SAR Image Classification Using Markov Random Fields with Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Superpixel Construction
2.2. Initialization by Convolutional Neural Network
2.3. Region-Level Markov Random Fields
2.4. Construction of Probability Field
3. Experimental Study
3.1. Experimental Datasets
3.2. Experimental Setup and Evaluation Criteria
3.3. Performance Analysis on Synthetic SAR Image
3.4. Performance Analysis on Flevoland Image
3.5. Performance Analysis on San Francisco Bay Image
3.6. Performance Analysis on Lillestroem Image
3.7. Demonstrating the Effect of the Probability Field
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alberto, M.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar]
- Simard, M.; DeGrandi, G.; Thomson, K.P.; Benie, G.B. Analysis of speckle noise contribution on wavelet decomposition of SAR images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1953–1962. [Google Scholar] [CrossRef]
- Melgani, F.; Melgani, S.B. A Markov random field approach to spatiotemporal contextual image classification. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2478–2487. [Google Scholar] [CrossRef] [Green Version]
- Trianni, G.; Gamba, P. Boundary-adaptive MRF classification of optical very high resolution images. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; IEEE: Piscataway, NJ, USA, 2007. [Google Scholar]
- Deng, H.; Clausi, D.A. Gaussian MRF rotation-invariant features for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 951–955. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, K.; Yu, W.; Su, Y. Region-Based Classification of Polarimetric SAR Images Using Wishart MRF. IEEE Geosci. Remote Sens. Lett. 2008, 5, 668–672. [Google Scholar] [CrossRef]
- Li, W.; Prasad, S.; Fowler, J.E. Hyperspectral Image Classification Using Gaussian Mixture Models and Markov Random Fields. IEEE Geosci. Remote Sens. Lett. 2014, 11, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Christian, S.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Postadjian, T.; Le Bris, A.; Mallet, C.; Sahbi, H. Superpixel partitioning of very high resolution satellite images for large-scale classification perspec-tives with deep convolutional neural networks. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Olivier, C.; Haffner, P.; Vapnik, N.V. Support vector machines for histogram-based image classifica-tion. IEEE Trans. Neural. Netw. 1999, 10, 1055–1064. [Google Scholar]
- McNairn, H.; Kross, A.; Lapen, D.; Caves, R. Shang. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 252–259. [Google Scholar]
- Rudolf, R.; Frost, A.; Lehner, S. A neural network-based classification for sea ice types on X-band SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3672–3680. [Google Scholar]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.-Q. Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Xu, F.; Jin, Y.-Q. Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1935–1939. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Y.; Liu, H.; Zuo, Q.; He, J. Feature-Fused SAR Target Discrimination Using Multiple Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1695–1699. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension re-duction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Shang, R.; He, J.; Wang, J.; Xu, K.; Jiao, L.; Stolkin, R. Dense connection and depthwise separable convolution based CNN for polarimetric SAR image clas-sification. Knowl.-Based Syst. 2020, 194, 105542. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Zhao, X.; Hong, D.; Cai, W.; Yu, C.; Yang, N.; Cai, W. Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification. Neurocomputing 2022, 501, 246–257. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anjan, S.; Biswas, M.K.; Sharma, K.M.S. A simple unsupervised MRF model based image segmentation approach. IEEE Trans. Image Process 2000, 9, 801–812. [Google Scholar]
- Yang, X.; Clausi, D.A. SAR sea ice image segmentation using an edge-preserving region-based MRF. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Zheng, C.; Hu, Y.; Wang, L.; Qin, Q. Region-based MRF model with optimized initial regions for image segmentation. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Bi, H.; Yao, J.; Wei, Z.; Hong, D.; Chanussot, J. PolSAR Image Classification Based on Robust Low-Rank Feature Extraction and Markov Random Field. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, F.; Jiao, L.; Zhao, P.; Zhang, L. SAR Image segmentation based on convolutional-wavelet neural network and markov random field. Pattern Recognit. 2017, 64, 255–267. [Google Scholar] [CrossRef]
- Zhang, A.; Yang, X.; Fang, S.; Ai, J. Region level SAR image classification using deep features and spatial constraints. ISPRS J. Photogramm. Remote Sens. 2020, 163, 36–48. [Google Scholar] [CrossRef]
- Samat, A.; Gamba, P.; Du, P.; Luo, J. Active extreme learning machines for quad-polarimetric SAR imagery classification. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 305–319. [Google Scholar] [CrossRef]
- Geng, J.; Fan, J.; Wang, H.; Ma, X.; Li, B.; Chen, F. High-Resolution SAR Image Classification via Deep Convolutional Autoencoders. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2351–2355. [Google Scholar] [CrossRef]
Image | San Francisco Bay | Flevoland | Lillestroem |
---|---|---|---|
Sensor | Radarsat-2 SAR | Radarsat-2 SAR | TerraSAR-X |
Polarization | HH | HH | HH |
Resolution (m) | 10 | 10 | 0.38 |
Date | 2015 | 2017 | 2013 |
Size | 1101 × 1161 | 1000 × 1400 | 3580 × 2250 |
Coordinates | 37°47′N | 52°22′N | 37°47′N |
122°28′W | 5°27′E | 118°54′E | |
Total Categories | five | five | five |
Layer | Strategy | Kernel Size | Feature Maps |
---|---|---|---|
The first convolution layer | RELU | 4 × 4 × 20 | 24 × 24 × 20 |
The first pooling layer | max-pooling | 12 × 12 × 20 | |
The second convolution layer | RELU | 5 × 5 × 20 | 8 × 8 × 20 |
The second pooling layer | max-pooling | 4 × 4 × 20 | |
The fully connected layer | softmax | 320 × 1 |
Class | CNN | CNN-MRF | CNN-SP | RCC-MRF | Proposed |
---|---|---|---|---|---|
Class1 | 92.98% | 97.95% | 91.31% | 91.20% | 90.98% |
Class2 | 97.43% | 99.20% | 95.79% | 93.62% | 96.30% |
Class3 | 96.17% | 97.86% | 93.63% | 93.02% | 93.51% |
Class4 | 96.43% | 98.21% | 96.26% | 96.65% | 96.66% |
Class5 | 96.82% | 91.84% | 97.43% | 96.47% | 97.67% |
Class6 | 70.86% | 87.89% | 87.50% | 88.99% | 93.96% |
Class7 | 84.21% | 78.13% | 91.17% | 93.23% | 95.81% |
Class8 | 94.91% | 94.44% | 97.02% | 98.25% | 98.94% |
OA | 90.74% | 93.01% | 93.39% | 93.60% | 95.12% |
89.25% | 92.01% | 92.42% | 93.05% | 94.73% |
Class | CNN | CNN-MRF | CNN-SP | RCC-MRF | Proposed |
---|---|---|---|---|---|
Forest | 88.76% | 95.18% | 96.86% | 97.83% | 97.59% |
Farmland1 | 97.36% | 97.36% | 97.36% | 98.13% | 97.31% |
Farmland2 | 35.81% | 38.82% | 26.43% | 24.22% | 31.73% |
Urban | 82.59% | 84.54% | 94.96% | 99.07% | 95.92% |
Water | 94.58% | 97.26% | 99.24% | 99.59% | 99.29% |
OA | 85.52% | 88.55% | 88.90% | 89.56% | 89.77% |
80.40% | 84.41% | 85.97% | 85.90% | 86.03% |
Class | CNN | CNN-MRF | CNN-SP | RCC-MRF | Proposed |
---|---|---|---|---|---|
Build-up 1 | 83.52% | 89.09% | 91.44% | 92.32% | 94.40% |
Build-up 2 | 78.56% | 85.65% | 84.29% | 90.00% | 87.92% |
Water | 91.62% | 93.34% | 94.67% | 95.56% | 95.58% |
Vegetation | 81.85% | 89.30% | 85.97% | 88.34% | 88.20% |
Build-up 3 | 52.42% | 42.35% | 62.36% | 60.06% | 68.68% |
OA | 78.69% | 82.19% | 84.62% | 86.45% | 87.69% |
73.00% | 77.27% | 80.50% | 82.78% | 84.38% |
Class | CNN | CNN-MRF | CNN-SP | RCC-MRF | Proposed |
---|---|---|---|---|---|
River | 37.88% | 39.85% | 43.84% | 48.96% | 53.96% |
Forest | 77.09% | 81.97% | 81.04% | 75.09% | 85.08% |
Grassland | 66.30% | 75.93% | 70.52% | 73.59% | 77.36% |
Building | 22.02% | 00.00% | 08.59% | 29.53% | 22.10% |
Road | 04.82% | 01.73% | 00.00% | 00.00% | 00.00% |
OA | 59.97% | 64.51% | 63.30% | 64.76% | 70.08% |
41.06% | 46.56% | 47.20% | 48.29% | 56.63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yang, X.; Zhang, C.; Wang, J. SAR Image Classification Using Markov Random Fields with Deep Learning. Remote Sens. 2023, 15, 617. https://doi.org/10.3390/rs15030617
Yang X, Yang X, Zhang C, Wang J. SAR Image Classification Using Markov Random Fields with Deep Learning. Remote Sensing. 2023; 15(3):617. https://doi.org/10.3390/rs15030617
Chicago/Turabian StyleYang, Xiangyu, Xuezhi Yang, Chunju Zhang, and Jun Wang. 2023. "SAR Image Classification Using Markov Random Fields with Deep Learning" Remote Sensing 15, no. 3: 617. https://doi.org/10.3390/rs15030617
APA StyleYang, X., Yang, X., Zhang, C., & Wang, J. (2023). SAR Image Classification Using Markov Random Fields with Deep Learning. Remote Sensing, 15(3), 617. https://doi.org/10.3390/rs15030617