Quantifying the Impact of Hurricane Harvey on Beach−Dune Systems of the Central Texas Coast and Monitoring Their Changes Using UAV Photogrammetry
Abstract
:1. Introduction
- Impacted dunes migrate landward via rear-slope accretion and recover by vertical aggradation;
- Erosion and recovery processes and their levels are controlled by the geomorphology (i.e., height, width, and geometry) of beach−foredune complexes.
Description of Barrier-Island Dune Systems
2. Materials and Methods
2.1. Data and Workflow
2.2. Shoreline Change Analysis
2.3. Elevation Differencing
2.4. UAV and GPS data Collection and Processing
3. Results
3.1. Regional Changes in Barrier Islands between 2016 and 2018
3.2. Geomorphologies of Beach-Foredune Complexes
4. Discussion
4.1. Local Changes in Dunes and Beaches between 2018 and 2022
4.2. Volumetric Analysis
4.3. Factors Influencing the Erosion and Recovery of Beach−Dune Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paine, J.G.; Caudle, T.L.; Andrews, J.R. Shoreline and Sand Storage Dynamics from Annual Airborne LIDAR Surveys, Texas Gulf Coast. J. Coast. Res. 2017, 33, 487–506. [Google Scholar] [CrossRef]
- Morton, R.A.; Sallenger, A.H. Morphological Impacts of Extreme Storms on Sandy Beaches and Barriers. J. Coast. Res. 2003, 19, 560–573. [Google Scholar]
- Wang, P.; Kirby, J.H.; Haber, J.D.; Horwitz, M.H.; Knorr, P.O.; Krock, J.R. Morphological and Sedimentological Impacts of Hurricane Ivan and Immediate Poststorm Beach Recovery along the Northwestern Florida Barrier-Island Coasts. J. Coast. Res. 2006, 22, 1382–1402. [Google Scholar] [CrossRef]
- Hayes, M.O. Hurricanes as Geological Agents: Case Studies of Hurricanes Carla, 1961, and Cindy, 1963; The University of Texas at Austin. Bureau of Economic Geology: Austin, TX, USA, 1967. [Google Scholar]
- Morton, R.A.; Paine, J.G. Beach and Vegetation-Line Changes at Galveston Island, Texas: Erosion, Deposition, and Recovery from Hurricane Alicia; Austin, Texas; The University of Texas at Austin. Bureau of Economic Geology: Austin, TX, USA, 1985. [Google Scholar]
- Sherman, D.J.; Hales, B.U.; Potts, M.K.; Ellis, J.T.; Liu, H.; Houser, C. Impacts of Hurricane Ike on the Beaches of the Bolivar Peninsula, TX, USA. Geomorphology 2013, 199, 62–81. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing Destructiveness of Tropical Cyclones over the Past 30 Years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.E.; Emanuel, K.A. Atlantic Hurricane Trends Linked to Climate Change. Eos 2006, 87, 233–241. [Google Scholar] [CrossRef]
- Holland, G.J.; Webster, P.J. Heightened Tropical Cyclone Activity in the North Atlantic: Natural Variability or Climate Trend? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2695–2716. [Google Scholar] [CrossRef] [PubMed]
- NOAA. Historical Hurricane Tracks. Available online: https://coast.noaa.gov/hurricanes/#map=4/32/-80/ (accessed on 30 June 2022).
- Stockdon, H.F.; Doran, K.J.; Thompson, D.M.; Sopkin, K.L.; Plant, N.G.; Sallenger, A.H. National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico. 2012. Available online: https://pubs.usgs.gov/of/2012/1084/ (accessed on 20 June 2022).
- Bird, E. Coastal Geomorphology: An Introduction, 2nd ed.; Wiley: West Sussex, UK, 2008. [Google Scholar]
- Anthony, E.J. Encyclopedia of Coastal Science; Schwartz, M.L., Ed.; Springer: Dordrecht, The Netherlands, 2005; ISBN 9781402019036. [Google Scholar]
- Houser, C.; Hapke, C.; Hamilton, S. Controls on Coastal Dune Morphology, Shoreline Erosion and Barrier Island Response to Extreme Storms. Geomorphology 2008, 100, 223–240. [Google Scholar] [CrossRef]
- Taylor, E.B.; Gibeaut, J.C.; Yoskowitz, D.W.; Starek, M.J. Assessment and Monetary Valuation of the Storm Protection Function of Beaches and Foredunes on the Texas Coast. J. Coast. Res. 2015, 31, 1205–1216. [Google Scholar] [CrossRef]
- Caudle, T.L.; Paine, J.G.; Andrews, J.R.; Saylam, K. Beach, Dune, and Nearshore Analysis of Southern Texas Gulf Coast Using Chiroptera LIDAR and Imaging System. J. Coast. Res. 2019, 35, 251–268. [Google Scholar] [CrossRef]
- Zhou, G.; Xie, M. Coastal 3-D Morphological Change Analysis Using LiDAR Series Data: A Case Study of Assateague Island National Seashore. J. Coast. Res. 2009, 25, 435–447. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Sallenger, A.H.; List, J.H.; Holman, R.A. Estimation of Shoreline Position and Change Using Airborne Topographic Lidar Data. J. Coast. Res. 2002, 18, 502–513. [Google Scholar]
- Sallenger, A.H.; Krabill, W.B.; Swift, R.N.; Brock, J.; List, J.; Hansen, M.; Holman, R.A.; Manizade, S.; Sontag, J.; Meredith, A.; et al. Evaluation of Airborne Topographic Lidar for Quantifying Beach Changes. J. Coast. Res. 2003, 19, 125–133. [Google Scholar]
- Zhang, K.; Whitman, D.; Leatherman, S.; Robertson, W. Quantification of Beach Changes Caused by Hurricane Floyd along Florida’s Atlantic Coast Using Airborne Laser Surveys. J. Coast. Res. 2005, 21, 123–134. [Google Scholar] [CrossRef]
- Robertson, V.W.; Zhang, K.; Whitman, D. Hurricane-Induced Beach Change Derived from Airborne Laser Measurements near Panama City, Florida. Mar. Geol. 2007, 237, 191–205. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Doran, K.S.; Sallenger, A.H. Extraction of Lidar-Based Dune-Crest Elevations for Use in Examining the Vulnerability of Beaches to Inundation during Hurricanes. J. Coast. Res. 2009, 59–65. [Google Scholar] [CrossRef]
- Pye, K.; Blott, S.J. Assessment of Beach and Dune Erosion and Accretion Using LiDAR: Impact of the Stormy 2013-14 Winter and Longer Term Trends on the Sefton Coast, UK. Geomorphology 2016, 266, 146–167. [Google Scholar] [CrossRef]
- Woolard, J.W.; Colby, J.D. Spatial Characterization, Resolution, and Volumetric Change of Coastal Dunes Using Airborne LIDAR: Cape Hatteras, North Carolina. Geomorphology 2002, 48, 269–287. [Google Scholar] [CrossRef]
- Mitasova, H.; Drake, T.G.; Bernstein, D.; Harmon, R.S. Quantifying Rapid Changes in Coastal Topography Using Modern Mapping Techniques and Geographic Information System. Environ. Eng. Geosci. 2004, 10, 1–11. [Google Scholar] [CrossRef]
- Saye, S.E.; van der Wal, D.; Pye, K.; Blott, S.J. Beach-Dune Morphological Relationships and Erosion/Accretion: An Investigation at Five Sites in England and Wales Using LIDAR Data. Geomorphology 2005, 72, 128–155. [Google Scholar] [CrossRef]
- Scarelli, F.M.; Sistilli, F.; Fabbri, S.; Cantelli, L.; Barboza, E.G.; Gabbianelli, G. Seasonal Dune and Beach Monitoring Using Photogrammetry from UAV Surveys to Apply in the ICZM on the Ravenna Coast (Emilia-Romagna, Italy). Remote Sens. Appl. 2017, 7, 27–39. [Google Scholar] [CrossRef]
- Laporte-Fauret, Q.; Marieu, V.; Castelle, B.; Michalet, R.; Bujan, S.; Rosebery, D. Low-Cost UAV for High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry. J. Mar. Sci. Eng. 2019, 7, 63. [Google Scholar] [CrossRef]
- Pagán, J.I.; Bañón, L.; López, I.; Bañón, C.; Aragonés, L. Monitoring the Dune-Beach System of Guardamar Del Segura (Spain) Using UAV, SfM and GIS Techniques. Sci. Total Environ. 2019, 687, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Rojas, S.S.; Khan, S.D.; Shahtakhtinskiy, A. Impact of Hurricane Harvey on the Upper Texas Coast: Using Airborne Lidar Data Sets with UAV-Derived Topographic Data to Monitor Change and Track Recovery. Remote Sens. 2022, 14, 5357. [Google Scholar] [CrossRef]
- Blake, E.S.; Zelinsky, D.A. Hurricane Harvey (AL092017); National Hurricane Center: Miami, FL, USA, 2018.
- National Hurricane Center. Available online: https://www.nhc.noaa.gov/ (accessed on 23 June 2022).
- Gibeaut, J.; del Angel, D.; Lord, A.; Lupher, B.; Lumb, L.; Anderson, M. Mustang and North Padre Island Beach Maintenance Impacts and Recommendations for Best Management Practices: A Report to the General Land Office under GLO Contract No. 14-246-000-8341; Texas A&M University—Corpus Christi, Harte Research Institute for Gulf of Mexico Studies: Corpus Christi, TX, USA, 2015. [Google Scholar]
- Gingras, M.A. Small-Scale Morphodynamics of Maintained and Unmaintained Beaches on Mustang Island, Texas. Master’s Thesis, Texas A&M University—Corpus Christi, Corpus Christi, TX, USA, 2017. [Google Scholar]
- Paine, J.G.; White, W.A.; Smyth, R.C.; Andrews, J.R.; Gibeaut, J.C. Mapping Coastal Environments with Lidar and EM on Mustang Island, Texas, U.S. Lead. Edge 2004, 23, 894–898. [Google Scholar] [CrossRef]
- Hesp, P. Foredunes and Blowouts: Initiation, Geomorphology and Dynamics. Geomorphology 2002, 48, 245–268. [Google Scholar] [CrossRef]
- Hesp, P.A.; Shroder, J. Coastal Dunes. In Treatise on Geomorphology; Shroder, J., Ed.; Elsevier: London, UK, 2013; Volume 11, pp. 328–355. [Google Scholar]
- ArcGIS Pro, version 2.9.2; Esri Inc.: Redlands, CA, USA, 2021.
- Gibeaut, J.C.; Caudle, T.L. Defining and Mapping Foredunes, the Line of Vegetation, and Shorelines along the Texas Gulf Coast; Final Report Prepared for the Texas General Land Office, Contract No. 07-005-22; The University of Texas at Austin. Bureau of Economic Geology: Austin, TX, USA, 2009. [Google Scholar]
- Paine, J.G.; Caudle, T.; Andrews, J.R. Shoreline Movement and Beach and Dune Volumetrics along the Texas Gulf Coast, 1930s to 2019; Report Prepared for General Land Office under Contract No. 16-201-000; The University of Texas at Austin. Bureau of Economic Geology: Austin, TX, USA, 2021. [Google Scholar]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.1 User Guide; Open-File Report 2021–1091; U.S. Geological Survey: Reston, VA, USA, 2021.
- ArcGIS Drone2Map, version 2.3; Esri Inc.: Redlands, CA, USA, 2020.
- Feagin, R.A.; Furman, M.; Salgado, K.; Martinez, M.L.; Innocenti, R.A.; Eubanks, K.; Figlus, J.; Huff, T.P.; Sigren, J.; Silva, R. The role of beach and sand dune vegetation in mediating wave run up erosion. Estuar. Coast. Shelf Sci. 2019, 219, 97–106. [Google Scholar] [CrossRef]
- Rusinek, D. Analyzing the Effects of Hurricane Harvey on Dune Morphology and Coastline Loss Using Terrestrial Laser Scanning: A Case Study at Bryan Beach, Texas. Master’s Thesis, University of Houston, Houston, TX, USA, 2020. [Google Scholar]
- Simms, A.R.; Anderson, J.B.; Blum, M. Barrier-Island Aggradation via Inlet Migration: Mustang Island, Texas. Sediment. Geol. 2006, 187, 105–125. [Google Scholar] [CrossRef]
Source | Agency | A. Date | S. Res. (m) | V. Acc. (cm) | V. Datum | |
---|---|---|---|---|---|---|
Digital Elevation Models | ||||||
Gulf Coast NCMP Lidar | NOAA DC: DAV | USACE | September 2016 | 1 | 10 | NAVD88 (Geoid12B) |
South Texas Lidar | TNRIS | USGS | March 2018 | 1 | 10 | NAVD88 (Geoid12B) |
Orthophotos | ||||||
Coastal Texas NAIP Imagery | TNRIS | USDA | September 2016 | 1 | ||
Hurricane Harvey Imagery | NOAA | NOAA | August 2017 | 0.35 | ||
Coastal Texas NAIP Imagery | TNRIS | USDA | May 2018 | 0.6 |
Site | T1 (San Jose) | T5 (Mustang) | T10 (North Padre) |
---|---|---|---|
Acquisition Date | 16 May 2022 | 11 May 2022 | 11 May 2022 |
Altitude (m) | 79 | 36 | 35 |
Ground Sampling Distance (cm/pixel) | 1.83 | 0.83 | 0.81 |
Number of Images | 224 | 322 | 502 |
Length Along Shore (m) | 335 | 155 | 220 |
Area () | 23,252 | 8054 | 10,436 |
Net Shoreline Movement (m) | Movement Rate (m/yr) | |||
---|---|---|---|---|
Retreat | Erosional Transects (%) | 87.7 | Significant Erosion (%) | 23.7 |
Max Retreat | −59 | Max Retreat | 39.1 | |
Average Retreat | −16.2 | Average Retreat | 10.7 | |
Advance | Accretional Transects (%) | 12.3 | Significant Accretion (%) | 4.4 |
Max Advance | 62.7 | Max Advance | 41.5 | |
Average Advance | 13.4 | Average Advance | 8.9 | |
Average Movement | −12.6 | Average Rate | 8.3 |
Whole Area | Foredune Ridge | ||
---|---|---|---|
Site | Net Loss (m3) | Net Gain (m3) | Net Change (m3) |
T10 (North Padre) | 9923 | 13,614 | −6151 |
T5 (Mustang) | 5546 | 1767 | −3310 |
T1 (San Jose) | 23,893 | 7982 | +6502 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahtakhtinskiy, A.; Khan, S.D.; Rojas, S.S. Quantifying the Impact of Hurricane Harvey on Beach−Dune Systems of the Central Texas Coast and Monitoring Their Changes Using UAV Photogrammetry. Remote Sens. 2023, 15, 5779. https://doi.org/10.3390/rs15245779
Shahtakhtinskiy A, Khan SD, Rojas SS. Quantifying the Impact of Hurricane Harvey on Beach−Dune Systems of the Central Texas Coast and Monitoring Their Changes Using UAV Photogrammetry. Remote Sensing. 2023; 15(24):5779. https://doi.org/10.3390/rs15245779
Chicago/Turabian StyleShahtakhtinskiy, Aydin, Shuhab D. Khan, and Sara S. Rojas. 2023. "Quantifying the Impact of Hurricane Harvey on Beach−Dune Systems of the Central Texas Coast and Monitoring Their Changes Using UAV Photogrammetry" Remote Sensing 15, no. 24: 5779. https://doi.org/10.3390/rs15245779
APA StyleShahtakhtinskiy, A., Khan, S. D., & Rojas, S. S. (2023). Quantifying the Impact of Hurricane Harvey on Beach−Dune Systems of the Central Texas Coast and Monitoring Their Changes Using UAV Photogrammetry. Remote Sensing, 15(24), 5779. https://doi.org/10.3390/rs15245779