Retrieval of Subsurface Velocities in the Southern Ocean from Satellite Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Light Gradient Boosting Machine
2.2.2. Experimental Setup
3. Results and Discussion
3.1. Model Determination
3.2. Comparisons with Reanalysis Data
3.3. Retrieval of Long-Term VARIATIONS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Tung, K.-K. Global Surface Warming Enhanced by Weak Atlantic Overturning Circulation. Nature 2018, 559, 387–391. [Google Scholar] [CrossRef]
- Peng, Q.; Xie, S.-P.; Wang, D.; Huang, R.X.; Chen, G.; Shu, Y.; Shi, J.-R.; Liu, W. Surface Warming–Induced Global Acceleration of Upper Ocean Currents. Sci. Adv. 2022, 8, eabj8394. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.-R.; Talley, L.D.; Xie, S.-P.; Liu, W.; Gille, S.T. Effects of Buoyancy and Wind Forcing on Southern Ocean Climate Change. J. Clim. 2020, 33, 10003–10020. [Google Scholar] [CrossRef]
- Shi, J.-R.; Talley, L.D.; Xie, S.-P.; Peng, Q.; Liu, W. Ocean Warming and Accelerating Southern Ocean Zonal Flow. Nat. Clim. Chang. 2021, 11, 1090–1097. [Google Scholar] [CrossRef]
- Hu, S.; Sprintall, J.; Guan, C.; McPhaden, M.J.; Wang, F.; Hu, D.; Cai, W. Deep-Reaching Acceleration of Global Mean Ocean Circulation over the Past Two Decades. Sci. Adv. 2020, 6, eaax7727. [Google Scholar] [CrossRef] [PubMed]
- Wu, L. Acceleration of Global Mean Ocean Circulation under the Climate Warming. Sci. China Earth Sci. 2020, 63, 1039–1040. [Google Scholar] [CrossRef]
- Wunsch, C. Is the Ocean Speeding Up? Ocean Surface Energy Trends. J. Phys. Oceanogr. 2020, 50, 3205–3217. [Google Scholar] [CrossRef]
- Tollefson, J. Sensor Array Provides New Look at Global Ocean Current. Nature 2018, 554, 413–414. [Google Scholar] [CrossRef]
- Klemas, V.; Yan, X.-H. Subsurface and Deeper Ocean Remote Sensing from Satellites: An Overview and New Results. Prog. Oceanogr. 2014, 122, 1–9. [Google Scholar] [CrossRef]
- Huang, L.; Zhuang, W.; Wu, Z.; Meng, L.; Edwing, D.; Edwing, K.; Wang, L.; Yan, X. Decadal Cooling Events in the South Indian Ocean during the Argo Era. JGR Ocean. 2022, 127, e2021JC017949. [Google Scholar] [CrossRef]
- Miao, T.; Huang, H.; Guo, J.; Li, G.; Zhang, Y.; Chen, N. Uncertainty Analysis of Numerical Simulation of Seawater Intrusion Using Deep Learning-Based Surrogate Model. Water 2022, 14, 2933. [Google Scholar] [CrossRef]
- Morey, S.L.; Gopalakrishnan, G.; Sanz, E.P.; Azevedo Correia De Souza, J.M.; Donohue, K.; Pérez-Brunius, P.; Dukhovskoy, D.; Chassignet, E.; Cornuelle, B.; Bower, A.; et al. Assessment of Numerical Simulations of Deep Circulation and Variability in the Gulf of Mexico Using Recent Observations. J. Phys. Oceanogr. 2020, 50, 1045–1064. [Google Scholar] [CrossRef]
- Liu, L.; Peng, S.; Huang, R.X. Reconstruction of Ocean’s Interior from Observed Sea Surface Information: Ocean’s interior reconstruction. J. Geophys. Res. Ocean. 2017, 122, 1042–1056. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S.; Klein, P.; Torres, H.; Wang, J.; Fu, L.-L.; Menemenlis, D. Reconstructing Upper-Ocean Vertical Velocity Field from Sea Surface Height in the Presence of Unbalanced Motion. J. Phys. Oceanogr. 2020, 50, 55–79. [Google Scholar] [CrossRef]
- Wang, J.; Flierl, G.R.; LaCasce, J.H.; McClean, J.L.; Mahadevan, A. Reconstructing the Ocean’s Interior from Surface Data. J. Phys. Oceanogr. 2013, 43, 1611–1626. [Google Scholar] [CrossRef]
- Charantonis, A.A.; Badran, F.; Thiria, S. Retrieving the Evolution of Vertical Profiles of Chlorophyll-a from Satellite Observations Using Hidden Markov Models and Self-Organizing Topological Maps. Remote Sens. Environ. 2015, 163, 229–239. [Google Scholar] [CrossRef]
- Su, H.; Wu, X.; Yan, X.-H.; Kidwell, A. Estimation of Subsurface Temperature Anomaly in the Indian Ocean during Recent Global Surface Warming Hiatus from Satellite Measurements: A Support Vector Machine Approach. Remote Sens. Environ. 2015, 160, 63–71. [Google Scholar] [CrossRef]
- LaCasce, J.H.; Mahadevan, A. Estimating Subsurface Horizontal and Vertical Velocities from Sea-Surface Temperature. J. Mar. Res. 2006, 64, 695–721. [Google Scholar] [CrossRef]
- Liu, L.; Peng, S.; Wang, J.; Huang, R.X. Retrieving Density and Velocity Fields of the Ocean’s Interior from Surface Data. J. Geophys. Res. Ocean. 2014, 119, 8512–8529. [Google Scholar] [CrossRef]
- Lu, W.; Su, H.; Yang, X.; Yan, X.-H. Subsurface Temperature Estimation from Remote Sensing Data Using a Clustering-Neural Network Method. Remote Sens. Environ. 2019, 229, 213–222. [Google Scholar] [CrossRef]
- Su, H.; Li, W.; Yan, X.-H. Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations. J. Geophys. Res. Ocean. 2018, 123, 399–410. [Google Scholar] [CrossRef]
- Lebedev, K.; Yoshinari, H.; Maximenko, N.; Hacker, P. YoMaHa’07: Velocity Data Assessed from Trajectories of Argo Floats at Parking Level and at the Sea Surface. IPRC Technical Note. 2007. Available online: http://apdrc.soest.hawaii.edu/projects/yomaha/yomaha07/YoMaHa070612.pdf (accessed on 7 December 2023).
- Talley, L.D.; Feely, R.A.; Sloyan, B.M.; Wanninkhof, R.; Baringer, M.O.; Bullister, J.L.; Carlson, C.A.; Doney, S.C.; Fine, R.A.; Firing, E.; et al. Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. Annu. Rev. Mar. Sci. 2016, 8, 185–215. [Google Scholar] [CrossRef] [PubMed]
- Rintoul, S.R. The Global Influence of Localized Dynamics in the Southern Ocean. Nature 2018, 558, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Armour, K.C.; Marshall, J.; Scott, J.R.; Donohoe, A.; Newsom, E.R. Southern Ocean Warming Delayed by Circumpolar Upwelling and Equatorward Transport. Nat. Geosci 2016, 9, 549–554. [Google Scholar] [CrossRef]
- Hogg, A.M.C.; Meredith, M.P.; Chambers, D.P.; Abrahamsen, E.P.; Hughes, C.W.; Morrison, A.K. Recent Trends in the Southern Ocean Eddy Field. J. Geophys. Res. Ocean. 2015, 120, 257–267. [Google Scholar] [CrossRef]
- Bonjean, F.; Lagerloef, G.S.E. Diagnostic Model and Analysis of the Surface Currents in the Tropical Pacific Ocean. J. Phys. Oceanogr. 2002, 32, 2938–2954. [Google Scholar] [CrossRef]
- Roach, C.J.; Balwada, D.; Speer, K. Global Observations of Horizontal Mixing from Argo Float and Surface Drifter Trajectories. J. Geophys. Res. Ocean. 2018, 123, 4560–4575. [Google Scholar] [CrossRef]
- Goes, M.; Goni, G.; Dong, S.; Boyer, T.; Baringer, M. The Complementary Value of XBT and Argo Observations to Monitor Ocean Boundary Currents and Meridional Heat and Volume Transports: A Case Study in the Atlantic Ocean. J. Atmos. Ocean. Technol. 2020, 37, 2267–2282. [Google Scholar] [CrossRef]
- Zanowski, H.; Johnson, G.C.; Lyman, J.M. Equatorial Pacific 1000-dbar Velocity and Isotherm Displacements From Argo Data: Beyond the Mean and Seasonal Cycle. JGR Ocean. 2019, 124, 7873–7882. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process. Syst. 2017, 9, 3149–3157. [Google Scholar]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Statist. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. Mach. Learn. Python 2011, 6, 2825–2830. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. Adv. Neural Inf. Process. Syst. 2012, 9. [Google Scholar]
- Sun, C.; Watts, D.R. A Circumpolar Gravest Empirical Mode for the Southern Ocean Hydrography. J. Geophys. Res. 2001, 106, 2833–2855. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, C. A Geostrophic Empirical Mode Based on Altimetric Sea Surface Height. Sci. China Earth Sci. 2012, 55, 1193–1205. [Google Scholar] [CrossRef]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef]
- Li, H.; Xu, Y. Barotropic and Baroclinic Inverse Kinetic Energy Cascade in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 2021, 51, 809–824. [Google Scholar] [CrossRef]
- Liu, T.; Ou, H.-W.; Liu, X.; Qian, Y.-K.; Chen, D. The Dependence of Upper Ocean Gyres on Wind and Buoyancy Forcing. Geosci. Lett. 2022, 9, 2. [Google Scholar] [CrossRef]
- de Boer, A.M.; Hutchinson, D.K.; Roquet, F.; Sime, L.C.; Burls, N.J.; Heuzé, C. The Impact of Southern Ocean Topographic Barriers on the Ocean Circulation and the Overlying Atmosphere. J. Clim. 2022, 35, 5805–5821. [Google Scholar] [CrossRef]
Hyperparameters | Meaning | Optimal Values |
---|---|---|
SubZV/SubMV | ||
learning_rate | Shrinking the weights on each step | 0.028/0.005 |
num_leaves | The maximum number of leaf nodes in the tree | 280/90 |
max_depth | The maximum depth of a tree | 19/20 |
min_data_in_leaf | The minimum number of records a leaf may have | 39/22 |
bagging_fraction | The fraction of data used at each iteration | 0.5/0.5 |
feature_fraction | The fraction of feature used at each iteration | 0.8/0.7 |
lambda_l1 | L1 regularization term on weights | 0.95/0.9 |
lambda_l1 | L2 regularization term on weights | 0.95/0.1 |
max_bin | The maximum number of bins to store features | 297/279 |
Cases | Model | Input Parameters | RMSE (cm/s)/r (%) | |
---|---|---|---|---|
SubZV | SubMV | |||
Case 1 | Lightgbm | SurZV, SurMV, ADT, Lat, Lon, SurZW, SurMW | 4.08/77.6 (0.11 *) | 3.97/74.0 (0.29 *) |
Case 2 | Lightgbm | SurZV, SurMV, ADT, Lat, Lon | 4.12/77.0 (0.24 *) | 4.03/73.1 (0.36 *) |
Case 3 | Lightgbm | SurZV, SurMV, Lat, Lon, SurZW, SurMW | 4.13/77.0 (0.24 *) | 4.00/73.6 (0.40 *) |
Case 4 | Lightgbm | SurZV, SurMV, ADT, SurZW, SurMW | 4.35/74.1 | 4.16/71.0 |
Case 5 | Lightgbm | ADT, Lat, Lon, SurZW, SurMW | 5.59/50.3 | 5.56/34.1 |
Case 6 | RF | SurZV, SurMV, ADT, Lat, Lon, SurZW, SurMW | 4.14/76.9 (0.03 *) | 4.02/73.2 (0.03 *) |
Case 7 | MLR | SurZV, SurMV, ADT, Lat, Lon, SurZW, SurMW | 4.43/72.8 | 4.23/0.70 |
No. | Latitude | Longitude | Correlation Coefficient (r) | Number of Missing Values | ||||
---|---|---|---|---|---|---|---|---|
LightGBM | ORA-S5 | GODAS | ECCO | GLORYS12V1 | ||||
1 | 40.5°S | 166.5°E | 0.68 * | −0.06 | / | −0.18 | 0.01 | 1 |
2 | 34.5°S | 148.5°W | 0.55 * | −0.52 | 0.49 | −0.17 | 0.26 | 2 |
3 | 43.5°S | 151.5°W | 0.50 * | −0.39 | −0.69 | −0.44 | −0.75 | 3 |
4 | 34.5°S | 142.5°W | 0.70 * | 0.14 | 0.37 | 0.37 | 0.13 | 3 |
5 | 34.5°S | 37.5°W | 0.58 | 0.35 | 0.55 | 0.85 | 0.01 | 3 |
6 | 49.5°S | 127.5°W | 0.98 * | 0.78 | −0.59 | 0.37 | 0.72 | 5 |
Mean | - | - | 0.67 * | 0.05 | 0.03 | 0.13 | 0.06 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, L.; Xu, Y.; Sun, H.; Zhang, Q.; Zhang, L.; Zhang, L.; Zhang, X.; Huang, C.; Zhao, D. Retrieval of Subsurface Velocities in the Southern Ocean from Satellite Observations. Remote Sens. 2023, 15, 5699. https://doi.org/10.3390/rs15245699
Xiang L, Xu Y, Sun H, Zhang Q, Zhang L, Zhang L, Zhang X, Huang C, Zhao D. Retrieval of Subsurface Velocities in the Southern Ocean from Satellite Observations. Remote Sensing. 2023; 15(24):5699. https://doi.org/10.3390/rs15245699
Chicago/Turabian StyleXiang, Liang, Yongsheng Xu, Hanwei Sun, Qingjun Zhang, Liqiang Zhang, Lin Zhang, Xiangguang Zhang, Chao Huang, and Dandan Zhao. 2023. "Retrieval of Subsurface Velocities in the Southern Ocean from Satellite Observations" Remote Sensing 15, no. 24: 5699. https://doi.org/10.3390/rs15245699
APA StyleXiang, L., Xu, Y., Sun, H., Zhang, Q., Zhang, L., Zhang, L., Zhang, X., Huang, C., & Zhao, D. (2023). Retrieval of Subsurface Velocities in the Southern Ocean from Satellite Observations. Remote Sensing, 15(24), 5699. https://doi.org/10.3390/rs15245699