Variability of Glacier Velocity and the Influencing Factors in the Muztag-Kongur Mountains, Eastern Pamir Plateau
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methods
3.1. Pre-Processing
3.2. Calculating Glacier Velocity
3.3. Post-Processing
4. Results
4.1. Accuracy Assessment
4.2. Spatial Distribution of Glacier Velocity
4.3. Change in Inter-Annual Glacier Velocity
4.4. Change in Intra-Annual Glacier Velocity
4.4.1. Kuksai Glacier
4.4.2. Kuokuosele Glacier
5. Discussion
6. Conclusions
- (1)
- The glacier velocity in the Muztag-Kongur Mountains has increased since 1990, and the peak velocity occurred in 1996/97. A transverse profile of two typical glaciers was used to analyze the monthly variation in glacier velocity during the year. The peaks of the monthly velocity of the two glaciers occurred in May and August. Since 1990, the inter-annual precipitation has increased, and the temperature changes slowed down from 2000 to 2013. The peak velocity occurred in 1996/97 due to increased precipitation in 1995. The fluctuations in the monthly velocities corresponded to the monthly precipitation trends. It has been speculated that high precipitation causes glacier mass accumulation; as the temperature rises, the glacier surface melts, and the velocity increases, so the precipitation has a more significant impact on glacier velocity than the temperature.
- (2)
- In addition to temperature and precipitation, the change in glacier velocity was moderately positively correlated with the glacier area size (R = 0.648, p = 0.001 < 0.05) and glacier length (R = 0.675, p = 0.001 < 0.05), and weakly correlated with the slope. There was a weak correlation between glacier velocity and the mean slope (R = 0.366, p = 0.072 > 0.05).
- (3)
- The glaciers had higher velocity and exhibited heterogeneity on the western slopes compared to the other slopes due to the westerly circulation, which causes the glaciers on the western slopes to become larger. Larger glaciers move faster, which explains the high velocities of the western slope glaciers.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stocker, T.; Boschung, J.; Qin, D.; Bex, V.; Midgley, P.; Tignor, M.; Plattner, G.-K.; Allen, S.; Xia, Y.; Nauels, A. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Xie, Z.; Liu, C. Introduction to Glaciology; Shanghai Popular Science Press: Shanghai, China, 2010. [Google Scholar]
- Zhao, J.; Zhang, Z.; Xu, Y.; Wang, R.; Jiang, Z. Interannual and seasonal variation of flow velocity in Koxkar BaXi Glacier from 2014 to 2020. J. Glaciol. Geocryol. 2021, 13, 774. [Google Scholar]
- Zhang, Z.; Huang, D.; Lu, Y.; Zhang, S. A Landsat-based dataset of glacier velocity in Eastern Pamir from 1989 to 2020. China Sci. Data. 2021, 6, 170–181. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Guo, H.; Liu, G.; Fu, W. Monitoring Muztagh Kuksai Glacier surface velocity with L-band SAR data in southwestern Xinjiang, China. Environ. Earth Sci. 2013, 70, 3175–3184. [Google Scholar] [CrossRef]
- Yasuda, T.; Furuya, M. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet. J. Geophys. Res. Earth Surf. 2015, 120, 2393–2405. [Google Scholar] [CrossRef] [Green Version]
- Karimi, N.; Farokhnia, A.; Shishangosht, S.; Elmi, M.; Eftekhari, M.; Ghalkhani, H. Elevation changes of Alamkouh Glacier in Iran since 1955, based on remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 45–58. [Google Scholar] [CrossRef]
- Guan, W.; Cao, B.; Pan, B. Research of glacier flow velocity: Current situation and prospects. J. Glaciol. Geocryol. 2020, 42, 1101–1114. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Z.; Guo, W. Estimation and analysis of the surface velocity field of mountain glaciers in Muztagata using satellite SAR data. Environ. Earth Sci. 2013, 71, 3581–3592. [Google Scholar] [CrossRef]
- Wang, Q. Application of DInSAR and Offset Tracking Technology in Velocity Monitoring of Mountain Glaciers; China University of Geosciences: Beijing, China, 2018. [Google Scholar]
- Berthier, E.; Vadon, H.; Baratoux, D.; Arnaud, Y.; Vincent, C.; Feigl, K.L.; Remy, F.; Legresy, B. Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sens. Environ. 2005, 95, 14–28. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef]
- Treichler, D.; Kääb, A.; Salzmann, N.; Xu, C. Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes. Cryosphere 2019, 13, 2977–3005. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K. The Karakoram anomaly? Glacier expansion and the “elevation effect” Karakoram Himalaya. Mt. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Lv, M.; Quincey, D.; Guo, H.; King, O.; Liu, G.; Yan, S.; Lu, X.; Ruan, Z. Examining geodetic glacier mass balance in the eastern Pamir transition zone. J. Glaciol. 2020, 66, 927–937. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Wei, J.; Xu, J.; Guo, W.; Bao, W.; Jiang, Z. Mass Change of Glaciers in Muztag Ata-Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as Derived from Remote Sensing Data. PLoS ONE 2016, 11, e0147327. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, J.; Liu, S.; Guo, W.; Wei, J.; Feng, T. Glacier changes since the early 1960s, eastern Pamir, China. J. Mt. Sci. 2016, 13, 276–291. [Google Scholar] [CrossRef]
- Dehecq, A.; Gourmelen, N.; Gardner, A.S.; Brun, F.; Goldberg, D.; Nienow, P.W.; Berthier, E.; Vincent, C.; Wagnon, P.; Trouvé, E. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 2019, 12, 22–27. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, S.; Long, S.; Lin, J.; Wang, X.; Li, J.; Xu, J.; Wei, J.; Bao, W. Analysis of the glacier dynamics features in Kongur Mountain based on SAR technology and DEMs. J. Glaciol. Geocryol. 2014, 36, 286–295. [Google Scholar] [CrossRef]
- Yang, H.; Yan, S.; Liu, G.; Ruan, Z. Fluctuations and movements of the Kuksai Glacier, western China, derived from Landsat image sequences. J. Appl. Remote Sens. 2013, 8, 084599. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Li, Y.; Ruan, Z.; Lv, M.; Liu, G.; Deng, K. Wavelet-Based Topographic Effect Compensation in Accurate Mountain Glacier Velocity Extraction: A Case Study of the Muztagh Ata Region, Eastern Pamir. Remote Sens. 2017, 9, 697. [Google Scholar] [CrossRef]
- Lv, M.; Guo, H.; Lu, X.; Liu, G.; Yan, S.; Ruan, Z.; Ding, Y.; Quincey, D. Characterizing the behaviour of surge- and non-surge-type glaciers in the Kingata Mountains, eastern Pamir, from 1999 to 2016. Cryosphere 2019, 13, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, D.; Liu, S.; Ding, Y.; Gou, W.; Xu, B.; Xu, J.; Jiang, Z. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing. J. Glaciol. 2016, 62, 944–953. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Iqbal, J.; Li, L.-J.; Zhou, Z.-K. Characteristics of mountain glacier surge hazard: Learning from a surge event in NE Pamir, China. J. Mt. Sci. 2019, 16, 1515–1533. [Google Scholar] [CrossRef]
- Zhang, Z.; Tao, P.; Liu, S.; Zhang, S.; Huang, D.; Hu, K.; Lu, Y. What controls the surging of Karayaylak glacier in eastern Pamir? New insights from remote sensing data. J. Hydrol. 2022, 607, 127577. [Google Scholar] [CrossRef]
- Zhang, Z. Mass changes of glaciers in eastern Pamir using remote sensing and GIS. Acta Geod. Cartogr. Sin. 2021, 50, 992. [Google Scholar] [CrossRef]
- Liu, S.; Yao, X.; Guo, W.; Xu, J. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 13–16. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Z.; Liu, S.; Zhang, Z. Dataset of glacier surface motion along KKH during 2015–2017. China Sci. Data. 2018, 9, 72–81. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wei, J.; Ding, L. Monitoring recent surging of the Yulinchuan glacier on north slopes of Muztag Range by remote sensing. J. Glaciol. Geocryol. 2012, 34, 765–774. [Google Scholar] [CrossRef]
- Sun, Y. Spatial-Temporal Characteristics of Changes in Glacier Velocity at the Karakoram in the Past 30 Years and Its Influence Factors; Institute of Geodesy and Geophysics, Chinese Academy of Sciences: Wuhan, China, 2018. [Google Scholar]
- Sun, Y.; Jiang, L.; Liu, L.; Sun, Y.; Wang, H. Spatial-Temporal Characteristics of Glacier Velocity in the Central Karakoram Revealed with 1999–2003 Landsat-7 ETM+ Pan Images. Remote Sens. 2017, 9, 1064. [Google Scholar] [CrossRef] [Green Version]
- Sam, L.; Bhardwaj, A.; Kumar, R.; Buchroithner, M.F.; Martín-Torres, F.J. Heterogeneity in topographic control on velocities of Western Himalayan glaciers. Sci. Rep. 2018, 8, 12843. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.S.; Fahnstock, M.; Scambos, T. Update to Time of Data Download: ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities; National Snow and Ice Data Center: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Scambos, T.; Fahnstock, M.; Ligtenberg, S.; van den Broeke, M.; Nilsson, J. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 2018, 12, 521–547. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jiang, Z.; Liu, S.; Shangguan, D.; Zhang, Y. Characteristic of Glaciers’ Movement Along Karakoram Highway. Remote Sens. Tech Applic. 2019, 34, 412–423. [Google Scholar] [CrossRef]
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.; Gardner, A.; Hagen, J.-O.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space; RGI Consortium: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Ayoub, F.; Leprince, S.; Avouac, J. User’s Guide to Cosi-Corr; California Institute of Technology: Pasadena, CA, USA, 2015. [Google Scholar]
- Yao, X.; Liu, S.; Zhu, Y.; Gong, P.; An, L.; Li, X. Design and implementation of an automatic method for deriving glacier centerlines based on GIS. J. Glaciol. Geocryol. 2015, 37, 1563–1570. [Google Scholar] [CrossRef]
- Zhang, D.; Yao, X.; Duan, H.; Liu, S.; Guo, W.; Sun, M.; Li, D. A new automatic approach for extracting glacier centerlines based on Euclidean allocation. Cryosphere 2021, 15, 1955–1973. [Google Scholar] [CrossRef]
- Bolch, T.; Pieczonka, T.; Benn, D.I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Koblet, T.; Gärtner-Roer, I.; Zemp, M.; Jansson, P.; Thee, P.; Haeberli, W.; Holmlund, P. Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99)—Part 1 Determination of length, area, and volume changes. Cryosphere 2010, 4, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Holzer, N.; Vijay, S.; Yao, T.; Xu, B.; Buchroithner, M.; Bolch, T. Four decades of glacier variations at Muztagh Ata (eastern Pamir): A multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere 2015, 9, 2071–2088. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Sheng, Y.; Wang, J.; Ke, L.; Madson, A.; Nie, Y. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. Geomorphology 2016, 280, 30–38. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China. Acta Geogr. Sin. 2017, 72, 1606–1620. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Aryal, R. Climate change in Nepal and its impact on Himalayan glaciers. Reg. Environ. Chang. 2010, 11, 65–77. [Google Scholar] [CrossRef]
- Rounce, D.R.; McKinney, D.C. Thermal resistances in the Everest Area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model. Cryosphere Discuss. 2014, 8, 887–918. [Google Scholar] [CrossRef]
- Ogilvie, I.H. The effect of superglacial débris on the advance and retreat of some Canadian glaciers. J. Geol. 1904, 12, 722–743. [Google Scholar] [CrossRef]
- Seong, Y.B.; Owen, L.A.; Yi, C.; Finkel, R.C.; Schoenbohm, L. Geomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan. Geomorphology 2009, 103, 227–250. [Google Scholar] [CrossRef]
Data Type | Landsat | ASTER GDEM V2 | ITS_LIVE | KKH | |||
---|---|---|---|---|---|---|---|
Parameter | 5 | 7 | 8 | ||||
Spatial Resolution/m | 30 | 15 | 15 | 30 | 120 | 100 | |
Acquisition Period | 1989–1999 | 1999–2000 | 2013–2021 | 2011 | 2003–2012 | 2015–2016 | |
Coverage | Path 149, Row 33 Path 150, Row 33 | N37E073-N39E075 | / | Path 27 Frame 121 Path 27 Frame 117 Path 27 Frame 112 | |||
Sensor | TM | ETM+ | OLI | / | / | / | |
Purposes | Inter-annual glacier velocity for 1990–2000 and 2013–2021 | Glacier length, centerline | Inter-annual glacial velocity from 2000 to 2013 | Monthly average velocity during 2015–2016 |
No. | Glacier | Aspect | Area/ (km2) | Length/ (km) | Slope/ (°) | Debris Cover/ (%) | Median Elevation/ (m) | 2013–2021 Average Velocity/ (m·d−1) |
---|---|---|---|---|---|---|---|---|
1 | NE | 11.56 | 8.85 | 32.85 | 12.13 | 5322.2 | 0.014535 | |
2 | Karayaylak | NE | 115.16 | 18.00 | 31.92 | 22.26 | 4558.6 | 0.046191 |
3 | NE | 9.93 | 8.56 | 29.70 | 25.67 | 4519.4 | 0.027377 | |
4 | N | 13.90 | 6.90 | 30.80 | 14.39 | 4749.2 | 0.030915 | |
5 | E | 9.35 | 7.90 | 24.32 | 26.67 | 4606.8 | 0.029064 | |
6 | W | 5.57 | 6.72 | 27.01 | 11.66 | 5887.2 | 0.026799 | |
7 | NE | 7.78 | 7.85 | 27.82 | 0.00 | 6118.1 | 0.031815 | |
8 | SW | 9.03 | 9.35 | 24.91 | 0.00 | 6121.0 | 0.018302 | |
9 | W | 6.90 | 6.92 | 29.79 | 5.24 | 6034.5 | 0.030153 | |
10 | SW | 17.21 | 8.79 | 30.02 | 13.26 | 5716.4 | 0.035782 | |
11 | Guldauban | SW | 14.09 | 8.51 | 31.66 | 0.63 | 5797.8 | 0.041576 |
12 | SW | 7.16 | 7.50 | 28.19 | 0.00 | 5484.9 | 0.051413 | |
13 | SW | 44.79 | 14.74 | 24.05 | 0.00 | 5543.6 | 0.049974 | |
14 | W | 10.36 | 8.53 | 28.44 | 11.66 | 5613.2 | 0.065656 | |
15 | W | 10.17 | 6.46 | 29.75 | 4.26 | 5413.3 | 0.024239 | |
16 | NW | 8.31 | 4.98 | 25.54 | 2.63 | 5333.6 | 0.027900 | |
17 | SW | 22.95 | 11.00 | 23.02 | 14.55 | 5165.9 | 0.030590 | |
18 | NW | 5.02 | 4.42 | 22.75 | 15.84 | 5117.3 | 0.014578 | |
19 | SE | 108.75 | 21.33 | 27.72 | 25.15 | 4640.9 | 0.049217 | |
20 | E | 26.47 | 13.89 | 27.79 | 23.69 | 4858.1 | 0.028345 | |
21 | E | 8.44 | 6.33 | 23.45 | 35.25 | 4823.7 | 0.015233 | |
22 | NE | 6.88 | 4.92 | 23.60 | 40.63 | 4682.2 | 0.015129 | |
23 | NE | 7.88 | 12.29 | 29.70 | 2.80 | 5057.3 | 0.044083 | |
24 | NE | 12.76 | 9.83 | 23.02 | 17.43 | 4951.4 | 0.023283 | |
25 | Kuksai | E | 77.73 | 21.10 | 24.69 | 31.55 | 4913.5 | 0.059232 |
26 | SE | 6.54 | 4.85 | 14.35 | 0.00 | 5148.4 | 0.013641 | |
27 | N | 9.16 | 14.56 | 31.53 | 23.00 | 5439.0 | 0.020103 | |
28 | Kematulega | NW | 9.25 | 9.68 | 29.69 | 0.00 | 6059.4 | 0.040873 |
29 | W | 7.25 | 17.00 | 24.99 | 0.00 | 6597.1 | 0.053000 | |
30 | Kalaxiong | W | 19.92 | 9.75 | 29.62 | 9.78 | 5806.5 | 0.046551 |
31 | W | 5.77 | 8.23 | 24.05 | 0.00 | 5625.9 | 0.048126 | |
32 | Kaskulak | W | 15.20 | 10.90 | 31.64 | 0.98 | 5954.5 | 0.023581 |
33 | SW | 6.66 | 6.36 | 31.61 | 0.00 | 5783.7 | / | |
34 | Kuokluosele | SW | 19.89 | 9.42 | 25.92 | 7.49 | 5474.1 | / |
35 | W | 7.95 | 7.72 | 29.66 | 17.70 | 5363.9 | / | |
36 | E | 5.23 | 5.86 | 28.21 | 0.00 | 5093.3 | / | |
37 | NE | 9.90 | 6.75 | 17.57 | 0.00 | 5010.5 | 0.019524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Zhang, Z.; Jiang, L.; Zhang, R.; Lu, Y.; Shahtahmassebi, A.; Huang, X. Variability of Glacier Velocity and the Influencing Factors in the Muztag-Kongur Mountains, Eastern Pamir Plateau. Remote Sens. 2023, 15, 620. https://doi.org/10.3390/rs15030620
Huang D, Zhang Z, Jiang L, Zhang R, Lu Y, Shahtahmassebi A, Huang X. Variability of Glacier Velocity and the Influencing Factors in the Muztag-Kongur Mountains, Eastern Pamir Plateau. Remote Sensing. 2023; 15(3):620. https://doi.org/10.3390/rs15030620
Chicago/Turabian StyleHuang, Danni, Zhen Zhang, Ling Jiang, Rui Zhang, Yijie Lu, AmirReza Shahtahmassebi, and Xiaoli Huang. 2023. "Variability of Glacier Velocity and the Influencing Factors in the Muztag-Kongur Mountains, Eastern Pamir Plateau" Remote Sensing 15, no. 3: 620. https://doi.org/10.3390/rs15030620
APA StyleHuang, D., Zhang, Z., Jiang, L., Zhang, R., Lu, Y., Shahtahmassebi, A., & Huang, X. (2023). Variability of Glacier Velocity and the Influencing Factors in the Muztag-Kongur Mountains, Eastern Pamir Plateau. Remote Sensing, 15(3), 620. https://doi.org/10.3390/rs15030620