Monroe State Forest, IN | 39.32 | −85.60 | 2.06 | Mixed deciduous | ||
Niwot Ridge, CO | 40.02 | −104.47 | 0.93 | Subalpine evergreen | ||
Tremper Mount, NY | 42.08 | −73.73 | 2.35 | Mixed deciduous | ||
Willow Creek, WI | 45.80 | −89.93 | 1.79 | Temperate deciduous | ||
Wind River Experimental Forest, WA | 45.82 | −120.05 | 0.75 | Temperate evergreen | ||
Hyytiälä, Finland, HY | 61.85 | 24.30 | 1.2 | Coniferous | Spring 2003 | Peltoniemi et al. [46] |
Abisko, Sweden, AB | 68.35 | 18.78 | 1.79 | Deciduous | Jul., Aug. 2003 | Peltoniemi et al. [46] |
Sorø, Denmark, SO | 55.48 | 11.63 | 2.3 | Mixed | Summer 2007 | Peltoniemi et al. [46] |
Teshio, Japan, TE | 45.05 | 142.10 | 1.63 | Mixed | Aug. 2001, Aug. 2002, Aug. 2003 | Peltoniemi et al. [46]; Takagi et al. [107] |
Wind River, USA, WR | 45.82 | −120.05 | 1.11 | Coniferous | Sep. 2003 | Peltoniemi et al. [46];Klopatek et al. [108] |
CRO | DBF | EBF | ENF | MF | GRA | WSA | SAV | CSH | OSH | WET | |
---|---|---|---|---|---|---|---|---|---|---|---|
p | 0.31335 | 0.07883 | 0.29767 | 0.00002 | 0.00019 | 0.52879 | 0.18511 | 0.31125 | 0.32329 | 0.24062 | 0.78899 |
q | 0.57816 | 1.26957 | 0.13659 | 1.73640 | 1.61985 | 0.00011 | 0.91392 | 1.03839 | 0.48866 | 0.33551 | 0.00002 |
a | 0.00002 | 0.00092 | 0.00001 | 0.07253 | 0.00016 | 0.01613 | 0.01487 | 0.00814 | 0.00513 | 0.05444 | 0.92145 |
SiteID | SiteName | Latitude | Longitude | IGBP | Study Period |
---|---|---|---|---|---|
AR−SLu | San Luis | −33.46 | −66.46 | MF | 2009−2011 |
AU−ASM | Alice Springs | −22.28 | 133.25 | SAV | 2010−2014 |
AU−Cpr | Calperum | −34.00 | 140.59 | SAV | 2010−2014 |
AU−DaS | Daly River Cleared | −14.16 | 131.39 | SAV | 2008−2014 |
AU−Dry | Dry River | −15.26 | 132.37 | SAV | 2008−2014 |
AU−Gin | Gingin | −31.38 | 115.71 | WSA | 2011−2014 |
AU−GWW | Great Western Woodlands, Western Australia, Australia | −30.19 | 120.65 | SAV | 2013−2014 |
AU−How | Howard Springs | −12.49 | 131.15 | WSA | 2001−2014 |
AU−Rig | Riggs Creek | −36.65 | 145.58 | GRA | 2011−2014 |
AU−Stp | Sturt Plains | −17.15 | 133.35 | GRA | 2008−2014 |
AU−Tum | Tumbarumba | −35.66 | 148.15 | EBF | 2001−2014 |
AU−Wac | Wallaby Creek | −37.43 | 145.19 | EBF | 2005−2008 |
AU−Ync | Jaxa | −34.99 | 146.29 | GRA | 2012−2014 |
BE−Lon | Lonzee | 50.55 | 4.75 | CRO | 2004−2014 |
BE−Vie | Vielsalm | 50.30 | 6.00 | MF | 2001−2014 |
BR−Sa1 | Santarem−Km67−Primary Forest | −2.86 | −54.96 | EBF | 2002−2011 |
CA−Gro | Ontario—Groundhog River, Boreal Mixedwood Forest | 48.22 | −82.16 | MF | 2003−2014 |
CA−Man | Manitoba—Northern Old Black Spruce | 55.88 | −98.48 | ENF | 2001−2008 |
CA−NS1 | UCI−1850 burn site | 55.88 | −98.48 | ENF | 2001−2005 |
CA−NS2 | UCI−1930 burn site | 55.91 | −98.52 | ENF | 2001−2005 |
CA−NS3 | UCI−1964 burn site | 55.91 | −98.38 | ENF | 2001−2005 |
CA−NS4 | UCI−1964 burn site wet | 55.91 | −98.38 | ENF | 2002−2005 |
CA−NS5 | UCI−1981 burn site | 55.86 | −98.49 | ENF | 2001−2005 |
CA−NS6 | UCI−1989 burn site | 55.92 | −98.96 | OSH | 2001−2005 |
CA−NS7 | UCI−1998 burn site | 56.64 | −99.95 | OSH | 2002−2005 |
CA−Oas | Saskatchewan—Western Boreal, Mature Aspen | 53.63 | −106.20 | DBF | 2001−2010 |
CA−Obs | Saskatchewan—Western Boreal, Mature Black Spruce | 53.99 | −105.12 | ENF | 2001−2010 |
CA−Qfo | Quebec—Eastern Boreal, Mature Black Spruce | 49.69 | −74.34 | ENF | 2003−2010 |
CA−SF1 | Saskatchewan—Western Boreal, forest burned in 1977 | 54.49 | −105.82 | ENF | 2003−2006 |
CA−SF2 | Saskatchewan—Western Boreal, forest burned in 1989 | 54.25 | −105.88 | ENF | 2001−2005 |
CA−SF3 | Saskatchewan—Western Boreal, forest burned in 1998 | 54.09 | −106.01 | OSH | 2001−2006 |
CH−Dav | Davos | 46.82 | 9.86 | ENF | 2001−2014 |
CN−Cha | Changbaishan | 42.40 | 128.10 | MF | 2003−2005 |
CN−Dan | Dangxiong | 30.50 | 91.07 | GRA | 2004−2005 |
CN−Du2 | Duolun_grassland (D01) | 42.05 | 116.28 | GRA | 2006−2008 |
CN−Du3 | Duolun Degraded Meadow | 42.06 | 116.28 | GRA | 2009−2010 |
CN−Ha2 | Haibei Shrubland | 37.61 | 101.33 | WET | 2003−2005 |
CN−HaM | Haibei Alpine Tibet site | 37.37 | 101.18 | GRA | 2002−2004 |
DE−Geb | Gebesee | 51.10 | 10.91 | CRO | 2001−2014 |
DE−Hai | Hainich | 51.08 | 10.45 | DBF | 2001−2012 |
DE−Kli | Klingenberg | 50.89 | 13.52 | CRO | 2004−2014 |
DE−RuS | Selhausen Juelich | 50.87 | 6.45 | CRO | 2011−2014 |
DE−SfN | Schechenfilz Nord | 47.81 | 11.33 | WET | 2012−2014 |
DE−Spw | Spreewald | 51.89 | 14.03 | WET | 2010−2014 |
DE−Zrk | Zarnekow | 53.88 | 12.89 | WET | 2013−2014 |
DK−Fou | Foulum | 56.48 | 9.59 | CRO | 2005 |
ES−Amo | Amoladeras | 36.83 | −2.25 | OSH | 2007−2012 |
ES−LgS | Laguna Seca | 37.10 | −2.97 | OSH | 2007−2009 |
ES−LJu | Llano de los Juanes | 36.93 | −2.75 | OSH | 2004−2013 |
ES−Ln2 | Lanjaron−Salvage logging | 36.97 | −3.48 | OSH | 2009−2009 |
FR−Gri | Grignon | 48.84 | 1.95 | CRO | 2004−2014 |
FR−Pue | Puechabon | 43.74 | 3.60 | EBF | 2001−2014 |
IT−BCi | Borgo Cioffi | 40.52 | 14.96 | CRO | 2004−2014 |
IT−Col | Collelongo | 41.85 | 13.59 | DBF | 2001−2014 |
IT−Noe | Arca di Noe—Le Prigionette | 40.61 | 8.15 | CSH | 2004−2014 |
IT−Ren | Renon | 46.59 | 11.43 | ENF | 2001−2013 |
JP−MBF | Moshiri Birch Forest Site | 44.39 | 142.32 | DBF | 2003−2005 |
JP−SMF | Seto Mixed Forest Site | 35.26 | 137.08 | MF | 2002−2006 |
MY−PSO | Pasoh Forest Reserve (PSO) | 2.97 | 102.31 | EBF | 2003−2009 |
NL−Hor | Horstermeer | 52.24 | 5.07 | GRA | 2004−2011 |
RU−Che | Cherski | 68.61 | 161.34 | WET | 2002−2005 |
RU−Ha1 | Hakasia steppe | 54.73 | 90.00 | GRA | 2002−2004 |
RU−SkP | Yakutsk Spasskaya Pad larch | 62.26 | 129.17 | DNF | 2012−2014 |
RU−Tks | Tiksi | 71.59 | 128.89 | GRA | 2010−2014 |
RU−Vrk | Seida/Vorkuta | 67.05 | 62.94 | CSH | 2008−2008 |
SD−Dem | Demokeya | 13.28 | 30.48 | SAV | 2005−2009 |
SN−Dhr | Dahra | 15.40 | −15.43 | SAV | 2010−2013 |
US−AR1 | ARM USDA UNL OSU Woodward Switchgrass 1 | 36.43 | −99.42 | GRA | 2009−2012 |
US−ARb | ARM Southern Great Plains burn site− Lamont | 35.55 | −98.04 | GRA | 2005−2006 |
US−ARM | ARM Southern Great Plains site− Lamont | 36.61 | −97.49 | CRO | 2003−2012 |
US−Atq | Atqasuk | 70.47 | −157.41 | WET | 2003−2008 |
US−Blo | Blodgett Forest | 38.90 | −120.63 | ENF | 2001−2007 |
US−Cop | Corral Pocket | 38.09 | −109.39 | GRA | 2001−2007 |
US−CRT | Curtice Walter−Berger cropland | 41.63 | −83.35 | CRO | 2011−2013 |
US−Ha1 | Harvard Forest EMS Tower (HFR1) | 42.54 | −72.17 | DBF | 2001−2012 |
US−Ivo | Ivotuk | 68.49 | −155.75 | WET | 2004−2007 |
US−KS2 | Kennedy Space Center (scrub oak) | 28.61 | −80.67 | CSH | 2003−2006 |
US−Lin | Lindcove Orange Orchard | 36.36 | −119.09 | CRO | 2009−2010 |
US−Los | Lost Creek | 46.08 | −89.98 | WET | 2001−2014 |
US−Me1 | Metolius—Eyerly burn | 44.58 | −121.50 | ENF | 2004−2005 |
US−Me2 | Metolius mature ponderosa pine | 44.45 | −121.56 | ENF | 2002−2014 |
US−Me3 | Metolius−second young aged pine | 44.32 | −121.61 | ENF | 2004−2009 |
US−Me6 | Metolius Young Pine Burn | 44.32 | −121.61 | ENF | 2010−2014 |
US−MMS | Morgan Monroe State Forest | 39.32 | −86.41 | DBF | 2001−2014 |
US−Ne1 | Mead—irrigated continuous maize site | 41.17 | −96.48 | CRO | 2001−2013 |
US−Ne2 | Mead—irrigated maize−soybean rotation site | 41.16 | −96.47 | CRO | 2001−2013 |
US−Ne3 | Mead—rainfed maize−soybean rotation site | 41.18 | −96.44 | CRO | 2001−2013 |
US−NR1 | Niwot Ridge Forest (LTER NWT1) | 40.03 | −105.55 | ENF | 2001−2014 |
US−PFa | Park Falls/WLEF | 45.95 | −90.27 | MF | 2001−2014 |
US−SRC | Santa Rita Creosote | 31.91 | −110.84 | OSH | 2008−2014 |
US−SRM | Santa Rita Mesquite | 31.82 | −110.87 | WSA | 2004−2014 |
US−Sta | Saratoga | 41.40 | −106.80 | OSH | 2005−2009 |
US−Ton | Tonzi Ranch | 38.43 | −120.97 | WSA | 2001−2014 |
US−UMB | Univ. of Mich. Biological Station | 45.56 | −84.71 | DBF | 2001−2014 |
US−UMd | UMBS Disturbance | 45.56 | −84.70 | DBF | 2007−2014 |
US−WCr | Willow Creek | 45.81 | −90.08 | DBF | 2001−2014 |
US−Whs | Walnut Gulch Lucky Hills Shrub | 31.74 | −110.05 | OSH | 2007−2014 |
US−Wi4 | Mature red pine (MRP) | 46.74 | −91.17 | ENF | 2002−2005 |
US−Wi9 | Young Jack pine (YJP) | 46.74 | −91.07 | ENF | 2002 |
US−Wkg | Walnut Gulch Kendall Grasslands | 31.74 | −109.94 | GRA | 2002 |
ZA−Kru | Skukuza | −25.02 | 31.50 | SAV | 2002 |
ZM−Mon | Mongu | −15.44 | 23.25 | DBF | 2002 |
References
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covari-ation with Climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonan, G.B.; Lombardozzi, D.L.; Wieder, W.R.; Oleson, K.W.; Lawrence, D.M.; Hoffman, F.M.; Collier, N. Model Structure and Climate Data Uncertainty in Historical Simulations of the Terrestrial Carbon Cycle (1850–2014). Glob. Biogeochem. Cycles 2019, 33, 1310–1326. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Chen, J.M.; Shen, H.; Xie, X. A modified two-leaf light use efficiency model for improving the simulation of GPP using a radiation scalar. Agric. For. Meteorol. 2021, 307, 108546. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, J.; Wang, X.; Ma, M. Improving the global MODIS GPP model by optimizing parameters with FLUXNET data. Agric. For. Meteorol. 2021, 300, 108314. [Google Scholar] [CrossRef]
- Niyogi, D.; Jamshidi, S.; Smith, D.; Kellner, O. Evapotranspiration Climatology of Indiana Using In Situ and Remotely Sensed Products. J. Appl. Meteorol. Clim. 2020, 59, 2093–2111. [Google Scholar] [CrossRef]
- Verma, M.; Friedl, M.; Law, B.; Bonal, D.; Kiely, G.; Black, T.; Wohlfahrt, G.; Moors, E.; Montagnani, L.; Marcolla, B.; et al. Improving the performance of remote sensing models for capturing intra- and inter-annual variations in daily GPP: An analysis using global FLUXNET tower data. Agric. For. Meteorol. 2015, 214–215, 416–429. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Zhuang, Q.; Baldocchi, D.D.; Law, B.E.; Richardson, A.D.; Chen, J.; Oren, R.; Starr, G.; Noormets, A.; Ma, S.; et al. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agric. For. Meteorol. 2008, 148, 1827–1847. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, D.M. Methods of Assessing the Primary Production of Regions. In Primary Productivity of the Biosphere; Lieth, H., Whittaker, R.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1975; pp. 147–166. [Google Scholar]
- Uchijima, Z.; Seino, H. Agro climatic evaluation of net primary productivity of natural vegetation I. Chikugo model for evaluating productivity. J. Agric. Meteorol. 1985, 40, 343–352. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Piper, S.C.; Nemani, R.; Keeling, C.D.; Otto, R.D.; Running, S.W. Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Glob. Biogeochem. Cycles 1996, 10, 431–456. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, J.M.; Cihlar, J.; Park, W.M. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 1997, 62, 158–175. [Google Scholar] [CrossRef]
- Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L. Global climate change and terrestrial net primary production. Nature 1993, 363, 234–240. [Google Scholar] [CrossRef]
- Running, S.W.; Coughlan, J.C. A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol. Model. 1988, 42, 125–154. [Google Scholar] [CrossRef]
- He, M.; Ju, W.; Zhou, Y.; Chen, J.; He, H.; Wang, S.; Wang, H.; Guan, D.; Yan, J.; Li, Y.; et al. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agric. For. Meteorol. 2013, 173, 28–39. [Google Scholar] [CrossRef]
- Heinsch, F.A.; Reeves, M.; Votava, P.; Kang, S.; Milesi, C.; Zhao, M.; Glassy, J.; Jolly, W.M.; Loehman, R.; Bowker, C.F.; et al. User’s guide GPP and NPP (MOD17A2/A3) products NASA MODIS land algorithm. Version 2003, 2, 666–684. [Google Scholar]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. London. B Biol. Sci. 1977, 281, 277–294. [Google Scholar]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Wang, J.; Sun, R.; Zhang, H.; Xiao, Z.; Zhu, A.; Wang, M.; Yu, T.; Xiang, K. New Global MuSyQ GPP/NPP Remote Sensing Products From 1981 to 2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5596–5612. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B., III; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Alemohammad, S.H.; Fang, B.; Konings, A.G.; Aires, F.; Green, J.K.; Kolassa, J.; Miralles, D.; Prigent, C.; Gentine, P. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence. Biogeosciences 2017, 14, 4101–4124. [Google Scholar] [CrossRef] [Green Version]
- Dou, X.; Yang, Y. Estimating forest carbon fluxes using four different data-driven techniques based on long-term eddy covariance measurements: Model comparison and evaluation. Sci. Total Environ. 2018, 627, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Ichii, K.; Ueyama, M.; Kondo, M.; Saigusa, N.; Kim, J.; Alberto, M.C.; Ardö, J.; Euskirchen, E.S.; Kang, M.; Hirano, T.; et al. New data-driven estimation of terrestrial CO2 fluxes in Asia using a stand-ardized database of eddy covariance measurements, remote sensing data, and support vector regression. J. Geophys. Res. Biogeosciences 2017, 122, 767–795. [Google Scholar] [CrossRef]
- Xiao, J.; Ollinger, S.V.; Frolking, S.; Hurtt, G.C.; Hollinger, D.Y.; Davis, K.J.; Pan, Y.; Zhang, X.; Deng, F.; Chen, J.; et al. Data-driven diagnostics of terrestrial carbon dynamics over North America. Agric. For. Meteorol. 2014, 197, 142–157. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.; Wutzler, T.; Koirala, S.; Cuntz, M.; Ibrom, A.; Besnard, S.; Walther, S.; Šigut, L.; Moreno, A.; Weber, U.; et al. Environment-sensitivity functions for gross primary productivity in light use efficiency models. Agric. For. Meteorol. 2022, 312, 108708. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, R.; Wang, Y.; Li, X.; Liu, S.; Liang, S.; Chen, J.M.; Ju, W.; Zhang, L.; Yuan, W. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 2020, 12, 2725–2746. [Google Scholar] [CrossRef]
- Dechant, B.; Cuntz, M.; Vohland, M.; Schulz, E.; Doktor, D. Estimation of photosynthesis traits from leaf reflectance spectra: Correlation to nitrogen content as the dominant mechanism. Remote Sens. Environ. 2017, 196, 279–292. [Google Scholar] [CrossRef]
- Stocker, B.D.; Zscheischler, J.; Keenan, T.F.; Prentice, I.C.; Seneviratne, S.I.; Peñuelas, J. Drought impacts on terrestrial primary production underestimated by satellite monitoring. Nat. Geosci. 2019, 12, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Medlyn, B.E.; Dreyer, E.; Ellsworth, D.; Forstreuter, M.; Harley, P.C.; Kirschbaum, M.U.F.; LE Roux, X.; Montpied, P.; Strassemeyer, J.; Walcroft, A.; et al. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 2002, 25, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Feng, X.; Fu, B.; Wu, X.; Gao, Z. Improved Global Maps of the Optimum Growth Temperature, Maximum Light Use Efficiency, and Gross Primary Production for Vegetation. J. Geophys. Res. Biogeosciences 2021, 126, e2020JG005651. [Google Scholar] [CrossRef]
- Liu, Y.; Piao, S.; Lian, X.; Ciais, P.; Smith, W.K. Seasonal Responses of Terrestrial Carbon Cycle to Climate Variations in CMIP5 Models: Evaluation and Projection. J. Clim. 2017, 30, 6481–6503. [Google Scholar] [CrossRef]
- Yang, D.; Xu, X.; Xiao, F.; Xu, C.; Luo, W.; Tao, L. Improving modeling of ecosystem gross primary productivity through re-optimizing temperature restrictions on photosynthesis. Sci. Total Environ. 2021, 788, 147805. [Google Scholar] [CrossRef]
- Huang, M.; Piao, S.; Ciais, P.; Peñuelas, J.; Wang, X.; Keenan, T.F.; Peng, S.; Berry, J.A.; Wang, K.; Mao, J.; et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 2019, 3, 772–779. [Google Scholar] [CrossRef]
- Niu, S.; Luo, Y.; Fei, S.; Yuan, W.; Schimel, D.; Law, B.; Ammann, C.; Arain, M.A.; Arneth, A.; Aubinet, M.; et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol. 2012, 194, 775–783. [Google Scholar] [CrossRef] [Green Version]
- Veroustraete, F.; Sabbe, H.; Eerens, H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sens. Environ. 2002, 83, 376–399. [Google Scholar] [CrossRef]
- Stocker, B.D.; Wang, H.; Smith, N.G.; Harrison, S.P.; Keenan, T.F.; Sandoval, D.; Davis, T.; Prentice, I.C. P-model v1.0: An optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 2020, 13, 1545–1581. [Google Scholar] [CrossRef] [Green Version]
- Kalliokoski, T.; Mäkelä, A.; Fronzek, S.; Minunno, F.; Peltoniemi, M. Decomposing sources of uncertainty in climate change projections of boreal forest primary production. Agric. For. Meteorol. 2018, 262, 192–205. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Cihlar, J.; Goulden, M. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Model. 1999, 124, 99–119. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Huang, K.; Yan, H.; Yan, H.; Zhou, L.; Wang, H.; Zhang, J.; Yan, J.; Zhao, L.; Wang, Y.; et al. Improving the light use efficiency model for simulating terrestrial vegetation gross primary production by the inclusion of diffuse radiation across ecosystems in China. Ecol. Complex. 2015, 23, 1–13. [Google Scholar] [CrossRef]
- He, J.; Zhang, X.; Guo, W.; Pan, Y.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Estimation of Vertical Leaf Nitrogen Distribution Within a Rice Canopy Based on Hyperspectral Data. Front. Plant Sci. 2020, 10, 1802. [Google Scholar] [CrossRef]
- Loozen, Y.; Rebel, K.T.; de Jong, S.M.; Lu, M.; Ollinger, S.V.; Wassen, M.J.; Karssenberg, D. Mapping canopy nitrogen in European forests using remote sensing and environmental variables with the random forests method. Remote Sens. Environ. 2020, 247, 111933. [Google Scholar] [CrossRef]
- Reich, P.B. Key canopy traits drive forest productivity. Proc. R. Soc. B: Biol. Sci. 2012, 279, 2128–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Chen, B.; Chen, J.; Zhang, H.; Sun, S.; Xu, G.; Guo, L.; Ge, M.; Qu, J.; Li, L.; et al. Seasonal fluctuations of photosynthetic parameters for light use efficiency models and the impacts on gross primary production estimation. Agric. For. Meteorol. 2017, 236, 22–35. [Google Scholar] [CrossRef]
- Zhou, X.; Xin, Q. Improving satellite-based modelling of gross primary production in deciduous broadleaf forests by accounting for seasonality in light use efficiency. Int. J. Remote Sens. 2019, 40, 931–955. [Google Scholar] [CrossRef]
- Balzarolo, M.; Valdameri, N.; Fu, Y.H.; Schepers, L.; Janssens, I.A.; Campioli, M. Different determinants of radiation use efficiency in cold and temperate forests. Glob. Ecol. Biogeogr. 2019, 28, 1649–1667. [Google Scholar] [CrossRef] [Green Version]
- Peltoniemi, M.; Pulkkinen, M.; Kolari, P.; Duursma, R.A.; Montagnani, L.; Wharton, S.; Lagergren, F.; Takagi, K.; Verbeeck, H.; Christensen, T.; et al. Does canopy mean nitrogen concentration explain variation in canopy light use efficiency across 14 contrasting forest sites? Tree Physiol. 2012, 32, 200–218. [Google Scholar] [CrossRef] [Green Version]
- Houborg, R.; Anderson, M.C.; Norman, J.M.; Wilson, T.; Meyers, T. Intercomparison of a ‘bottom-up’ and ‘top-down’ modeling para-digm for estimating carbon and energy fluxes over a variety of vegetative regimes across the U.S. Agric. For. Meteorol. 2009, 149, 1875–1895. [Google Scholar] [CrossRef]
- Butler, E.E.; Datta, A.; Flores-Moreno, H.; Chen, M.; Wythers, K.R.; Fazayeli, F.; Banerjee, A.; Atkin, O.K.; Kattge, J.; Amiaud, B.; et al. Mapping local and global variability in plant trait distributions. Proc. Natl. Acad. Sci. USA 2017, 114, E10937–E10946. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Martínez, Á.; Camps-Valls, G.; Kattge, J.; Robinson, N.; Reichstein, M.; van Bodegom, P.; Kramer, K.; Cornelissen, J.H.C.; Reich, P.; Bahn, M.; et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 2018, 218, 69–88. [Google Scholar] [CrossRef] [Green Version]
- Wen, P.; He, J.; Ning, F.; Wang, R.; Zhang, Y.; Li, J. Estimating leaf nitrogen concentration considering unsynchronized maize growth stages with canopy hyperspectral technique. Ecol. Indic. 2019, 107, 105590. [Google Scholar] [CrossRef]
- Chen, P.; Haboudane, D.; Tremblay, N.; Wang, J.; Vigneault, P.; Li, B. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ. 2010, 114, 1987–1997. [Google Scholar] [CrossRef]
- He, L.; Zhang, H.Y.; Zhang, Y.S.; Song, X.; Feng, W.; Kang, G.Z.; Wang, C.Y.; Guo, T.C. Estimating canopy leaf nitrogen concentration in winter wheat based on mul-ti-angular hyperspectral remote sensing. Eur. J. Agron. 2016, 73, 170–185. [Google Scholar] [CrossRef]
- Ollinger, S.V.; Richardson, A.D.; Martin, M.E.; Hollinger, D.Y.; Frolking, S.E.; Reich, P.B.; Plourde, L.C.; Katul, G.G.; Munger, J.W.; Oren, R.; et al. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. Proc. Natl. Acad. Sci. USA 2008, 105, 19336–19341. [Google Scholar] [CrossRef]
- Ollinger, S.V.; Smith, M.-L. Net Primary Production and Canopy Nitrogen in a Temperate Forest Landscape: An Analysis Using Imaging Spectroscopy, Modeling and Field Data. Ecosystems 2005, 8, 760–778. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Jiang, B. Evaluation of four long time-series global leaf area index products. Agric. For. Meteorol. 2017, 246, 218–230. [Google Scholar] [CrossRef]
- Jacobson, A.R.; Schuldt, K.N.; Miller, J.B.; Oda, T.; Tans, P.; Andrews, A.; Mund, J.; Ott, L.; Collatz, G.J.; Aalto, T.; et al. CarbonTracker CT2019B; NOAA Global Monitoring Laboratory: Washington, DC, USA, 2020. [Google Scholar]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Zhang, Y.; Joiner, J.; Alemohammad, S.H.; Zhou, S.; Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 2018, 15, 5779–5800. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 2017, 4, 170165. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 2019, 11, 517. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Schwalm, C.; Migliavacca, M.; Walther, S.; Camps-Valls, G.; Koirala, S.; Anthoni, P.; Besnard, S.; Bodesheim, P.; Carvalhais, N.; et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 2020, 17, 1343–1365. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S. Implications of incorporating N cycling and N limitations on primary pro-duction in an individual-based dynamic vegetation model. Biogeosciences 2014, 11, 2027–2054. [Google Scholar] [CrossRef] [Green Version]
- Walker, A.P.; Quaife, T.; Van Bodegom, P.M.; De Kauwe, M.G.; Keenan, T.F.; Joiner, J.; Lomas, M.R.; MacBean, N.; Xu, C.; Yang, X.; et al. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross primary production. New Phytol. 2017, 215, 1370–1386. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, S.; Zand-Parsa, S.; Pakparvar, M.; Niyogi, D. Evaluation of Evapotranspiration over a Semiarid Region Using Multiresolution Data Sources. J. Hydrometeorol. 2019, 20, 947–964. [Google Scholar] [CrossRef]
- Raoufi, R.; Beighley, E. Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature. Remote Sens. 2017, 9, 1138. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.; Wang, Y.; Sun, R.; Qiao, C.; Fan, W.; Jiang, G.; Hao, L.; Zhang, L. Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi-Source and Multi-Scale Data. PLoS ONE 2016, 11, e0153971. [Google Scholar] [CrossRef] [Green Version]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Li, S.; Kang, S.; Zhang, L.; Zhang, J.; Du, T.; Tong, L.; Ding, R. Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. J. Hydrol. 2016, 543, 450–461. [Google Scholar] [CrossRef]
- Lu, J.; Sun, G.; McNulty, S.; Amatya, D.M. A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 621–633. [Google Scholar] [CrossRef]
- Marasco, D.E.; Culligan, P.J.; McGillis, W.R. Evaluation of common evapotranspiration models based on measure-ments from two extensive green roofs in New York City. Ecol. Eng. 2015, 84, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K.; Kikuzawa, K. Geometrical similarity analysis of photosynthetic light response curves, light saturation and light use efficiency. Oecologia 2010, 164, 53–63. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Chen, J.M.; Gonsamo, A.; Luo, X.; Wang, R.; Liu, Y.; Liu, R. Changes in the Shadow: The Shifting Role of Shaded Leaves in Global Carbon and Water Cycles Under Climate Change. Geophys. Res. Lett. 2018, 45, 5052–5061. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Chen, J.; Zhu, Q.; Li, X.; Chen, M.; Sun, R.; Zhou, Y.; Deng, F.; Xie, D. LAI inversion algorithm based on directional reflectance kernels. J. Environ. Manag. 2007, 85, 638–648. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Wang, K.; Li, L.; Gui, S. Analysis of Global Land Surface Shortwave Broadband Albedo From Multiple Data Sources. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 296–305. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, X.; Wu, C.; Huang, W.; Gonsamo, A.; Huete, A.R.; Didan, K.; Tan, B.; Liu, X.; Zhang, B. Intercomparison and evaluation of spring phenology products using National Phenology Network and AmeriFlux observations in the contiguous United States. Agric. For. Meteorol. 2017, 242, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Demirel, M.C.; Mai, J.; Mendiguren, G.; Koch, J.; Samaniego, L.; Stisen, S. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model. Hydrol. Earth Syst. Sci. 2018, 22, 1299–1315. [Google Scholar] [CrossRef] [Green Version]
- Mutowo, G.; Mutanga, O.; Masocha, M. Evaluating the Applications of the Near-Infrared Region in Mapping Foliar N in the Miombo Woodlands. Remote Sens. 2018, 10, 505. [Google Scholar] [CrossRef] [Green Version]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Observ. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, M.; Gong, H.; Li, X.; Zhang, H.; Zhou, X. Increased tropical vegetation respiration is dually induced by El Niño and upper atmospheric warm anomalies. Sci. Total Environ. 2022, 818, 151719. [Google Scholar] [CrossRef]
- Smith, W.K.; Reed, S.C.; Cleveland, C.C.; Ballantyne, A.P.; Anderegg, W.R.L.; Wieder, W.R.; Liu, Y.Y.; Running, S.W. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Chang. 2016, 6, 306–310. [Google Scholar] [CrossRef]
- Madani, N.; Kimball, J.S.; Affleck, D.L.R.; Kattge, J.; Graham, J.; van Bodegom, P.M.; Reich, P.B.; Running, S.W. Improving ecosystem productivity modeling through spatially explicit estimation of optimal light use efficiency. J. Geophys. Res. Biogeosciences 2014, 119, 1755–1769. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, R.; Hu, J.; Fu, Y.; Duan, J.; Cheng, Y. Daily estimation of gross primary production under all sky using a light use efficiency model coupled with satellite passive microwave measurements. Remote Sens. Environ. 2021, 267, 112721. [Google Scholar] [CrossRef]
- Yuan, W.; Cai, W.; Nguy-Robertson, A.L.; Fang, H.; Suyker, A.E.; Chen, Y.; Dong, W.; Liu, S.; Zhang, H. Uncertainty in simulating gross primary production of cropland eco-system from satellite-based models. Agric. For. Meteorol. 2015, 207, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Loozen, Y.; Rebel, K.T.; Karssenberg, D.; Wassen, M.J.; Sardans, J.; Peñuelas, J.; De Jong, S.M. Remote sensing of canopy nitrogen at regional scale in Mediterranean forests using the spaceborne MERIS Terrestrial Chlorophyll Index. Biogeosciences 2018, 15, 2723–2742. [Google Scholar] [CrossRef] [Green Version]
- Baldocchi, D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—The state and future of the eddy covariance method. Glob. Chang. Biol. 2014, 20, 3600–3609. [Google Scholar] [CrossRef]
- Rousel, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite—1 Symposium, NASA SP-351, Washington, DC, USA, 10–15 December 1974; pp. 309–317. [Google Scholar]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Penuelas, J.; Frederic, B.; Filella, I. Semi-Empirical Indices to Assess Carotenoids/Chlorophyll-a Ratio from Leaf Spectral Reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef]
- Peng, Y.; Gitelson, A.A. Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric. For. Meteorol. 2011, 151, 1267–1276. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Metternicht, G. Vegetation indices derived from high-resolution airborne videography for precision crop management. Int. J. Remote Sens. 2003, 24, 2855–2877. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; Alessio, P. Angular Dependence of Maize and Sugar Beet VIs from Directional CHRIS/Proba Data; ESRIN: Frasati, Italy, 2006. [Google Scholar]
- Lichtenthaler, H.K.; Lang, M.; Sowinska, M.; Heisel, F.; Miehé, J.A. Detection of Vegetation Stress Via a New High Resolution Fluorescence Imaging System. J. Plant Physiol. 1996, 148, 599–612. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.V.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [Green Version]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, A.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef] [PubMed]
- Gamon, J.A.; Huemmrich, K.F.; Wong, C.Y.S.; Ensminger, I.; Garrity, S.; Hollinger, D.Y.; Noormets, A.; Peñuelas, J. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl. Acad. Sci. USA 2016, 113, 13087–13092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, K.; Kotsuka, C.; Fukuzawa, K.; Kayama, M.; Makoto, K.; Watanabe, T.; Nomura, M.; Fukazawa, T.; Takahashi, H.; Hojyo, H.; et al. Allometric Relationships and Carbon and Nitrogen Contents for Three Major Tree Species (Quercus crispula, Betula ermanii, and Abies sachalinensis) in Northern Hokkaido, Japan. Eurasian J. For. Res. 2010, 13, 1–7. [Google Scholar]
- Klopatek, J.M.; Barry, M.J.; Johnson, D.W. Potential canopy interception of nitrogen in the Pacific Northwest, USA. For. Ecol. Manag. 2006, 234, 344–354. [Google Scholar] [CrossRef]
Name | Model Type | Spatial Resolution | Temporal Resolution | References |
---|---|---|---|---|
MOD17 GPP | LUE model | 0.05° × 0.05° | 8 days | Zhao et al. [59] |
rEC-LUE GPP | 0.05° × 0.05° | 8 days | Zheng et al. [26] | |
VPM GPP | 0.05° × 0.05° | 8 days | Zhang et al. [60] | |
MuSyQ GPP | 0.05° × 0.05° | 8 days | Wang et al. [19] | |
GOSIF GPP | Data-driven model | 0.05° × 0.05° | 8 days | Li and Xiao [61] |
FLUXCOM GPP | 0.083° × 0.083° | 8 days | Jung et al. [62] | |
LPJ-GUESS GPP | Process-based model | 0.5° × 0.5° | monthly | Smith et al. [63] |
SDGVM GPP | 0.5° × 0.5° | monthly | Walker et al. [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Bai, J.; Sun, R.; Wang, Y.; Pan, Y.; McGuire, P.C.; Xiao, Z. Improved Global Gross Primary Productivity Estimation by Considering Canopy Nitrogen Concentrations and Multiple Environmental Factors. Remote Sens. 2023, 15, 698. https://doi.org/10.3390/rs15030698
Zhang H, Bai J, Sun R, Wang Y, Pan Y, McGuire PC, Xiao Z. Improved Global Gross Primary Productivity Estimation by Considering Canopy Nitrogen Concentrations and Multiple Environmental Factors. Remote Sensing. 2023; 15(3):698. https://doi.org/10.3390/rs15030698
Chicago/Turabian StyleZhang, Helin, Jia Bai, Rui Sun, Yan Wang, Yuhao Pan, Patrick C. McGuire, and Zhiqiang Xiao. 2023. "Improved Global Gross Primary Productivity Estimation by Considering Canopy Nitrogen Concentrations and Multiple Environmental Factors" Remote Sensing 15, no. 3: 698. https://doi.org/10.3390/rs15030698