Construction and Optimisation of Ecological Networks in High-Density Central Urban Areas: The Case of Fuzhou City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Work Flow
2.2. Study Area
2.3. Data Sources and Pre-Processing
2.4. Methods
2.4.1. Morphological Spatial Pattern Analysis
2.4.2. Remote Sensing Ecological Index
2.4.3. Identifying Urban Ecological Sources
2.4.4. Construction of Resistance Surfaces
2.4.5. Identifying Urban Ecological Networks Based on MCR Models
2.4.6. Circuitscape-Based Urban Ecological Network Optimisation
2.4.7. Evaluation of Ecological Network Connectivity under Different Development Scenarios
3. Results
3.1. Results of MSPA
3.2. Remote Sensing Ecological Index Calculation Results
3.3. Extraction of Urban Ecological Sources
3.4. Resistance Surface Construction Results
3.5. Construction of Ecological Network in Fuzhou City
3.6. Identification of Ecological Network Pinch Points and Barrier Points
3.7. Changes in Landscape Connectivity under Different Development Scenarios
4. Discussion
4.1. Methodology for the Construction of High-Density Urban Ecological Networks
4.2. Integration of Ecological Network Structure and Function
4.3. Landscape Connectivity of Ecological Corridors
4.4. Limitations and Prospects
5. Conclusions
- I.
- Compared with a single evaluation method, an integrated method based on landscape structure and ecological function can better identify urban ecological source areas.
- II.
- The ecological network of Fuzhou city centre consists of 44 ecological source sites and 92 corridors.
- III.
- By comparing multiple optimisation options, transforming the top 30% of bare land patches into green spaces or parks has the greatest effect on improving the connectivity of the ecological network in Fuzhou City. This study can provide decision-making assistance and a reference for urban landscape and ecological planning.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Indicator | Calculation Method | Explanation |
---|---|---|
NDVI | and for the near-infrared band and the red band, respectively. | |
WET | correspond to the reflectance of TM and OLI remote sensing images in the blue, green, red, near-infrared, short-wave infrared 1, and short-wave infrared 2 bands, respectively. | |
LST | Gain and bias are the transmittance of the atmosphere in the thermal infrared band, the central wavelength (λ) is 11.48 μm, α is 1.438 × 10−2 mK, ε6 is the surface emissivity of band 6, and K1 and K2 are the scaling coefficients obtained in the metadata of the image. are the scaling coefficients obtained in the metadata of the image. | |
NDBSI | IBI is the index-based build-up index, SI is the soil index, and the other bands are interpreted as above. |
Number | Park Name | Area/km2 | DPC | RSEI Mean |
---|---|---|---|---|
1 | Niugangshan Park | 0.5715 | 11.1296 | 0.6395 |
2 | Huahai Rark | 0.2727 | 2.5342 | 0.6143 |
3 | Guangminggang Park | 0.3998 | 5.4456 | 0.6040 |
4 | Wenquan Park | 0.1679 | 0.961 | 0.6941 |
5 | Pingshan Park | 0.1680 | 6.9882 | 0.7268 |
6 | Xihu Park | 0.8281 | 29.3922 | 0.7261 |
7 | Minjiang Park | 0.2863 | 13.9258 | 0.7166 |
8 | Jinshan Park | 0.3368 | 8.868 | 0.8646 |
9 | Yushan Park | 0.0615 | 0.6269 | 0.7410 |
10 | Wushan Park | 0.1877 | 1.6985 | 0.7890 |
11 | Xichansi | 0.2489 | 11.4256 | 0.6931 |
12 | Jiangbing Park | 0.4910 | 28.7833 | 0.6851 |
13 | Jiangxin Park | 0.0614 | 5.1491 | 0.7834 |
14 | Qiulong Park | 0.0714 | 0.2999 | 0.6394 |
15 | Chating Park | 0.0391 | 0.2185 | 0.8208 |
16 | Shatan Park | 0.1658 | 0.9366 | 0.6144 |
17 | Wulongjian Park | 0.3195 | 8.4819 | 0.7705 |
18 | Yantaishan Park | 0.0644 | 2.1617 | 0.6100 |
Types | Area/km2 |
---|---|
Core | 30.6102 |
RSEI > 0.8 | 10.7127 |
References
- Chan, R.C.; Shimou, Y. Urbanization and sustainable metropolitan development in China: Patterns, problems and prospects. Geojournal 1999, 49, 269–277. [Google Scholar] [CrossRef]
- Feng, Y.; He, S.; Li, G. Interaction between urbanization and the eco-environment in the Pan-Third Pole region. Sci. Total Environ. 2021, 789, 148011. [Google Scholar] [CrossRef]
- People’s Republic of China; National Bureau of Statistics. China Statistical Yearbook 2002; (Chinese-English Edition); China Statistics Press: Beijing, China, 2002. [Google Scholar]
- Rajé, F.; Tight, M.; Pope, F.D. Traffic pollution: A search for solutions for a city like Nairobi. Cities 2018, 82, 100–107. [Google Scholar] [CrossRef]
- Narh, S.N.; Takyi, S.A.; Asibey, M.O.; Amponsah, O. Garden city without parks: An assessment of the availability and conditions of parks in Kumasi. Urban For. Urban Green. 2020, 55, 126819. [Google Scholar] [CrossRef]
- Gandy, M. Cities in deep time: Bio-diversity, metabolic rift, and the urban question. City 2018, 22, 96–105. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Ignatieva, M.; Stewart, G.H.; Meurk, C. Planning and design of ecological networks in urban areas. Landsc. Ecol. Eng. 2011, 7, 17–25. [Google Scholar] [CrossRef]
- Aminzadeh, B.; Khansefid, M. A case study of urban ecological networks and a sustainable city: Tehran’s metropolitan area. Urban Ecosyst. 2010, 13, 23–36. [Google Scholar] [CrossRef]
- Cui, L.; Wang, J.; Sun, L.; Lv, C. Construction and optimization of green space ecological networks in urban fringe areas: A case study with the urban fringe area of Tongzhou district in Beijing. J. Clean. Prod. 2020, 276, 124266. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Z.; Zhong, Q.; Zhang, Q.; Zhang, L.; Zhang, R.; Yi, Y.; Zhang, G.; Li, X.; Liu, J. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA. Ecol. Indic. 2022, 142, 109258. [Google Scholar] [CrossRef]
- Zhu, Y. Environmental impacts of rapid urbanization in China: A showcase of recent research developments. Environ. Sci. Pollut. Res. 2012, 19, 1351. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Shan, L.; Xiao, F. Constructing and optimizing urban ecological network in the context of rapid urbanization for improving landscape connectivity. Ecol. Indic. 2021, 132, 108319. [Google Scholar] [CrossRef]
- Wang, T.; Li, H.; Huang, Y. The complex ecological network’s resilience of the Wuhan metropolitan area. Ecol. Indic. 2021, 130, 108101. [Google Scholar] [CrossRef]
- Dong, J.; Guo, F.; Lin, M.; Zhang, H.; Zhu, P. Optimization of green infrastructure networks based on potential green roof integration in a high-density urban area—A case study of Beijing, China. Sci. Total Environ. 2022, 834, 155307. [Google Scholar] [CrossRef]
- Dong, J.; Peng, J.; Liu, Y.; Qiu, S.; Han, Y. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities. Landsc. Urban Plan. 2020, 199, 103815. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Q.; Zhang, L.; Zhong, Q.; Liu, J.; Wang, Z. Identification and extraction of a current urban ecological network in Minhang District of Shanghai based on an optimization method. Ecol. Indic. 2022, 136, 108647. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Hu, M.; Fan, C.; Wang, T.; Xia, B. Promoting landscape connectivity of highly urbanized area: An ecological network approach. Ecol. Indic. 2021, 125, 107487. [Google Scholar] [CrossRef]
- Hong, W.; Guo, R.; Li, X.; Liao, C. Measuring urban ecological network resilience: A disturbance scenario simulation method. Cities 2022, 131, 104057. [Google Scholar] [CrossRef]
- App, M.; Strohbach, M.W.; Schneider, A.; Schroeder, B. Making the case for gardens: Estimating the contribution of urban gardens to habitat provision and connectivity based on hedgehogs (Erinaceus europaeus). Landsc. Urban Plan. 2022, 220, 104347. [Google Scholar] [CrossRef]
- Little, C.E. Greenways for America; JHU Press: Baltimore, MA, USA, 1995. [Google Scholar]
- Liu, S.L.; Hou, X.Y.; Yin, Y.J.; Cheng, F.Y.; Zhang, Y.Q.; Dong, S.K. Research progress on landscape ecological networks. Acta Ecol. Sin. 2017, 37, 3947–3956. [Google Scholar]
- Chen, C.; Shi, L.; Lu, Y.; Yang, S.; Liu, S. The optimization of urban ecological network planning based on the minimum cumulative resistance model and granularity reverse method: A case study of Haikou, China. IEEE Access 2020, 8, 43592–43605. [Google Scholar] [CrossRef]
- Li, Y. Research Progress of Landscape Ecology. J. Landsc. Res. 2021, 13, 67–72. [Google Scholar] [CrossRef]
- Liquete, C.; Kleeschulte, S.; Dige, G.; Maes, J.; Grizzetti, B.; Olah, B.; Zulian, G. Mapping green infrastructure based on ecosystem services and ecological networks: A Pan-European case study. Environ. Sci. Policy 2015, 54, 268–280. [Google Scholar] [CrossRef]
- Zeller, K.A.; McGarigal, K.; Whiteley, A.R. Estimating landscape resistance to movement: A review. Landsc. Ecol. 2012, 27, 777–797. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, M.; Yu, K.; Gao, Y.; Liu, J. Construction of complex network of green infrastructure in smart city under spatial differentiation of landscape. Comput. Commun. 2020, 154, 380–389. [Google Scholar] [CrossRef]
- An, Y.; Liu, S.; Sun, Y.; Shi, F.; Beazley, R. Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landsc. Ecol. 2021, 36, 2059–2076. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef]
- Ma, Q.; Li, Y.; Xu, L. Identification of green infrastructure networks based on ecosystem services in a rapidly urbanizing area. J. Clean. Prod. 2021, 300, 126945. [Google Scholar] [CrossRef]
- Gao, J.; Du, F.; Zuo, L.; Jiang, Y. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern. Landsc. Ecol. 2021, 36, 2113–2133. [Google Scholar] [CrossRef]
- Avon, C.; Bergès, L. Prioritization of habitat patches for landscape connectivity conservation differs between least-cost and resistance distances. Landsc. Ecol. 2016, 31, 1551–1565. [Google Scholar] [CrossRef]
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating habitat isolation in landscape planning. Landsc. Urban Plan. 1992, 23, 1–16. [Google Scholar] [CrossRef]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef] [PubMed]
- Song, L.L.; Qin, M.Z. Identification of ecological corridors and its importance by integrating circuit theory. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2016, 27, 3344–3352. [Google Scholar]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Xu, H.Q. A remote sensing urban ecological index and its application. Acta Ecol. Sin. 2013, 33, 7853–7862. [Google Scholar]
- Hu, C.; Wang, Z.; Wang, Y.; Sun, D.; Zhang, J. Combining MSPA-MCR model to evaluate the ecological network in Wuhan, China. Land 2022, 11, 213. [Google Scholar] [CrossRef]
- Guo, R.; Wu, T.; Wu, X.; Luigi, S.; Wang, Y. Simulation of urban land expansion under ecological constraints in Harbin-Changchun urban agglomeration, China. Chin. Geogr. Sci. 2022, 32, 438–455. [Google Scholar] [CrossRef]
- Tan, K.W. A greenway network for Singapore. Landsc. Urban Plan. 2006, 76, 45–66. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, S.S. Comprehensive greenspace planning based on landscape ecology principles in compact Nanjing city, China. Landsc. Urban Plan. 2003, 65, 95–116. [Google Scholar] [CrossRef]
- Aoki, Y. Relationship between perceived greenery and width of visual fields. J. Jpn. Inst. Landsc. Archit. 1987, 51, 1–10. [Google Scholar]
- Yang, J.; Zhao, L.; Mcbride, J.; Gong, P. Can you see green? Assessing the visibility of urban forests in cities. Landsc. Urban Plan. 2009, 91, 97–104. [Google Scholar] [CrossRef]
- Anguelov, D.; Dulong, C.; Filip, D.; Frueh, C.; Lafon, S.; Lyon, R.; Ogale, A.; Vincent, L.; Weaver, J. Google street view: Capturing the world at street level. Computer 2010, 43, 32–38. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Zhu, J.; Qiu, L.; Su, Y.; Guo, Q.; Hu, T.; Bao, H.; Luo, J.; Wu, S.; Xu, Q.; Wang, Z. Disentangling the effects of the surrounding environment on street-side greenery: Evidence from Hangzhou. Ecol. Indic. 2022, 143, 109153. [Google Scholar] [CrossRef]
- Song, Y.; Kirkwood, N.; Maksimović, Č.; Zheng, X.; O’Connor, D.; Jin, Y.; Hou, D. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Sci. Total Environ. 2019, 663, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yu, K.; Ai, J.; Liu, Y.; Lin, L.; Lin, L.; Liu, J. The influence of green space patterns on land surface temperature in different seasons: A case study of Fuzhou City, China. Remote Sens. 2021, 13, 5114. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, X.; Zeng, Y.; Koga, M.; Vejre, H. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban for. Urban Green. 2018, 29, 113–121. [Google Scholar] [CrossRef]
- Lai, S.; Sha, J.; Eladawy, A.; Li, X.; Wang, J.; Kurbanov, E.; Lin, Z.; Wu, L.; Han, R.; Su, Y. Evaluation of ecological security and ecological maintenance based on pressure-state-response (PSR) model, case study: Fuzhou city, China. Hum. Ecol. Risk Assess. Int. J. 2022, 28, 734–761. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200 (v200) [Data Set]. Zenodo. 2022. Available online: https://zenodo.org/records/7254221 (accessed on 22 August 2023).
- Geng, J.; Yu, K.; Xie, Z.; Zhao, G.; Ai, J.; Yang, L.; Yang, H.; Liu, J. Analysis of spatiotemporal variation and drivers of ecological quality in Fuzhou based on RSEI. Remote Sens. 2022, 14, 4900. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Vogt, P.; Ferrari, J.R.; Lookingbill, T.R.; Gardner, R.H.; Riitters, K.H.; Ostapowicz, K. Mapping functional connectivity. Ecol. Indic. 2009, 9, 64–71. [Google Scholar] [CrossRef]
- Yuan, B.; Fu, L.; Zou, Y.; Zhang, S.; Chen, X.; Li, F.; Deng, Z.; Xie, Y. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Chang, C.; Li, M.; Chang, S. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Luo, F.; Liu, Y.; Peng, J.; Wu, J. Assessing urban landscape ecological risk through an adaptive cycle framework. Landsc. Urban Plan. 2018, 180, 125–134. [Google Scholar] [CrossRef]
- Yang, X.; Tan, X.; Chen, C.; Wang, Y. The influence of urban park characteristics on bird diversity in Nanjing, China. Avian Res. 2020, 11, 45. [Google Scholar] [CrossRef]
- He, K.; Lin, T.; Wu, J.; Sui, M.; Liu, L.; Ding, G. Construction of green infrastructure network based on spatial priority in downtown of Fuzhou, China. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2021, 32, 1424–1432. [Google Scholar]
- Huang, H.; Yu, K.; Gao, Y.; Liu, J. Building green infrastructure network of Fuzhou using MSPA. Chin. Landsc. Archit. 2019, 35, 70–75. [Google Scholar]
- Mu, H.; Li, X.; Ma, H.; Du, X.; Huang, J.; Su, W.; Yu, Z.; Xu, C.; Liu, H.; Yin, D. Evaluation of the policy-driven ecological network in the Three-North Shelterbelt region of China. Landsc. Urban Plan. 2022, 218, 104305. [Google Scholar] [CrossRef]
- Coffin, A.W. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 2007, 15, 396–406. [Google Scholar] [CrossRef]
- Van Der Ree, R.; Smith, D.J.; Grilo, C. The ecological effects of linear infrastructure and traffic: Challenges and opportunities of rapid global growth. In Handbook of Road Ecology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 1–9. [Google Scholar]
- Yang, Y.; Zhou, Y.; Feng, Z.; Wu, K. Making the case for parks: Construction of an ecological network of urban parks based on birds. Land 2022, 11, 1144. [Google Scholar] [CrossRef]
- McRae, B.H.; Kavanagh, D.M. Linkage Mapper Connectivity Analysis Software; The Nature Conservancy: Seattle WA, USA, 2011. [Google Scholar]
- McRae, B.H. Isolation by resistance. Evolution 2006, 60, 1551–1561. [Google Scholar] [PubMed]
- McRae, B.H.; Hall, S.A.; Beier, P.; Theobald, D.M. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS ONE 2012, 7, e52604. [Google Scholar] [CrossRef]
- Gao, M.; Hu, Y.; Bai, Y. Construction of ecological security pattern in national land space from the perspective of the community of life in mountain, water, forest, field, lake and grass: A case study in Guangxi Hechi, China. Ecol. Indic. 2022, 139, 108867. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, H.; Liu, Y. Urban ecological corridors construction: A review. Acta Ecol. Sin. 2017, 37, 23–30. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, L.; Zhong, Q.; Zhang, Q.; Ji, Y.; Song, P.; Wang, Q. An optimized evaluation method of an urban ecological network: The case of the Minhang District of Shanghai. Urban For. Urban Green. 2021, 62, 127158. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, S.; Wang, L.; Chi, Q.; Zhu, M.; Tang, W.; Zhao, X.; Xu, S.; Ye, S.; Lee, J. Research on the planning of an urban ventilation corridor based on the urban underlying surface taking Kaifeng city as an example. Land 2022, 11, 206. [Google Scholar] [CrossRef]
- Forman, R.T.; Alexander, L.E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 1998, 29, 207–231. [Google Scholar] [CrossRef]
- Oxley, D.J.; Fenton, M.B.; Carmody, G.R. The effects of roads on populations of small mammals. J. Appl. Ecol. 1974, 11, 51–59. [Google Scholar] [CrossRef]
- Nie, W.; Shi, Y.; Siaw, M.J.; Yang, F.; Wu, R.; Wu, X.; Zheng, X.; Bao, Z. Constructing and optimizing ecological network at county and town Scale: The case of Anji County, China. Ecol. Indic. 2021, 132, 108294. [Google Scholar] [CrossRef]
- Fan, F.; Wen, X.; Feng, Z.; Gao, Y.; Li, W. Optimizing urban ecological space based on the scenario of ecological security patterns: The case of central Wuhan, China. Appl. Geogr. 2022, 138, 102619. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, W.; Tian, S.; Wang, J. A multi-scale analysis framework of different methods used in establishing ecological networks. Landsc. Urban Plan. 2022, 228, 104579. [Google Scholar] [CrossRef]
- Hongfeng, B.; Wei, Z.; Lianxi, S.; Yang, G. Landscape-ecological planning and design of urban ecological corridors. In Proceedings of the 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 26–28 June 2010; IEEE: Hoboken, NJ, USA, 2010; pp. 1283–1287. [Google Scholar]
- Li, P.; Cao, H.; Sun, W.; Chen, X. Quantitative evaluation of the rebuilding costs of ecological corridors in a highly urbanized city: The perspective of land use adjustment. Ecol. Indic. 2022, 141, 109130. [Google Scholar] [CrossRef]
- LaPoint, S.; Balkenhol, N.; Hale, J.; Sadler, J.; van der Ree, R. Ecological connectivity research in urban areas. Funct. Ecol. 2015, 29, 868–878. [Google Scholar] [CrossRef]
- Urban, D.; Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecology 2001, 82, 1205–1218. [Google Scholar] [CrossRef]
Type of Resistance | Weights | Resistance Factor | Value | Type of Resistance | Weights | Resistance Factor | Value |
---|---|---|---|---|---|---|---|
Land use type | 0.3405 | Tree cover | 1 | Building height | 0.0698 | 0 | 1 |
Shrubland | 5 | 0~15 | 30 | ||||
Grassland | 10 | 15~27 | 50 | ||||
Cropland | 30 | 27~46 | 80 | ||||
Built-up | 100 | 46~85 | 90 | ||||
Bare land | 80 | 85~180 | 100 | ||||
Wetland | 20 | Terrain undulation | 0.0408 | 0~4 | 1 | ||
Water bodies | 90 | 4~11 | 20 | ||||
RSEI | 0.1589 | 0~0.2 | 80 | 11~20 | 60 | ||
0.2~0.4 | 60 | 20~32 | 80 | ||||
0.4~0.6 | 20 | >32 | 100 | ||||
0.6~0.8 | 5 | Slope | 0.0365 | <5° | 1 | ||
0.8~1 | 1 | 5°~15° | 20 | ||||
MSPA landscape types | 0.1333 | Core | 1 | 15°~25° | 60 | ||
Bridge | 5 | 25°~35° | 80 | ||||
Loop | 20 | >35° | 100 | ||||
Branch | 30 | Distance from railway | 0.0219 | <300 | 100 | ||
Islet | 40 | 300~600 | 80 | ||||
Edge | 50 | 600~900 | 60 | ||||
Perforation | 70 | 900~1200 | 20 | ||||
Background | 100 | >1200 | 1 | ||||
Green view index | 0.0883 | <5% | 60 | Distance from highway | 0.0280 | <200 | 100 |
5~15% | 30 | 200~400 | 80 | ||||
15~25% | 10 | 400~800 | 60 | ||||
25~35% | 5 | 800~1000 | 20 | ||||
>35% | 1 | >1000 | 1 | ||||
Building density | 0.0819 | 0 | 1 | ||||
0~21.04% | 30 | ||||||
21.04~34.84% | 50 | ||||||
34.84~51.08% | 80 | ||||||
51.08~72.84% | 90 | ||||||
72.84~100% | 100 |
MSPA Landscape Types | Core | Islet | Perforation | Edge | Loop | Bridge | Branch |
---|---|---|---|---|---|---|---|
Area/km2 | 30.61 | 5.33 | 1.15 | 14.54 | 0.67 | 2.68 | 6.13 |
Ratios/% | 50.08 | 8.72 | 1.89 | 23.79 | 1.10 | 4.39 | 10.03 |
Indicator | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
NDVI | 0.5778 | 0.4157 | 0.4792 | 0.5136 |
WET | 0.3811 | −0.7904 | −0.2267 | 0.4226 |
LST | −0.4609 | −0.3941 | 0.7886 | 0.1016 |
NDBSI | −0.5555 | 0.2170 | −0.3115 | 0.7398 |
Eigenvalue | 0.2506 | 0.0178 | 0.0079 | 0.0009 |
Percent eigenvalue | 90.40% | 6.41% | 2.85% | 0.34% |
Resistance Factor | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10 |
---|---|---|---|---|---|---|---|---|---|---|
LUCC | −0.0007 | 0.6432 | 0.1156 | −0.0778 | −0.0976 | 0.4152 | −0.0456 | −0.0179 | −0.6185 | 0.0066 |
RSEI | 0.0045 | 0.4139 | 0.1429 | 0.0816 | −0.1076 | −0.5708 | 0.6431 | 0.2233 | 0.0267 | −0.0019 |
MSPA | 0.0024 | 0.5469 | 0.1415 | −0.0562 | −0.0310 | 0.2104 | −0.2135 | −0.0374 | 0.7650 | −0.0159 |
GVI | 0.0166 | −0.0028 | 0.1994 | 0.9649 | −0.0681 | 0.0718 | −0.1285 | 0.0479 | −0.0200 | 0.00231 |
Density of building | −0.0474 | 0.2050 | −0.6776 | 0.2179 | 0.2188 | 0.0230 | 0.2485 | −0.5810 | 0.0386 | 0.00426 |
Height of building | −0.0405 | 0.1120 | −0.5705 | 0.0739 | 0.1971 | 0.0987 | −0.1026 | 0.7716 | 0.0210 | 0.0023 |
Terrain undulation | −0.1072 | −0.2128 | 0.0628 | 0.0102 | −0.1222 | 0.5730 | 0.5712 | 0.0990 | 0.1535 | 0.48613 |
Slope | 0.0003 | −0.1245 | 0.0191 | 0.0095 | −0.0838 | 0.3234 | 0.3232 | 0.0550 | 0.0686 | −0.8719 |
Distance from highway | 0.6499 | 0.0095 | 0.2211 | 0.0028 | 0.7071 | 0.0956 | 0.1359 | 0.0213 | −0.008 | 0.0223 |
Distance from railroad | 0.7496 | −0.0232 | −0.2621 | −0.0049 | −0.6039 | 0.0073 | −0.0266 | −0.0017 | 0.0294 | 0.0509 |
EigenValue | 0.3711 | 0.2068 | 0.0738 | 0.0650 | 0.0523 | 0.0313 | 0.0290 | 0.0153 | 0.0082 | 0.0027 |
Percent of EigenValues | 43.3792 | 24.1721 | 8.6236 | 7.6023 | 6.1134 | 3.6568 | 3.3847 | 1.7926 | 0.9618 | 0.3135 |
Accumulative of EigenValues | 43.3792 | 67.5513 | 76.1749 | 83.7772 | 89.8906 | 93.5474 | 96.9321 | 98.7247 | 99.6865 | 100 |
Pinch Points | Barriers | |||
---|---|---|---|---|
Area/km2 | Ratios/% | Area/km2 | Ratios/% | |
Tree cover | 1.4846 | 58.01 | 0.1741 | 4.91 |
Shrubland | 0.0052 | 0.20 | 0 | 0.00 |
Grassland | 0.0661 | 2.58 | 0.006 | 0.17 |
Cropland | 0.1652 | 6.45 | 0.0753 | 2.13 |
Built-up | 0.5681 | 22.20 | 1.9522 | 55.11 |
Bare land | 0.1929 | 7.54 | 0.427 | 12.05 |
Water bodies | 0.0755 | 2.95 | 0.9077 | 25.62 |
Wetland | 0.0017 | 0.07 | 0 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, J.; Yu, K.; Sun, M.; Xie, Z.; Huang, R.; Wang, Y.; Zhao, Q.; Liu, J. Construction and Optimisation of Ecological Networks in High-Density Central Urban Areas: The Case of Fuzhou City, China. Remote Sens. 2023, 15, 5666. https://doi.org/10.3390/rs15245666
Geng J, Yu K, Sun M, Xie Z, Huang R, Wang Y, Zhao Q, Liu J. Construction and Optimisation of Ecological Networks in High-Density Central Urban Areas: The Case of Fuzhou City, China. Remote Sensing. 2023; 15(24):5666. https://doi.org/10.3390/rs15245666
Chicago/Turabian StyleGeng, Jianwei, Kunyong Yu, Menglian Sun, Zhen Xie, Ruxian Huang, Yihan Wang, Qiuyue Zhao, and Jian Liu. 2023. "Construction and Optimisation of Ecological Networks in High-Density Central Urban Areas: The Case of Fuzhou City, China" Remote Sensing 15, no. 24: 5666. https://doi.org/10.3390/rs15245666
APA StyleGeng, J., Yu, K., Sun, M., Xie, Z., Huang, R., Wang, Y., Zhao, Q., & Liu, J. (2023). Construction and Optimisation of Ecological Networks in High-Density Central Urban Areas: The Case of Fuzhou City, China. Remote Sensing, 15(24), 5666. https://doi.org/10.3390/rs15245666